Files
dotfiles/configs/userland/ags/@girs/spiceclientgtk-3.0.d.ts
2026-02-02 16:01:56 +01:00

1353 lines
62 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/// <reference path="./spiceclientglib-2.0.d.ts" />
/// <reference path="./gstbase-1.0.d.ts" />
/// <reference path="./gst-1.0.d.ts" />
/// <reference path="./gobject-2.0.d.ts" />
/// <reference path="./glib-2.0.d.ts" />
/// <reference path="./gmodule-2.0.d.ts" />
/// <reference path="./gio-2.0.d.ts" />
/// <reference path="./gtk-3.0.d.ts" />
/// <reference path="./xlib-2.0.d.ts" />
/// <reference path="./gdk-3.0.d.ts" />
/// <reference path="./cairo-1.0.d.ts" />
/// <reference path="./pango-1.0.d.ts" />
/// <reference path="./harfbuzz-0.0.d.ts" />
/// <reference path="./freetype2-2.0.d.ts" />
/// <reference path="./gdkpixbuf-2.0.d.ts" />
/// <reference path="./atk-1.0.d.ts" />
/**
* Type Definitions for Gjs (https://gjs.guide/)
*
* These type definitions are automatically generated, do not edit them by hand.
* If you found a bug fix it in `ts-for-gir` or create a bug report on https://github.com/gjsify/ts-for-gir
*
* The based EJS template file is used for the generated .d.ts file of each GIR module like Gtk-4.0, GObject-2.0, ...
*/
declare module 'gi://SpiceClientGtk?version=3.0' {
// Module dependencies
import type SpiceClientGLib from 'gi://SpiceClientGLib?version=2.0';
import type GstBase from 'gi://GstBase?version=1.0';
import type Gst from 'gi://Gst?version=1.0';
import type GObject from 'gi://GObject?version=2.0';
import type GLib from 'gi://GLib?version=2.0';
import type GModule from 'gi://GModule?version=2.0';
import type Gio from 'gi://Gio?version=2.0';
import type Gtk from 'gi://Gtk?version=3.0';
import type xlib from 'gi://xlib?version=2.0';
import type Gdk from 'gi://Gdk?version=3.0';
import type cairo from 'gi://cairo?version=1.0';
import type Pango from 'gi://Pango?version=1.0';
import type HarfBuzz from 'gi://HarfBuzz?version=0.0';
import type freetype2 from 'gi://freetype2?version=2.0';
import type GdkPixbuf from 'gi://GdkPixbuf?version=2.0';
import type Atk from 'gi://Atk?version=1.0';
export namespace SpiceClientGtk {
/**
* SpiceClientGtk-3.0
*/
/**
* Constants for key events.
*/
/**
* Constants for key events.
*/
export namespace DisplayKeyEvent {
export const $gtype: GObject.GType<DisplayKeyEvent>;
}
enum DisplayKeyEvent {
/**
* key press
*/
PRESS,
/**
* key release
*/
RELEASE,
/**
* key click (press and release)
*/
CLICK,
}
module Display {
// Signal callback interfaces
interface GrabKeysPressed {
(): void;
}
interface KeyboardGrab {
(status: number): void;
}
interface MouseGrab {
(status: number): void;
}
// Constructor properties interface
interface ConstructorProps
extends Gtk.EventBox.ConstructorProps,
Atk.ImplementorIface.ConstructorProps,
Gtk.Buildable.ConstructorProps {
channel_id: number;
channelId: number;
disable_inputs: boolean;
disableInputs: boolean;
grab_keyboard: boolean;
grabKeyboard: boolean;
grab_mouse: boolean;
grabMouse: boolean;
keypress_delay: number;
keypressDelay: number;
monitor_id: number;
monitorId: number;
only_downscale: boolean;
onlyDownscale: boolean;
ready: boolean;
resize_guest: boolean;
resizeGuest: boolean;
scaling: boolean;
session: SpiceClientGLib.Session;
zoom_level: number;
zoomLevel: number;
}
}
/**
* The #SpiceDisplay struct is opaque and should not be accessed directly.
*/
class Display extends Gtk.EventBox implements Atk.ImplementorIface, Gtk.Buildable {
static $gtype: GObject.GType<Display>;
// Properties
/**
* channel-id for this #SpiceDisplay
*/
get channel_id(): number;
/**
* channel-id for this #SpiceDisplay
*/
get channelId(): number;
/**
* Disable all keyboard & mouse inputs.
*/
get disable_inputs(): boolean;
set disable_inputs(val: boolean);
/**
* Disable all keyboard & mouse inputs.
*/
get disableInputs(): boolean;
set disableInputs(val: boolean);
get grab_keyboard(): boolean;
set grab_keyboard(val: boolean);
get grabKeyboard(): boolean;
set grabKeyboard(val: boolean);
get grab_mouse(): boolean;
set grab_mouse(val: boolean);
get grabMouse(): boolean;
set grabMouse(val: boolean);
/**
* Delay in ms of non-modifiers key press events. If the key is
* released before this delay, a single press & release event is
* sent to the server. If the key is pressed longer than the
* keypress-delay, the server will receive the delayed press
* event, and a following release event when the key is released.
*/
get keypress_delay(): number;
set keypress_delay(val: number);
/**
* Delay in ms of non-modifiers key press events. If the key is
* released before this delay, a single press & release event is
* sent to the server. If the key is pressed longer than the
* keypress-delay, the server will receive the delayed press
* event, and a following release event when the key is released.
*/
get keypressDelay(): number;
set keypressDelay(val: number);
/**
* Select monitor from #SpiceDisplay to show.
* The value -1 means the whole display is shown.
* By default, the monitor 0 is selected.
*/
get monitor_id(): number;
set monitor_id(val: number);
/**
* Select monitor from #SpiceDisplay to show.
* The value -1 means the whole display is shown.
* By default, the monitor 0 is selected.
*/
get monitorId(): number;
set monitorId(val: number);
/**
* If scaling, only scale down, never up.
*/
get only_downscale(): boolean;
set only_downscale(val: boolean);
/**
* If scaling, only scale down, never up.
*/
get onlyDownscale(): boolean;
set onlyDownscale(val: boolean);
/**
* Indicate whether the display is ready to be shown. It takes
* into account several conditions, such as the channel display
* "mark" state, whether the monitor area is visible..
*/
get ready(): boolean;
get resize_guest(): boolean;
set resize_guest(val: boolean);
get resizeGuest(): boolean;
set resizeGuest(val: boolean);
get scaling(): boolean;
set scaling(val: boolean);
/**
* #SpiceSession for this #SpiceDisplay
*/
get session(): SpiceClientGLib.Session;
/**
* Zoom level in percentage, from 10 to 400. Default to 100.
* (this option is only supported with cairo backend when scaling
* is enabled)
*/
get zoom_level(): number;
set zoom_level(val: number);
/**
* Zoom level in percentage, from 10 to 400. Default to 100.
* (this option is only supported with cairo backend when scaling
* is enabled)
*/
get zoomLevel(): number;
set zoomLevel(val: number);
// Constructors
constructor(properties?: Partial<Display.ConstructorProps>, ...args: any[]);
_init(...args: any[]): void;
static ['new'](session: SpiceClientGLib.Session, channel_id: number): Display;
// Conflicted with Gtk.EventBox.new
static ['new'](...args: never[]): any;
static new_with_monitor(session: SpiceClientGLib.Session, channel_id: number, monitor_id: number): Display;
// Signals
connect(id: string, callback: (...args: any[]) => any): number;
connect_after(id: string, callback: (...args: any[]) => any): number;
emit(id: string, ...args: any[]): void;
connect(signal: 'grab-keys-pressed', callback: (_source: this) => void): number;
connect_after(signal: 'grab-keys-pressed', callback: (_source: this) => void): number;
emit(signal: 'grab-keys-pressed'): void;
connect(signal: 'keyboard-grab', callback: (_source: this, status: number) => void): number;
connect_after(signal: 'keyboard-grab', callback: (_source: this, status: number) => void): number;
emit(signal: 'keyboard-grab', status: number): void;
connect(signal: 'mouse-grab', callback: (_source: this, status: number) => void): number;
connect_after(signal: 'mouse-grab', callback: (_source: this, status: number) => void): number;
emit(signal: 'mouse-grab', status: number): void;
// Methods
/**
* Finds the current grab key combination for the `display`.
* @returns the current grab key combination.
*/
get_grab_keys(): GrabSequence;
/**
* Take a screenshot of the display.
* @returns a #GdkPixbuf with the screenshot image buffer
*/
get_pixbuf(): GdkPixbuf.Pixbuf;
/**
* Ungrab the keyboard.
*/
keyboard_ungrab(): void;
/**
* Ungrab the mouse.
*/
mouse_ungrab(): void;
/**
* Send keyval press/release events to the display.
* @param keyvals Keyval array
* @param kind #SpiceDisplayKeyEvent action
*/
send_keys(keyvals: number[], kind: DisplayKeyEvent | null): void;
/**
* Set the key combination to grab/ungrab the keyboard. The default is
* "Control L + Alt L".
* @param seq key sequence
*/
set_grab_keys(seq: GrabSequence): void;
// Inherited methods
/**
* Creates a binding between `source_property` on `source` and `target_property`
* on `target`.
*
* Whenever the `source_property` is changed the `target_property` is
* updated using the same value. For instance:
*
*
* ```c
* g_object_bind_property (action, "active", widget, "sensitive", 0);
* ```
*
*
* Will result in the "sensitive" property of the widget #GObject instance to be
* updated with the same value of the "active" property of the action #GObject
* instance.
*
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
* if `target_property` on `target` changes then the `source_property` on `source`
* will be updated as well.
*
* The binding will automatically be removed when either the `source` or the
* `target` instances are finalized. To remove the binding without affecting the
* `source` and the `target` you can just call g_object_unref() on the returned
* #GBinding instance.
*
* Removing the binding by calling g_object_unref() on it must only be done if
* the binding, `source` and `target` are only used from a single thread and it
* is clear that both `source` and `target` outlive the binding. Especially it
* is not safe to rely on this if the binding, `source` or `target` can be
* finalized from different threads. Keep another reference to the binding and
* use g_binding_unbind() instead to be on the safe side.
*
* A #GObject can have multiple bindings.
* @param source_property the property on @source to bind
* @param target the target #GObject
* @param target_property the property on @target to bind
* @param flags flags to pass to #GBinding
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
*/
bind_property(
source_property: string,
target: GObject.Object,
target_property: string,
flags: GObject.BindingFlags | null,
): GObject.Binding;
/**
* Complete version of g_object_bind_property().
*
* Creates a binding between `source_property` on `source` and `target_property`
* on `target,` allowing you to set the transformation functions to be used by
* the binding.
*
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
* if `target_property` on `target` changes then the `source_property` on `source`
* will be updated as well. The `transform_from` function is only used in case
* of bidirectional bindings, otherwise it will be ignored
*
* The binding will automatically be removed when either the `source` or the
* `target` instances are finalized. This will release the reference that is
* being held on the #GBinding instance; if you want to hold on to the
* #GBinding instance, you will need to hold a reference to it.
*
* To remove the binding, call g_binding_unbind().
*
* A #GObject can have multiple bindings.
*
* The same `user_data` parameter will be used for both `transform_to`
* and `transform_from` transformation functions; the `notify` function will
* be called once, when the binding is removed. If you need different data
* for each transformation function, please use
* g_object_bind_property_with_closures() instead.
* @param source_property the property on @source to bind
* @param target the target #GObject
* @param target_property the property on @target to bind
* @param flags flags to pass to #GBinding
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
*/
bind_property_full(
source_property: string,
target: GObject.Object,
target_property: string,
flags: GObject.BindingFlags | null,
transform_to?: GObject.BindingTransformFunc | null,
transform_from?: GObject.BindingTransformFunc | null,
notify?: GLib.DestroyNotify | null,
): GObject.Binding;
// Conflicted with GObject.Object.bind_property_full
bind_property_full(...args: never[]): any;
/**
* This function is intended for #GObject implementations to re-enforce
* a [floating][floating-ref] object reference. Doing this is seldom
* required: all #GInitiallyUnowneds are created with a floating reference
* which usually just needs to be sunken by calling g_object_ref_sink().
*/
force_floating(): void;
/**
* Increases the freeze count on `object`. If the freeze count is
* non-zero, the emission of "notify" signals on `object` is
* stopped. The signals are queued until the freeze count is decreased
* to zero. Duplicate notifications are squashed so that at most one
* #GObject::notify signal is emitted for each property modified while the
* object is frozen.
*
* This is necessary for accessors that modify multiple properties to prevent
* premature notification while the object is still being modified.
*/
freeze_notify(): void;
/**
* Gets a named field from the objects table of associations (see g_object_set_data()).
* @param key name of the key for that association
* @returns the data if found, or %NULL if no such data exists.
*/
get_data(key: string): any | null;
get_property(property_name: string): any;
/**
* This function gets back user data pointers stored via
* g_object_set_qdata().
* @param quark A #GQuark, naming the user data pointer
* @returns The user data pointer set, or %NULL
*/
get_qdata(quark: GLib.Quark): any | null;
/**
* Gets `n_properties` properties for an `object`.
* Obtained properties will be set to `values`. All properties must be valid.
* Warnings will be emitted and undefined behaviour may result if invalid
* properties are passed in.
* @param names the names of each property to get
* @param values the values of each property to get
*/
getv(names: string[], values: (GObject.Value | any)[]): void;
/**
* Checks whether `object` has a [floating][floating-ref] reference.
* @returns %TRUE if @object has a floating reference
*/
is_floating(): boolean;
/**
* Emits a "notify" signal for the property `property_name` on `object`.
*
* When possible, eg. when signaling a property change from within the class
* that registered the property, you should use g_object_notify_by_pspec()
* instead.
*
* Note that emission of the notify signal may be blocked with
* g_object_freeze_notify(). In this case, the signal emissions are queued
* and will be emitted (in reverse order) when g_object_thaw_notify() is
* called.
* @param property_name the name of a property installed on the class of @object.
*/
notify(property_name: string): void;
/**
* Emits a "notify" signal for the property specified by `pspec` on `object`.
*
* This function omits the property name lookup, hence it is faster than
* g_object_notify().
*
* One way to avoid using g_object_notify() from within the
* class that registered the properties, and using g_object_notify_by_pspec()
* instead, is to store the GParamSpec used with
* g_object_class_install_property() inside a static array, e.g.:
*
*
* ```c
* typedef enum
* {
* PROP_FOO = 1,
* PROP_LAST
* } MyObjectProperty;
*
* static GParamSpec *properties[PROP_LAST];
*
* static void
* my_object_class_init (MyObjectClass *klass)
* {
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
* 0, 100,
* 50,
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
* g_object_class_install_property (gobject_class,
* PROP_FOO,
* properties[PROP_FOO]);
* }
* ```
*
*
* and then notify a change on the "foo" property with:
*
*
* ```c
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
* ```
*
* @param pspec the #GParamSpec of a property installed on the class of @object.
*/
notify_by_pspec(pspec: GObject.ParamSpec): void;
/**
* Increases the reference count of `object`.
*
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
* of `object` will be propagated to the return type (using the GCC typeof()
* extension), so any casting the caller needs to do on the return type must be
* explicit.
* @returns the same @object
*/
ref(): GObject.Object;
/**
* Increase the reference count of `object,` and possibly remove the
* [floating][floating-ref] reference, if `object` has a floating reference.
*
* In other words, if the object is floating, then this call "assumes
* ownership" of the floating reference, converting it to a normal
* reference by clearing the floating flag while leaving the reference
* count unchanged. If the object is not floating, then this call
* adds a new normal reference increasing the reference count by one.
*
* Since GLib 2.56, the type of `object` will be propagated to the return type
* under the same conditions as for g_object_ref().
* @returns @object
*/
ref_sink(): GObject.Object;
/**
* Releases all references to other objects. This can be used to break
* reference cycles.
*
* This function should only be called from object system implementations.
*/
run_dispose(): void;
/**
* Each object carries around a table of associations from
* strings to pointers. This function lets you set an association.
*
* If the object already had an association with that name,
* the old association will be destroyed.
*
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
* This means a copy of `key` is kept permanently (even after `object` has been
* finalized) — so it is recommended to only use a small, bounded set of values
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
* @param key name of the key
* @param data data to associate with that key
*/
set_data(key: string, data?: any | null): void;
set_property(property_name: string, value: any): void;
/**
* Remove a specified datum from the object's data associations,
* without invoking the association's destroy handler.
* @param key name of the key
* @returns the data if found, or %NULL if no such data exists.
*/
steal_data(key: string): any | null;
/**
* This function gets back user data pointers stored via
* g_object_set_qdata() and removes the `data` from object
* without invoking its destroy() function (if any was
* set).
* Usually, calling this function is only required to update
* user data pointers with a destroy notifier, for example:
*
* ```c
* void
* object_add_to_user_list (GObject *object,
* const gchar *new_string)
* {
* // the quark, naming the object data
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
* // retrieve the old string list
* GList *list = g_object_steal_qdata (object, quark_string_list);
*
* // prepend new string
* list = g_list_prepend (list, g_strdup (new_string));
* // this changed 'list', so we need to set it again
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
* }
* static void
* free_string_list (gpointer data)
* {
* GList *node, *list = data;
*
* for (node = list; node; node = node->next)
* g_free (node->data);
* g_list_free (list);
* }
* ```
*
* Using g_object_get_qdata() in the above example, instead of
* g_object_steal_qdata() would have left the destroy function set,
* and thus the partial string list would have been freed upon
* g_object_set_qdata_full().
* @param quark A #GQuark, naming the user data pointer
* @returns The user data pointer set, or %NULL
*/
steal_qdata(quark: GLib.Quark): any | null;
/**
* Reverts the effect of a previous call to
* g_object_freeze_notify(). The freeze count is decreased on `object`
* and when it reaches zero, queued "notify" signals are emitted.
*
* Duplicate notifications for each property are squashed so that at most one
* #GObject::notify signal is emitted for each property, in the reverse order
* in which they have been queued.
*
* It is an error to call this function when the freeze count is zero.
*/
thaw_notify(): void;
/**
* Decreases the reference count of `object`. When its reference count
* drops to 0, the object is finalized (i.e. its memory is freed).
*
* If the pointer to the #GObject may be reused in future (for example, if it is
* an instance variable of another object), it is recommended to clear the
* pointer to %NULL rather than retain a dangling pointer to a potentially
* invalid #GObject instance. Use g_clear_object() for this.
*/
unref(): void;
/**
* This function essentially limits the life time of the `closure` to
* the life time of the object. That is, when the object is finalized,
* the `closure` is invalidated by calling g_closure_invalidate() on
* it, in order to prevent invocations of the closure with a finalized
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
* added as marshal guards to the `closure,` to ensure that an extra
* reference count is held on `object` during invocation of the
* `closure`. Usually, this function will be called on closures that
* use this `object` as closure data.
* @param closure #GClosure to watch
*/
watch_closure(closure: GObject.Closure): void;
/**
* the `constructed` function is called by g_object_new() as the
* final step of the object creation process. At the point of the call, all
* construction properties have been set on the object. The purpose of this
* call is to allow for object initialisation steps that can only be performed
* after construction properties have been set. `constructed` implementors
* should chain up to the `constructed` call of their parent class to allow it
* to complete its initialisation.
*/
vfunc_constructed(): void;
/**
* emits property change notification for a bunch
* of properties. Overriding `dispatch_properties_changed` should be rarely
* needed.
* @param n_pspecs
* @param pspecs
*/
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
/**
* the `dispose` function is supposed to drop all references to other
* objects, but keep the instance otherwise intact, so that client method
* invocations still work. It may be run multiple times (due to reference
* loops). Before returning, `dispose` should chain up to the `dispose` method
* of the parent class.
*/
vfunc_dispose(): void;
/**
* instance finalization function, should finish the finalization of
* the instance begun in `dispose` and chain up to the `finalize` method of the
* parent class.
*/
vfunc_finalize(): void;
/**
* the generic getter for all properties of this type. Should be
* overridden for every type with properties.
* @param property_id
* @param value
* @param pspec
*/
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
/**
* Emits a "notify" signal for the property `property_name` on `object`.
*
* When possible, eg. when signaling a property change from within the class
* that registered the property, you should use g_object_notify_by_pspec()
* instead.
*
* Note that emission of the notify signal may be blocked with
* g_object_freeze_notify(). In this case, the signal emissions are queued
* and will be emitted (in reverse order) when g_object_thaw_notify() is
* called.
* @param pspec
*/
vfunc_notify(pspec: GObject.ParamSpec): void;
/**
* the generic setter for all properties of this type. Should be
* overridden for every type with properties. If implementations of
* `set_property` don't emit property change notification explicitly, this will
* be done implicitly by the type system. However, if the notify signal is
* emitted explicitly, the type system will not emit it a second time.
* @param property_id
* @param value
* @param pspec
*/
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
disconnect(id: number): void;
set(properties: { [key: string]: any }): void;
block_signal_handler(id: number): any;
unblock_signal_handler(id: number): any;
stop_emission_by_name(detailedName: string): any;
}
module GtkSession {
// Constructor properties interface
interface ConstructorProps extends GObject.Object.ConstructorProps {
auto_clipboard: boolean;
autoClipboard: boolean;
auto_usbredir: boolean;
autoUsbredir: boolean;
pointer_grabbed: boolean;
pointerGrabbed: boolean;
session: SpiceClientGLib.Session;
sync_modifiers: boolean;
syncModifiers: boolean;
}
}
/**
* The #SpiceGtkSession struct is opaque and should not be accessed directly.
*/
class GtkSession extends GObject.Object {
static $gtype: GObject.GType<GtkSession>;
// Properties
/**
* When this is true the clipboard gets automatically shared between host
* and guest.
*/
get auto_clipboard(): boolean;
set auto_clipboard(val: boolean);
/**
* When this is true the clipboard gets automatically shared between host
* and guest.
*/
get autoClipboard(): boolean;
set autoClipboard(val: boolean);
/**
* Automatically redirect newly plugged in USB devices. Note the auto
* redirection only happens when a #SpiceDisplay associated with the
* session had keyboard focus.
*/
get auto_usbredir(): boolean;
set auto_usbredir(val: boolean);
/**
* Automatically redirect newly plugged in USB devices. Note the auto
* redirection only happens when a #SpiceDisplay associated with the
* session had keyboard focus.
*/
get autoUsbredir(): boolean;
set autoUsbredir(val: boolean);
/**
* Returns %TRUE if the pointer is currently grabbed by this session.
*/
get pointer_grabbed(): boolean;
/**
* Returns %TRUE if the pointer is currently grabbed by this session.
*/
get pointerGrabbed(): boolean;
/**
* #SpiceSession this #SpiceGtkSession is associated with
*/
get session(): SpiceClientGLib.Session;
/**
* Automatically sync modifiers (Caps, Num and Scroll locks) with the guest.
*/
get sync_modifiers(): boolean;
set sync_modifiers(val: boolean);
/**
* Automatically sync modifiers (Caps, Num and Scroll locks) with the guest.
*/
get syncModifiers(): boolean;
set syncModifiers(val: boolean);
// Constructors
constructor(properties?: Partial<GtkSession.ConstructorProps>, ...args: any[]);
_init(...args: any[]): void;
// Static methods
/**
* Gets the #SpiceGtkSession associated with the passed in #SpiceSession.
* A new #SpiceGtkSession instance will be created the first time this
* function is called for a certain #SpiceSession.
*
* Note that this function returns a weak reference, which should not be used
* after the #SpiceSession itself has been unref-ed by the caller.
* @param session #SpiceSession for which to get the #SpiceGtkSession
*/
static get(session: SpiceClientGLib.Session): GtkSession;
// Methods
/**
* Copy client-side clipboard to guest clipboard.
*
* Since 0.8
*/
copy_to_guest(): void;
/**
* Copy guest clipboard to client-side clipboard.
*
* Since 0.8
*/
paste_from_guest(): void;
}
module UsbDeviceWidget {
// Signal callback interfaces
interface ConnectFailed {
(device: SpiceClientGLib.UsbDevice, error: GLib.Error): void;
}
// Constructor properties interface
interface ConstructorProps
extends Gtk.Box.ConstructorProps,
Atk.ImplementorIface.ConstructorProps,
Gtk.Buildable.ConstructorProps,
Gtk.Orientable.ConstructorProps {
device_format_string: string;
deviceFormatString: string;
session: SpiceClientGLib.Session;
}
}
/**
* The #SpiceUsbDeviceWidget struct is opaque and should not be accessed directly.
*/
class UsbDeviceWidget extends Gtk.Box implements Atk.ImplementorIface, Gtk.Buildable, Gtk.Orientable {
static $gtype: GObject.GType<UsbDeviceWidget>;
// Properties
/**
* Format string to pass to spice_usb_device_get_description() for getting
* the device USB descriptions.
*/
get device_format_string(): string;
/**
* Format string to pass to spice_usb_device_get_description() for getting
* the device USB descriptions.
*/
get deviceFormatString(): string;
/**
* #SpiceSession this #SpiceUsbDeviceWidget is associated with
*/
get session(): SpiceClientGLib.Session;
// Constructors
constructor(properties?: Partial<UsbDeviceWidget.ConstructorProps>, ...args: any[]);
_init(...args: any[]): void;
static ['new'](session: SpiceClientGLib.Session, device_format_string?: string | null): UsbDeviceWidget;
// Conflicted with Gtk.Box.new
static ['new'](...args: never[]): any;
// Signals
connect(id: string, callback: (...args: any[]) => any): number;
connect_after(id: string, callback: (...args: any[]) => any): number;
emit(id: string, ...args: any[]): void;
connect(
signal: 'connect-failed',
callback: (_source: this, device: SpiceClientGLib.UsbDevice, error: GLib.Error) => void,
): number;
connect_after(
signal: 'connect-failed',
callback: (_source: this, device: SpiceClientGLib.UsbDevice, error: GLib.Error) => void,
): number;
emit(signal: 'connect-failed', device: SpiceClientGLib.UsbDevice, error: GLib.Error): void;
// Inherited properties
/**
* The orientation of the orientable.
*/
get orientation(): Gtk.Orientation;
set orientation(val: Gtk.Orientation);
// Inherited methods
/**
* Retrieves the orientation of the `orientable`.
* @returns the orientation of the @orientable.
*/
get_orientation(): Gtk.Orientation;
/**
* Sets the orientation of the `orientable`.
* @param orientation the orientables new orientation.
*/
set_orientation(orientation: Gtk.Orientation | null): void;
/**
* Creates a binding between `source_property` on `source` and `target_property`
* on `target`.
*
* Whenever the `source_property` is changed the `target_property` is
* updated using the same value. For instance:
*
*
* ```c
* g_object_bind_property (action, "active", widget, "sensitive", 0);
* ```
*
*
* Will result in the "sensitive" property of the widget #GObject instance to be
* updated with the same value of the "active" property of the action #GObject
* instance.
*
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
* if `target_property` on `target` changes then the `source_property` on `source`
* will be updated as well.
*
* The binding will automatically be removed when either the `source` or the
* `target` instances are finalized. To remove the binding without affecting the
* `source` and the `target` you can just call g_object_unref() on the returned
* #GBinding instance.
*
* Removing the binding by calling g_object_unref() on it must only be done if
* the binding, `source` and `target` are only used from a single thread and it
* is clear that both `source` and `target` outlive the binding. Especially it
* is not safe to rely on this if the binding, `source` or `target` can be
* finalized from different threads. Keep another reference to the binding and
* use g_binding_unbind() instead to be on the safe side.
*
* A #GObject can have multiple bindings.
* @param source_property the property on @source to bind
* @param target the target #GObject
* @param target_property the property on @target to bind
* @param flags flags to pass to #GBinding
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
*/
bind_property(
source_property: string,
target: GObject.Object,
target_property: string,
flags: GObject.BindingFlags | null,
): GObject.Binding;
/**
* Complete version of g_object_bind_property().
*
* Creates a binding between `source_property` on `source` and `target_property`
* on `target,` allowing you to set the transformation functions to be used by
* the binding.
*
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
* if `target_property` on `target` changes then the `source_property` on `source`
* will be updated as well. The `transform_from` function is only used in case
* of bidirectional bindings, otherwise it will be ignored
*
* The binding will automatically be removed when either the `source` or the
* `target` instances are finalized. This will release the reference that is
* being held on the #GBinding instance; if you want to hold on to the
* #GBinding instance, you will need to hold a reference to it.
*
* To remove the binding, call g_binding_unbind().
*
* A #GObject can have multiple bindings.
*
* The same `user_data` parameter will be used for both `transform_to`
* and `transform_from` transformation functions; the `notify` function will
* be called once, when the binding is removed. If you need different data
* for each transformation function, please use
* g_object_bind_property_with_closures() instead.
* @param source_property the property on @source to bind
* @param target the target #GObject
* @param target_property the property on @target to bind
* @param flags flags to pass to #GBinding
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
*/
bind_property_full(
source_property: string,
target: GObject.Object,
target_property: string,
flags: GObject.BindingFlags | null,
transform_to?: GObject.BindingTransformFunc | null,
transform_from?: GObject.BindingTransformFunc | null,
notify?: GLib.DestroyNotify | null,
): GObject.Binding;
// Conflicted with GObject.Object.bind_property_full
bind_property_full(...args: never[]): any;
/**
* This function is intended for #GObject implementations to re-enforce
* a [floating][floating-ref] object reference. Doing this is seldom
* required: all #GInitiallyUnowneds are created with a floating reference
* which usually just needs to be sunken by calling g_object_ref_sink().
*/
force_floating(): void;
/**
* Increases the freeze count on `object`. If the freeze count is
* non-zero, the emission of "notify" signals on `object` is
* stopped. The signals are queued until the freeze count is decreased
* to zero. Duplicate notifications are squashed so that at most one
* #GObject::notify signal is emitted for each property modified while the
* object is frozen.
*
* This is necessary for accessors that modify multiple properties to prevent
* premature notification while the object is still being modified.
*/
freeze_notify(): void;
/**
* Gets a named field from the objects table of associations (see g_object_set_data()).
* @param key name of the key for that association
* @returns the data if found, or %NULL if no such data exists.
*/
get_data(key: string): any | null;
get_property(property_name: string): any;
/**
* This function gets back user data pointers stored via
* g_object_set_qdata().
* @param quark A #GQuark, naming the user data pointer
* @returns The user data pointer set, or %NULL
*/
get_qdata(quark: GLib.Quark): any | null;
/**
* Gets `n_properties` properties for an `object`.
* Obtained properties will be set to `values`. All properties must be valid.
* Warnings will be emitted and undefined behaviour may result if invalid
* properties are passed in.
* @param names the names of each property to get
* @param values the values of each property to get
*/
getv(names: string[], values: (GObject.Value | any)[]): void;
/**
* Checks whether `object` has a [floating][floating-ref] reference.
* @returns %TRUE if @object has a floating reference
*/
is_floating(): boolean;
/**
* Emits a "notify" signal for the property `property_name` on `object`.
*
* When possible, eg. when signaling a property change from within the class
* that registered the property, you should use g_object_notify_by_pspec()
* instead.
*
* Note that emission of the notify signal may be blocked with
* g_object_freeze_notify(). In this case, the signal emissions are queued
* and will be emitted (in reverse order) when g_object_thaw_notify() is
* called.
* @param property_name the name of a property installed on the class of @object.
*/
notify(property_name: string): void;
/**
* Emits a "notify" signal for the property specified by `pspec` on `object`.
*
* This function omits the property name lookup, hence it is faster than
* g_object_notify().
*
* One way to avoid using g_object_notify() from within the
* class that registered the properties, and using g_object_notify_by_pspec()
* instead, is to store the GParamSpec used with
* g_object_class_install_property() inside a static array, e.g.:
*
*
* ```c
* typedef enum
* {
* PROP_FOO = 1,
* PROP_LAST
* } MyObjectProperty;
*
* static GParamSpec *properties[PROP_LAST];
*
* static void
* my_object_class_init (MyObjectClass *klass)
* {
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
* 0, 100,
* 50,
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
* g_object_class_install_property (gobject_class,
* PROP_FOO,
* properties[PROP_FOO]);
* }
* ```
*
*
* and then notify a change on the "foo" property with:
*
*
* ```c
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
* ```
*
* @param pspec the #GParamSpec of a property installed on the class of @object.
*/
notify_by_pspec(pspec: GObject.ParamSpec): void;
/**
* Increases the reference count of `object`.
*
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
* of `object` will be propagated to the return type (using the GCC typeof()
* extension), so any casting the caller needs to do on the return type must be
* explicit.
* @returns the same @object
*/
ref(): GObject.Object;
/**
* Increase the reference count of `object,` and possibly remove the
* [floating][floating-ref] reference, if `object` has a floating reference.
*
* In other words, if the object is floating, then this call "assumes
* ownership" of the floating reference, converting it to a normal
* reference by clearing the floating flag while leaving the reference
* count unchanged. If the object is not floating, then this call
* adds a new normal reference increasing the reference count by one.
*
* Since GLib 2.56, the type of `object` will be propagated to the return type
* under the same conditions as for g_object_ref().
* @returns @object
*/
ref_sink(): GObject.Object;
/**
* Releases all references to other objects. This can be used to break
* reference cycles.
*
* This function should only be called from object system implementations.
*/
run_dispose(): void;
/**
* Each object carries around a table of associations from
* strings to pointers. This function lets you set an association.
*
* If the object already had an association with that name,
* the old association will be destroyed.
*
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
* This means a copy of `key` is kept permanently (even after `object` has been
* finalized) — so it is recommended to only use a small, bounded set of values
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
* @param key name of the key
* @param data data to associate with that key
*/
set_data(key: string, data?: any | null): void;
set_property(property_name: string, value: any): void;
/**
* Remove a specified datum from the object's data associations,
* without invoking the association's destroy handler.
* @param key name of the key
* @returns the data if found, or %NULL if no such data exists.
*/
steal_data(key: string): any | null;
/**
* This function gets back user data pointers stored via
* g_object_set_qdata() and removes the `data` from object
* without invoking its destroy() function (if any was
* set).
* Usually, calling this function is only required to update
* user data pointers with a destroy notifier, for example:
*
* ```c
* void
* object_add_to_user_list (GObject *object,
* const gchar *new_string)
* {
* // the quark, naming the object data
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
* // retrieve the old string list
* GList *list = g_object_steal_qdata (object, quark_string_list);
*
* // prepend new string
* list = g_list_prepend (list, g_strdup (new_string));
* // this changed 'list', so we need to set it again
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
* }
* static void
* free_string_list (gpointer data)
* {
* GList *node, *list = data;
*
* for (node = list; node; node = node->next)
* g_free (node->data);
* g_list_free (list);
* }
* ```
*
* Using g_object_get_qdata() in the above example, instead of
* g_object_steal_qdata() would have left the destroy function set,
* and thus the partial string list would have been freed upon
* g_object_set_qdata_full().
* @param quark A #GQuark, naming the user data pointer
* @returns The user data pointer set, or %NULL
*/
steal_qdata(quark: GLib.Quark): any | null;
/**
* Reverts the effect of a previous call to
* g_object_freeze_notify(). The freeze count is decreased on `object`
* and when it reaches zero, queued "notify" signals are emitted.
*
* Duplicate notifications for each property are squashed so that at most one
* #GObject::notify signal is emitted for each property, in the reverse order
* in which they have been queued.
*
* It is an error to call this function when the freeze count is zero.
*/
thaw_notify(): void;
/**
* Decreases the reference count of `object`. When its reference count
* drops to 0, the object is finalized (i.e. its memory is freed).
*
* If the pointer to the #GObject may be reused in future (for example, if it is
* an instance variable of another object), it is recommended to clear the
* pointer to %NULL rather than retain a dangling pointer to a potentially
* invalid #GObject instance. Use g_clear_object() for this.
*/
unref(): void;
/**
* This function essentially limits the life time of the `closure` to
* the life time of the object. That is, when the object is finalized,
* the `closure` is invalidated by calling g_closure_invalidate() on
* it, in order to prevent invocations of the closure with a finalized
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
* added as marshal guards to the `closure,` to ensure that an extra
* reference count is held on `object` during invocation of the
* `closure`. Usually, this function will be called on closures that
* use this `object` as closure data.
* @param closure #GClosure to watch
*/
watch_closure(closure: GObject.Closure): void;
/**
* the `constructed` function is called by g_object_new() as the
* final step of the object creation process. At the point of the call, all
* construction properties have been set on the object. The purpose of this
* call is to allow for object initialisation steps that can only be performed
* after construction properties have been set. `constructed` implementors
* should chain up to the `constructed` call of their parent class to allow it
* to complete its initialisation.
*/
vfunc_constructed(): void;
/**
* emits property change notification for a bunch
* of properties. Overriding `dispatch_properties_changed` should be rarely
* needed.
* @param n_pspecs
* @param pspecs
*/
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
/**
* the `dispose` function is supposed to drop all references to other
* objects, but keep the instance otherwise intact, so that client method
* invocations still work. It may be run multiple times (due to reference
* loops). Before returning, `dispose` should chain up to the `dispose` method
* of the parent class.
*/
vfunc_dispose(): void;
/**
* instance finalization function, should finish the finalization of
* the instance begun in `dispose` and chain up to the `finalize` method of the
* parent class.
*/
vfunc_finalize(): void;
/**
* the generic getter for all properties of this type. Should be
* overridden for every type with properties.
* @param property_id
* @param value
* @param pspec
*/
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
/**
* Emits a "notify" signal for the property `property_name` on `object`.
*
* When possible, eg. when signaling a property change from within the class
* that registered the property, you should use g_object_notify_by_pspec()
* instead.
*
* Note that emission of the notify signal may be blocked with
* g_object_freeze_notify(). In this case, the signal emissions are queued
* and will be emitted (in reverse order) when g_object_thaw_notify() is
* called.
* @param pspec
*/
vfunc_notify(pspec: GObject.ParamSpec): void;
/**
* the generic setter for all properties of this type. Should be
* overridden for every type with properties. If implementations of
* `set_property` don't emit property change notification explicitly, this will
* be done implicitly by the type system. However, if the notify signal is
* emitted explicitly, the type system will not emit it a second time.
* @param property_id
* @param value
* @param pspec
*/
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
disconnect(id: number): void;
set(properties: { [key: string]: any }): void;
block_signal_handler(id: number): any;
unblock_signal_handler(id: number): any;
stop_emission_by_name(detailedName: string): any;
}
type DisplayClass = typeof Display;
/**
* An opaque type that represents a grab sequence.
*/
class GrabSequence {
static $gtype: GObject.GType<GrabSequence>;
// Constructors
constructor(keysyms: number[]);
_init(...args: any[]): void;
static ['new'](keysyms: number[]): GrabSequence;
static new_from_string(str: string): GrabSequence;
// Methods
/**
* Creates a string representing the `sequence`.
* @returns a newly allocated string representing the key sequence
*/
as_string(): string;
/**
* Creates a copy of the `sequence`.
* @returns a copy of @sequence
*/
copy(): GrabSequence;
/**
* Free `sequence`.
*/
free(): void;
}
type GtkSessionClass = typeof GtkSession;
type UsbDeviceWidgetClass = typeof UsbDeviceWidget;
abstract class UsbDeviceWidgetPrivate {
static $gtype: GObject.GType<UsbDeviceWidgetPrivate>;
// Constructors
_init(...args: any[]): void;
}
/**
* Name of the imported GIR library
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L188
*/
const __name__: string;
/**
* Version of the imported GIR library
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L189
*/
const __version__: string;
}
export default SpiceClientGtk;
}
declare module 'gi://SpiceClientGtk' {
import SpiceClientGtk30 from 'gi://SpiceClientGtk?version=3.0';
export default SpiceClientGtk30;
}
// END