/// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /** * Type Definitions for Gjs (https://gjs.guide/) * * These type definitions are automatically generated, do not edit them by hand. * If you found a bug fix it in `ts-for-gir` or create a bug report on https://github.com/gjsify/ts-for-gir * * The based EJS template file is used for the generated .d.ts file of each GIR module like Gtk-4.0, GObject-2.0, ... */ declare module 'gi://SpiceClientGtk?version=3.0' { // Module dependencies import type SpiceClientGLib from 'gi://SpiceClientGLib?version=2.0'; import type GstBase from 'gi://GstBase?version=1.0'; import type Gst from 'gi://Gst?version=1.0'; import type GObject from 'gi://GObject?version=2.0'; import type GLib from 'gi://GLib?version=2.0'; import type GModule from 'gi://GModule?version=2.0'; import type Gio from 'gi://Gio?version=2.0'; import type Gtk from 'gi://Gtk?version=3.0'; import type xlib from 'gi://xlib?version=2.0'; import type Gdk from 'gi://Gdk?version=3.0'; import type cairo from 'gi://cairo?version=1.0'; import type Pango from 'gi://Pango?version=1.0'; import type HarfBuzz from 'gi://HarfBuzz?version=0.0'; import type freetype2 from 'gi://freetype2?version=2.0'; import type GdkPixbuf from 'gi://GdkPixbuf?version=2.0'; import type Atk from 'gi://Atk?version=1.0'; export namespace SpiceClientGtk { /** * SpiceClientGtk-3.0 */ /** * Constants for key events. */ /** * Constants for key events. */ export namespace DisplayKeyEvent { export const $gtype: GObject.GType; } enum DisplayKeyEvent { /** * key press */ PRESS, /** * key release */ RELEASE, /** * key click (press and release) */ CLICK, } module Display { // Signal callback interfaces interface GrabKeysPressed { (): void; } interface KeyboardGrab { (status: number): void; } interface MouseGrab { (status: number): void; } // Constructor properties interface interface ConstructorProps extends Gtk.EventBox.ConstructorProps, Atk.ImplementorIface.ConstructorProps, Gtk.Buildable.ConstructorProps { channel_id: number; channelId: number; disable_inputs: boolean; disableInputs: boolean; grab_keyboard: boolean; grabKeyboard: boolean; grab_mouse: boolean; grabMouse: boolean; keypress_delay: number; keypressDelay: number; monitor_id: number; monitorId: number; only_downscale: boolean; onlyDownscale: boolean; ready: boolean; resize_guest: boolean; resizeGuest: boolean; scaling: boolean; session: SpiceClientGLib.Session; zoom_level: number; zoomLevel: number; } } /** * The #SpiceDisplay struct is opaque and should not be accessed directly. */ class Display extends Gtk.EventBox implements Atk.ImplementorIface, Gtk.Buildable { static $gtype: GObject.GType; // Properties /** * channel-id for this #SpiceDisplay */ get channel_id(): number; /** * channel-id for this #SpiceDisplay */ get channelId(): number; /** * Disable all keyboard & mouse inputs. */ get disable_inputs(): boolean; set disable_inputs(val: boolean); /** * Disable all keyboard & mouse inputs. */ get disableInputs(): boolean; set disableInputs(val: boolean); get grab_keyboard(): boolean; set grab_keyboard(val: boolean); get grabKeyboard(): boolean; set grabKeyboard(val: boolean); get grab_mouse(): boolean; set grab_mouse(val: boolean); get grabMouse(): boolean; set grabMouse(val: boolean); /** * Delay in ms of non-modifiers key press events. If the key is * released before this delay, a single press & release event is * sent to the server. If the key is pressed longer than the * keypress-delay, the server will receive the delayed press * event, and a following release event when the key is released. */ get keypress_delay(): number; set keypress_delay(val: number); /** * Delay in ms of non-modifiers key press events. If the key is * released before this delay, a single press & release event is * sent to the server. If the key is pressed longer than the * keypress-delay, the server will receive the delayed press * event, and a following release event when the key is released. */ get keypressDelay(): number; set keypressDelay(val: number); /** * Select monitor from #SpiceDisplay to show. * The value -1 means the whole display is shown. * By default, the monitor 0 is selected. */ get monitor_id(): number; set monitor_id(val: number); /** * Select monitor from #SpiceDisplay to show. * The value -1 means the whole display is shown. * By default, the monitor 0 is selected. */ get monitorId(): number; set monitorId(val: number); /** * If scaling, only scale down, never up. */ get only_downscale(): boolean; set only_downscale(val: boolean); /** * If scaling, only scale down, never up. */ get onlyDownscale(): boolean; set onlyDownscale(val: boolean); /** * Indicate whether the display is ready to be shown. It takes * into account several conditions, such as the channel display * "mark" state, whether the monitor area is visible.. */ get ready(): boolean; get resize_guest(): boolean; set resize_guest(val: boolean); get resizeGuest(): boolean; set resizeGuest(val: boolean); get scaling(): boolean; set scaling(val: boolean); /** * #SpiceSession for this #SpiceDisplay */ get session(): SpiceClientGLib.Session; /** * Zoom level in percentage, from 10 to 400. Default to 100. * (this option is only supported with cairo backend when scaling * is enabled) */ get zoom_level(): number; set zoom_level(val: number); /** * Zoom level in percentage, from 10 to 400. Default to 100. * (this option is only supported with cairo backend when scaling * is enabled) */ get zoomLevel(): number; set zoomLevel(val: number); // Constructors constructor(properties?: Partial, ...args: any[]); _init(...args: any[]): void; static ['new'](session: SpiceClientGLib.Session, channel_id: number): Display; // Conflicted with Gtk.EventBox.new static ['new'](...args: never[]): any; static new_with_monitor(session: SpiceClientGLib.Session, channel_id: number, monitor_id: number): Display; // Signals connect(id: string, callback: (...args: any[]) => any): number; connect_after(id: string, callback: (...args: any[]) => any): number; emit(id: string, ...args: any[]): void; connect(signal: 'grab-keys-pressed', callback: (_source: this) => void): number; connect_after(signal: 'grab-keys-pressed', callback: (_source: this) => void): number; emit(signal: 'grab-keys-pressed'): void; connect(signal: 'keyboard-grab', callback: (_source: this, status: number) => void): number; connect_after(signal: 'keyboard-grab', callback: (_source: this, status: number) => void): number; emit(signal: 'keyboard-grab', status: number): void; connect(signal: 'mouse-grab', callback: (_source: this, status: number) => void): number; connect_after(signal: 'mouse-grab', callback: (_source: this, status: number) => void): number; emit(signal: 'mouse-grab', status: number): void; // Methods /** * Finds the current grab key combination for the `display`. * @returns the current grab key combination. */ get_grab_keys(): GrabSequence; /** * Take a screenshot of the display. * @returns a #GdkPixbuf with the screenshot image buffer */ get_pixbuf(): GdkPixbuf.Pixbuf; /** * Ungrab the keyboard. */ keyboard_ungrab(): void; /** * Ungrab the mouse. */ mouse_ungrab(): void; /** * Send keyval press/release events to the display. * @param keyvals Keyval array * @param kind #SpiceDisplayKeyEvent action */ send_keys(keyvals: number[], kind: DisplayKeyEvent | null): void; /** * Set the key combination to grab/ungrab the keyboard. The default is * "Control L + Alt L". * @param seq key sequence */ set_grab_keys(seq: GrabSequence): void; // Inherited methods /** * Creates a binding between `source_property` on `source` and `target_property` * on `target`. * * Whenever the `source_property` is changed the `target_property` is * updated using the same value. For instance: * * * ```c * g_object_bind_property (action, "active", widget, "sensitive", 0); * ``` * * * Will result in the "sensitive" property of the widget #GObject instance to be * updated with the same value of the "active" property of the action #GObject * instance. * * If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual: * if `target_property` on `target` changes then the `source_property` on `source` * will be updated as well. * * The binding will automatically be removed when either the `source` or the * `target` instances are finalized. To remove the binding without affecting the * `source` and the `target` you can just call g_object_unref() on the returned * #GBinding instance. * * Removing the binding by calling g_object_unref() on it must only be done if * the binding, `source` and `target` are only used from a single thread and it * is clear that both `source` and `target` outlive the binding. Especially it * is not safe to rely on this if the binding, `source` or `target` can be * finalized from different threads. Keep another reference to the binding and * use g_binding_unbind() instead to be on the safe side. * * A #GObject can have multiple bindings. * @param source_property the property on @source to bind * @param target the target #GObject * @param target_property the property on @target to bind * @param flags flags to pass to #GBinding * @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero. */ bind_property( source_property: string, target: GObject.Object, target_property: string, flags: GObject.BindingFlags | null, ): GObject.Binding; /** * Complete version of g_object_bind_property(). * * Creates a binding between `source_property` on `source` and `target_property` * on `target,` allowing you to set the transformation functions to be used by * the binding. * * If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual: * if `target_property` on `target` changes then the `source_property` on `source` * will be updated as well. The `transform_from` function is only used in case * of bidirectional bindings, otherwise it will be ignored * * The binding will automatically be removed when either the `source` or the * `target` instances are finalized. This will release the reference that is * being held on the #GBinding instance; if you want to hold on to the * #GBinding instance, you will need to hold a reference to it. * * To remove the binding, call g_binding_unbind(). * * A #GObject can have multiple bindings. * * The same `user_data` parameter will be used for both `transform_to` * and `transform_from` transformation functions; the `notify` function will * be called once, when the binding is removed. If you need different data * for each transformation function, please use * g_object_bind_property_with_closures() instead. * @param source_property the property on @source to bind * @param target the target #GObject * @param target_property the property on @target to bind * @param flags flags to pass to #GBinding * @param transform_to the transformation function from the @source to the @target, or %NULL to use the default * @param transform_from the transformation function from the @target to the @source, or %NULL to use the default * @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required * @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero. */ bind_property_full( source_property: string, target: GObject.Object, target_property: string, flags: GObject.BindingFlags | null, transform_to?: GObject.BindingTransformFunc | null, transform_from?: GObject.BindingTransformFunc | null, notify?: GLib.DestroyNotify | null, ): GObject.Binding; // Conflicted with GObject.Object.bind_property_full bind_property_full(...args: never[]): any; /** * This function is intended for #GObject implementations to re-enforce * a [floating][floating-ref] object reference. Doing this is seldom * required: all #GInitiallyUnowneds are created with a floating reference * which usually just needs to be sunken by calling g_object_ref_sink(). */ force_floating(): void; /** * Increases the freeze count on `object`. If the freeze count is * non-zero, the emission of "notify" signals on `object` is * stopped. The signals are queued until the freeze count is decreased * to zero. Duplicate notifications are squashed so that at most one * #GObject::notify signal is emitted for each property modified while the * object is frozen. * * This is necessary for accessors that modify multiple properties to prevent * premature notification while the object is still being modified. */ freeze_notify(): void; /** * Gets a named field from the objects table of associations (see g_object_set_data()). * @param key name of the key for that association * @returns the data if found, or %NULL if no such data exists. */ get_data(key: string): any | null; get_property(property_name: string): any; /** * This function gets back user data pointers stored via * g_object_set_qdata(). * @param quark A #GQuark, naming the user data pointer * @returns The user data pointer set, or %NULL */ get_qdata(quark: GLib.Quark): any | null; /** * Gets `n_properties` properties for an `object`. * Obtained properties will be set to `values`. All properties must be valid. * Warnings will be emitted and undefined behaviour may result if invalid * properties are passed in. * @param names the names of each property to get * @param values the values of each property to get */ getv(names: string[], values: (GObject.Value | any)[]): void; /** * Checks whether `object` has a [floating][floating-ref] reference. * @returns %TRUE if @object has a floating reference */ is_floating(): boolean; /** * Emits a "notify" signal for the property `property_name` on `object`. * * When possible, eg. when signaling a property change from within the class * that registered the property, you should use g_object_notify_by_pspec() * instead. * * Note that emission of the notify signal may be blocked with * g_object_freeze_notify(). In this case, the signal emissions are queued * and will be emitted (in reverse order) when g_object_thaw_notify() is * called. * @param property_name the name of a property installed on the class of @object. */ notify(property_name: string): void; /** * Emits a "notify" signal for the property specified by `pspec` on `object`. * * This function omits the property name lookup, hence it is faster than * g_object_notify(). * * One way to avoid using g_object_notify() from within the * class that registered the properties, and using g_object_notify_by_pspec() * instead, is to store the GParamSpec used with * g_object_class_install_property() inside a static array, e.g.: * * * ```c * typedef enum * { * PROP_FOO = 1, * PROP_LAST * } MyObjectProperty; * * static GParamSpec *properties[PROP_LAST]; * * static void * my_object_class_init (MyObjectClass *klass) * { * properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL, * 0, 100, * 50, * G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS); * g_object_class_install_property (gobject_class, * PROP_FOO, * properties[PROP_FOO]); * } * ``` * * * and then notify a change on the "foo" property with: * * * ```c * g_object_notify_by_pspec (self, properties[PROP_FOO]); * ``` * * @param pspec the #GParamSpec of a property installed on the class of @object. */ notify_by_pspec(pspec: GObject.ParamSpec): void; /** * Increases the reference count of `object`. * * Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type * of `object` will be propagated to the return type (using the GCC typeof() * extension), so any casting the caller needs to do on the return type must be * explicit. * @returns the same @object */ ref(): GObject.Object; /** * Increase the reference count of `object,` and possibly remove the * [floating][floating-ref] reference, if `object` has a floating reference. * * In other words, if the object is floating, then this call "assumes * ownership" of the floating reference, converting it to a normal * reference by clearing the floating flag while leaving the reference * count unchanged. If the object is not floating, then this call * adds a new normal reference increasing the reference count by one. * * Since GLib 2.56, the type of `object` will be propagated to the return type * under the same conditions as for g_object_ref(). * @returns @object */ ref_sink(): GObject.Object; /** * Releases all references to other objects. This can be used to break * reference cycles. * * This function should only be called from object system implementations. */ run_dispose(): void; /** * Each object carries around a table of associations from * strings to pointers. This function lets you set an association. * * If the object already had an association with that name, * the old association will be destroyed. * * Internally, the `key` is converted to a #GQuark using g_quark_from_string(). * This means a copy of `key` is kept permanently (even after `object` has been * finalized) — so it is recommended to only use a small, bounded set of values * for `key` in your program, to avoid the #GQuark storage growing unbounded. * @param key name of the key * @param data data to associate with that key */ set_data(key: string, data?: any | null): void; set_property(property_name: string, value: any): void; /** * Remove a specified datum from the object's data associations, * without invoking the association's destroy handler. * @param key name of the key * @returns the data if found, or %NULL if no such data exists. */ steal_data(key: string): any | null; /** * This function gets back user data pointers stored via * g_object_set_qdata() and removes the `data` from object * without invoking its destroy() function (if any was * set). * Usually, calling this function is only required to update * user data pointers with a destroy notifier, for example: * * ```c * void * object_add_to_user_list (GObject *object, * const gchar *new_string) * { * // the quark, naming the object data * GQuark quark_string_list = g_quark_from_static_string ("my-string-list"); * // retrieve the old string list * GList *list = g_object_steal_qdata (object, quark_string_list); * * // prepend new string * list = g_list_prepend (list, g_strdup (new_string)); * // this changed 'list', so we need to set it again * g_object_set_qdata_full (object, quark_string_list, list, free_string_list); * } * static void * free_string_list (gpointer data) * { * GList *node, *list = data; * * for (node = list; node; node = node->next) * g_free (node->data); * g_list_free (list); * } * ``` * * Using g_object_get_qdata() in the above example, instead of * g_object_steal_qdata() would have left the destroy function set, * and thus the partial string list would have been freed upon * g_object_set_qdata_full(). * @param quark A #GQuark, naming the user data pointer * @returns The user data pointer set, or %NULL */ steal_qdata(quark: GLib.Quark): any | null; /** * Reverts the effect of a previous call to * g_object_freeze_notify(). The freeze count is decreased on `object` * and when it reaches zero, queued "notify" signals are emitted. * * Duplicate notifications for each property are squashed so that at most one * #GObject::notify signal is emitted for each property, in the reverse order * in which they have been queued. * * It is an error to call this function when the freeze count is zero. */ thaw_notify(): void; /** * Decreases the reference count of `object`. When its reference count * drops to 0, the object is finalized (i.e. its memory is freed). * * If the pointer to the #GObject may be reused in future (for example, if it is * an instance variable of another object), it is recommended to clear the * pointer to %NULL rather than retain a dangling pointer to a potentially * invalid #GObject instance. Use g_clear_object() for this. */ unref(): void; /** * This function essentially limits the life time of the `closure` to * the life time of the object. That is, when the object is finalized, * the `closure` is invalidated by calling g_closure_invalidate() on * it, in order to prevent invocations of the closure with a finalized * (nonexisting) object. Also, g_object_ref() and g_object_unref() are * added as marshal guards to the `closure,` to ensure that an extra * reference count is held on `object` during invocation of the * `closure`. Usually, this function will be called on closures that * use this `object` as closure data. * @param closure #GClosure to watch */ watch_closure(closure: GObject.Closure): void; /** * the `constructed` function is called by g_object_new() as the * final step of the object creation process. At the point of the call, all * construction properties have been set on the object. The purpose of this * call is to allow for object initialisation steps that can only be performed * after construction properties have been set. `constructed` implementors * should chain up to the `constructed` call of their parent class to allow it * to complete its initialisation. */ vfunc_constructed(): void; /** * emits property change notification for a bunch * of properties. Overriding `dispatch_properties_changed` should be rarely * needed. * @param n_pspecs * @param pspecs */ vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void; /** * the `dispose` function is supposed to drop all references to other * objects, but keep the instance otherwise intact, so that client method * invocations still work. It may be run multiple times (due to reference * loops). Before returning, `dispose` should chain up to the `dispose` method * of the parent class. */ vfunc_dispose(): void; /** * instance finalization function, should finish the finalization of * the instance begun in `dispose` and chain up to the `finalize` method of the * parent class. */ vfunc_finalize(): void; /** * the generic getter for all properties of this type. Should be * overridden for every type with properties. * @param property_id * @param value * @param pspec */ vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void; /** * Emits a "notify" signal for the property `property_name` on `object`. * * When possible, eg. when signaling a property change from within the class * that registered the property, you should use g_object_notify_by_pspec() * instead. * * Note that emission of the notify signal may be blocked with * g_object_freeze_notify(). In this case, the signal emissions are queued * and will be emitted (in reverse order) when g_object_thaw_notify() is * called. * @param pspec */ vfunc_notify(pspec: GObject.ParamSpec): void; /** * the generic setter for all properties of this type. Should be * overridden for every type with properties. If implementations of * `set_property` don't emit property change notification explicitly, this will * be done implicitly by the type system. However, if the notify signal is * emitted explicitly, the type system will not emit it a second time. * @param property_id * @param value * @param pspec */ vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void; disconnect(id: number): void; set(properties: { [key: string]: any }): void; block_signal_handler(id: number): any; unblock_signal_handler(id: number): any; stop_emission_by_name(detailedName: string): any; } module GtkSession { // Constructor properties interface interface ConstructorProps extends GObject.Object.ConstructorProps { auto_clipboard: boolean; autoClipboard: boolean; auto_usbredir: boolean; autoUsbredir: boolean; pointer_grabbed: boolean; pointerGrabbed: boolean; session: SpiceClientGLib.Session; sync_modifiers: boolean; syncModifiers: boolean; } } /** * The #SpiceGtkSession struct is opaque and should not be accessed directly. */ class GtkSession extends GObject.Object { static $gtype: GObject.GType; // Properties /** * When this is true the clipboard gets automatically shared between host * and guest. */ get auto_clipboard(): boolean; set auto_clipboard(val: boolean); /** * When this is true the clipboard gets automatically shared between host * and guest. */ get autoClipboard(): boolean; set autoClipboard(val: boolean); /** * Automatically redirect newly plugged in USB devices. Note the auto * redirection only happens when a #SpiceDisplay associated with the * session had keyboard focus. */ get auto_usbredir(): boolean; set auto_usbredir(val: boolean); /** * Automatically redirect newly plugged in USB devices. Note the auto * redirection only happens when a #SpiceDisplay associated with the * session had keyboard focus. */ get autoUsbredir(): boolean; set autoUsbredir(val: boolean); /** * Returns %TRUE if the pointer is currently grabbed by this session. */ get pointer_grabbed(): boolean; /** * Returns %TRUE if the pointer is currently grabbed by this session. */ get pointerGrabbed(): boolean; /** * #SpiceSession this #SpiceGtkSession is associated with */ get session(): SpiceClientGLib.Session; /** * Automatically sync modifiers (Caps, Num and Scroll locks) with the guest. */ get sync_modifiers(): boolean; set sync_modifiers(val: boolean); /** * Automatically sync modifiers (Caps, Num and Scroll locks) with the guest. */ get syncModifiers(): boolean; set syncModifiers(val: boolean); // Constructors constructor(properties?: Partial, ...args: any[]); _init(...args: any[]): void; // Static methods /** * Gets the #SpiceGtkSession associated with the passed in #SpiceSession. * A new #SpiceGtkSession instance will be created the first time this * function is called for a certain #SpiceSession. * * Note that this function returns a weak reference, which should not be used * after the #SpiceSession itself has been unref-ed by the caller. * @param session #SpiceSession for which to get the #SpiceGtkSession */ static get(session: SpiceClientGLib.Session): GtkSession; // Methods /** * Copy client-side clipboard to guest clipboard. * * Since 0.8 */ copy_to_guest(): void; /** * Copy guest clipboard to client-side clipboard. * * Since 0.8 */ paste_from_guest(): void; } module UsbDeviceWidget { // Signal callback interfaces interface ConnectFailed { (device: SpiceClientGLib.UsbDevice, error: GLib.Error): void; } // Constructor properties interface interface ConstructorProps extends Gtk.Box.ConstructorProps, Atk.ImplementorIface.ConstructorProps, Gtk.Buildable.ConstructorProps, Gtk.Orientable.ConstructorProps { device_format_string: string; deviceFormatString: string; session: SpiceClientGLib.Session; } } /** * The #SpiceUsbDeviceWidget struct is opaque and should not be accessed directly. */ class UsbDeviceWidget extends Gtk.Box implements Atk.ImplementorIface, Gtk.Buildable, Gtk.Orientable { static $gtype: GObject.GType; // Properties /** * Format string to pass to spice_usb_device_get_description() for getting * the device USB descriptions. */ get device_format_string(): string; /** * Format string to pass to spice_usb_device_get_description() for getting * the device USB descriptions. */ get deviceFormatString(): string; /** * #SpiceSession this #SpiceUsbDeviceWidget is associated with */ get session(): SpiceClientGLib.Session; // Constructors constructor(properties?: Partial, ...args: any[]); _init(...args: any[]): void; static ['new'](session: SpiceClientGLib.Session, device_format_string?: string | null): UsbDeviceWidget; // Conflicted with Gtk.Box.new static ['new'](...args: never[]): any; // Signals connect(id: string, callback: (...args: any[]) => any): number; connect_after(id: string, callback: (...args: any[]) => any): number; emit(id: string, ...args: any[]): void; connect( signal: 'connect-failed', callback: (_source: this, device: SpiceClientGLib.UsbDevice, error: GLib.Error) => void, ): number; connect_after( signal: 'connect-failed', callback: (_source: this, device: SpiceClientGLib.UsbDevice, error: GLib.Error) => void, ): number; emit(signal: 'connect-failed', device: SpiceClientGLib.UsbDevice, error: GLib.Error): void; // Inherited properties /** * The orientation of the orientable. */ get orientation(): Gtk.Orientation; set orientation(val: Gtk.Orientation); // Inherited methods /** * Retrieves the orientation of the `orientable`. * @returns the orientation of the @orientable. */ get_orientation(): Gtk.Orientation; /** * Sets the orientation of the `orientable`. * @param orientation the orientable’s new orientation. */ set_orientation(orientation: Gtk.Orientation | null): void; /** * Creates a binding between `source_property` on `source` and `target_property` * on `target`. * * Whenever the `source_property` is changed the `target_property` is * updated using the same value. For instance: * * * ```c * g_object_bind_property (action, "active", widget, "sensitive", 0); * ``` * * * Will result in the "sensitive" property of the widget #GObject instance to be * updated with the same value of the "active" property of the action #GObject * instance. * * If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual: * if `target_property` on `target` changes then the `source_property` on `source` * will be updated as well. * * The binding will automatically be removed when either the `source` or the * `target` instances are finalized. To remove the binding without affecting the * `source` and the `target` you can just call g_object_unref() on the returned * #GBinding instance. * * Removing the binding by calling g_object_unref() on it must only be done if * the binding, `source` and `target` are only used from a single thread and it * is clear that both `source` and `target` outlive the binding. Especially it * is not safe to rely on this if the binding, `source` or `target` can be * finalized from different threads. Keep another reference to the binding and * use g_binding_unbind() instead to be on the safe side. * * A #GObject can have multiple bindings. * @param source_property the property on @source to bind * @param target the target #GObject * @param target_property the property on @target to bind * @param flags flags to pass to #GBinding * @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero. */ bind_property( source_property: string, target: GObject.Object, target_property: string, flags: GObject.BindingFlags | null, ): GObject.Binding; /** * Complete version of g_object_bind_property(). * * Creates a binding between `source_property` on `source` and `target_property` * on `target,` allowing you to set the transformation functions to be used by * the binding. * * If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual: * if `target_property` on `target` changes then the `source_property` on `source` * will be updated as well. The `transform_from` function is only used in case * of bidirectional bindings, otherwise it will be ignored * * The binding will automatically be removed when either the `source` or the * `target` instances are finalized. This will release the reference that is * being held on the #GBinding instance; if you want to hold on to the * #GBinding instance, you will need to hold a reference to it. * * To remove the binding, call g_binding_unbind(). * * A #GObject can have multiple bindings. * * The same `user_data` parameter will be used for both `transform_to` * and `transform_from` transformation functions; the `notify` function will * be called once, when the binding is removed. If you need different data * for each transformation function, please use * g_object_bind_property_with_closures() instead. * @param source_property the property on @source to bind * @param target the target #GObject * @param target_property the property on @target to bind * @param flags flags to pass to #GBinding * @param transform_to the transformation function from the @source to the @target, or %NULL to use the default * @param transform_from the transformation function from the @target to the @source, or %NULL to use the default * @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required * @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero. */ bind_property_full( source_property: string, target: GObject.Object, target_property: string, flags: GObject.BindingFlags | null, transform_to?: GObject.BindingTransformFunc | null, transform_from?: GObject.BindingTransformFunc | null, notify?: GLib.DestroyNotify | null, ): GObject.Binding; // Conflicted with GObject.Object.bind_property_full bind_property_full(...args: never[]): any; /** * This function is intended for #GObject implementations to re-enforce * a [floating][floating-ref] object reference. Doing this is seldom * required: all #GInitiallyUnowneds are created with a floating reference * which usually just needs to be sunken by calling g_object_ref_sink(). */ force_floating(): void; /** * Increases the freeze count on `object`. If the freeze count is * non-zero, the emission of "notify" signals on `object` is * stopped. The signals are queued until the freeze count is decreased * to zero. Duplicate notifications are squashed so that at most one * #GObject::notify signal is emitted for each property modified while the * object is frozen. * * This is necessary for accessors that modify multiple properties to prevent * premature notification while the object is still being modified. */ freeze_notify(): void; /** * Gets a named field from the objects table of associations (see g_object_set_data()). * @param key name of the key for that association * @returns the data if found, or %NULL if no such data exists. */ get_data(key: string): any | null; get_property(property_name: string): any; /** * This function gets back user data pointers stored via * g_object_set_qdata(). * @param quark A #GQuark, naming the user data pointer * @returns The user data pointer set, or %NULL */ get_qdata(quark: GLib.Quark): any | null; /** * Gets `n_properties` properties for an `object`. * Obtained properties will be set to `values`. All properties must be valid. * Warnings will be emitted and undefined behaviour may result if invalid * properties are passed in. * @param names the names of each property to get * @param values the values of each property to get */ getv(names: string[], values: (GObject.Value | any)[]): void; /** * Checks whether `object` has a [floating][floating-ref] reference. * @returns %TRUE if @object has a floating reference */ is_floating(): boolean; /** * Emits a "notify" signal for the property `property_name` on `object`. * * When possible, eg. when signaling a property change from within the class * that registered the property, you should use g_object_notify_by_pspec() * instead. * * Note that emission of the notify signal may be blocked with * g_object_freeze_notify(). In this case, the signal emissions are queued * and will be emitted (in reverse order) when g_object_thaw_notify() is * called. * @param property_name the name of a property installed on the class of @object. */ notify(property_name: string): void; /** * Emits a "notify" signal for the property specified by `pspec` on `object`. * * This function omits the property name lookup, hence it is faster than * g_object_notify(). * * One way to avoid using g_object_notify() from within the * class that registered the properties, and using g_object_notify_by_pspec() * instead, is to store the GParamSpec used with * g_object_class_install_property() inside a static array, e.g.: * * * ```c * typedef enum * { * PROP_FOO = 1, * PROP_LAST * } MyObjectProperty; * * static GParamSpec *properties[PROP_LAST]; * * static void * my_object_class_init (MyObjectClass *klass) * { * properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL, * 0, 100, * 50, * G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS); * g_object_class_install_property (gobject_class, * PROP_FOO, * properties[PROP_FOO]); * } * ``` * * * and then notify a change on the "foo" property with: * * * ```c * g_object_notify_by_pspec (self, properties[PROP_FOO]); * ``` * * @param pspec the #GParamSpec of a property installed on the class of @object. */ notify_by_pspec(pspec: GObject.ParamSpec): void; /** * Increases the reference count of `object`. * * Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type * of `object` will be propagated to the return type (using the GCC typeof() * extension), so any casting the caller needs to do on the return type must be * explicit. * @returns the same @object */ ref(): GObject.Object; /** * Increase the reference count of `object,` and possibly remove the * [floating][floating-ref] reference, if `object` has a floating reference. * * In other words, if the object is floating, then this call "assumes * ownership" of the floating reference, converting it to a normal * reference by clearing the floating flag while leaving the reference * count unchanged. If the object is not floating, then this call * adds a new normal reference increasing the reference count by one. * * Since GLib 2.56, the type of `object` will be propagated to the return type * under the same conditions as for g_object_ref(). * @returns @object */ ref_sink(): GObject.Object; /** * Releases all references to other objects. This can be used to break * reference cycles. * * This function should only be called from object system implementations. */ run_dispose(): void; /** * Each object carries around a table of associations from * strings to pointers. This function lets you set an association. * * If the object already had an association with that name, * the old association will be destroyed. * * Internally, the `key` is converted to a #GQuark using g_quark_from_string(). * This means a copy of `key` is kept permanently (even after `object` has been * finalized) — so it is recommended to only use a small, bounded set of values * for `key` in your program, to avoid the #GQuark storage growing unbounded. * @param key name of the key * @param data data to associate with that key */ set_data(key: string, data?: any | null): void; set_property(property_name: string, value: any): void; /** * Remove a specified datum from the object's data associations, * without invoking the association's destroy handler. * @param key name of the key * @returns the data if found, or %NULL if no such data exists. */ steal_data(key: string): any | null; /** * This function gets back user data pointers stored via * g_object_set_qdata() and removes the `data` from object * without invoking its destroy() function (if any was * set). * Usually, calling this function is only required to update * user data pointers with a destroy notifier, for example: * * ```c * void * object_add_to_user_list (GObject *object, * const gchar *new_string) * { * // the quark, naming the object data * GQuark quark_string_list = g_quark_from_static_string ("my-string-list"); * // retrieve the old string list * GList *list = g_object_steal_qdata (object, quark_string_list); * * // prepend new string * list = g_list_prepend (list, g_strdup (new_string)); * // this changed 'list', so we need to set it again * g_object_set_qdata_full (object, quark_string_list, list, free_string_list); * } * static void * free_string_list (gpointer data) * { * GList *node, *list = data; * * for (node = list; node; node = node->next) * g_free (node->data); * g_list_free (list); * } * ``` * * Using g_object_get_qdata() in the above example, instead of * g_object_steal_qdata() would have left the destroy function set, * and thus the partial string list would have been freed upon * g_object_set_qdata_full(). * @param quark A #GQuark, naming the user data pointer * @returns The user data pointer set, or %NULL */ steal_qdata(quark: GLib.Quark): any | null; /** * Reverts the effect of a previous call to * g_object_freeze_notify(). The freeze count is decreased on `object` * and when it reaches zero, queued "notify" signals are emitted. * * Duplicate notifications for each property are squashed so that at most one * #GObject::notify signal is emitted for each property, in the reverse order * in which they have been queued. * * It is an error to call this function when the freeze count is zero. */ thaw_notify(): void; /** * Decreases the reference count of `object`. When its reference count * drops to 0, the object is finalized (i.e. its memory is freed). * * If the pointer to the #GObject may be reused in future (for example, if it is * an instance variable of another object), it is recommended to clear the * pointer to %NULL rather than retain a dangling pointer to a potentially * invalid #GObject instance. Use g_clear_object() for this. */ unref(): void; /** * This function essentially limits the life time of the `closure` to * the life time of the object. That is, when the object is finalized, * the `closure` is invalidated by calling g_closure_invalidate() on * it, in order to prevent invocations of the closure with a finalized * (nonexisting) object. Also, g_object_ref() and g_object_unref() are * added as marshal guards to the `closure,` to ensure that an extra * reference count is held on `object` during invocation of the * `closure`. Usually, this function will be called on closures that * use this `object` as closure data. * @param closure #GClosure to watch */ watch_closure(closure: GObject.Closure): void; /** * the `constructed` function is called by g_object_new() as the * final step of the object creation process. At the point of the call, all * construction properties have been set on the object. The purpose of this * call is to allow for object initialisation steps that can only be performed * after construction properties have been set. `constructed` implementors * should chain up to the `constructed` call of their parent class to allow it * to complete its initialisation. */ vfunc_constructed(): void; /** * emits property change notification for a bunch * of properties. Overriding `dispatch_properties_changed` should be rarely * needed. * @param n_pspecs * @param pspecs */ vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void; /** * the `dispose` function is supposed to drop all references to other * objects, but keep the instance otherwise intact, so that client method * invocations still work. It may be run multiple times (due to reference * loops). Before returning, `dispose` should chain up to the `dispose` method * of the parent class. */ vfunc_dispose(): void; /** * instance finalization function, should finish the finalization of * the instance begun in `dispose` and chain up to the `finalize` method of the * parent class. */ vfunc_finalize(): void; /** * the generic getter for all properties of this type. Should be * overridden for every type with properties. * @param property_id * @param value * @param pspec */ vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void; /** * Emits a "notify" signal for the property `property_name` on `object`. * * When possible, eg. when signaling a property change from within the class * that registered the property, you should use g_object_notify_by_pspec() * instead. * * Note that emission of the notify signal may be blocked with * g_object_freeze_notify(). In this case, the signal emissions are queued * and will be emitted (in reverse order) when g_object_thaw_notify() is * called. * @param pspec */ vfunc_notify(pspec: GObject.ParamSpec): void; /** * the generic setter for all properties of this type. Should be * overridden for every type with properties. If implementations of * `set_property` don't emit property change notification explicitly, this will * be done implicitly by the type system. However, if the notify signal is * emitted explicitly, the type system will not emit it a second time. * @param property_id * @param value * @param pspec */ vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void; disconnect(id: number): void; set(properties: { [key: string]: any }): void; block_signal_handler(id: number): any; unblock_signal_handler(id: number): any; stop_emission_by_name(detailedName: string): any; } type DisplayClass = typeof Display; /** * An opaque type that represents a grab sequence. */ class GrabSequence { static $gtype: GObject.GType; // Constructors constructor(keysyms: number[]); _init(...args: any[]): void; static ['new'](keysyms: number[]): GrabSequence; static new_from_string(str: string): GrabSequence; // Methods /** * Creates a string representing the `sequence`. * @returns a newly allocated string representing the key sequence */ as_string(): string; /** * Creates a copy of the `sequence`. * @returns a copy of @sequence */ copy(): GrabSequence; /** * Free `sequence`. */ free(): void; } type GtkSessionClass = typeof GtkSession; type UsbDeviceWidgetClass = typeof UsbDeviceWidget; abstract class UsbDeviceWidgetPrivate { static $gtype: GObject.GType; // Constructors _init(...args: any[]): void; } /** * Name of the imported GIR library * `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L188 */ const __name__: string; /** * Version of the imported GIR library * `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L189 */ const __version__: string; } export default SpiceClientGtk; } declare module 'gi://SpiceClientGtk' { import SpiceClientGtk30 from 'gi://SpiceClientGtk?version=3.0'; export default SpiceClientGtk30; } // END