mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-13 21:08:28 +00:00
16 lines
880 B
Python
16 lines
880 B
Python
import sympy as sp
|
|
|
|
a, b = (0, 1);
|
|
x, y = sp.symbols("x, y") # Create sympy symbols
|
|
f = x**2 + 3 * x - 2 # Create your function
|
|
# In the below, for 1D differentiation, we can omit the symbol and just use sp.diff(f)
|
|
df = sp.diff(f, x) # Add more arguments for derivatives in other variables
|
|
F = sp.integrate(f, x) # Integrates the function analytically in x
|
|
F = sp.integrate(f, (x, a, b)) # Indefinite integral in x in interval [a, b]
|
|
lambda_f = sp.lambdify(x, F) # Creates a lambda function of F in variable x
|
|
lambda_f = sp.lambdify([x, y], F) # Creates a lambda function of F in variables x and y
|
|
roots = sp.roots(f) # Computes the roots of function f analytically
|
|
sp.hermite_poly(5) # Creates hermite poly of degree 5
|
|
sp.chebyshevt_poly(5) # Creates chebychev T (first kind) poly of degree 5
|
|
sp.chebyshevu_poly(5) # Creates chebychev U (second kind) poly of degree 5
|