import sympy as sp a, b = (0, 1); x, y = sp.symbols("x, y") # Create sympy symbols f = x**2 + 3 * x - 2 # Create your function # In the below, for 1D differentiation, we can omit the symbol and just use sp.diff(f) df = sp.diff(f, x) # Add more arguments for derivatives in other variables F = sp.integrate(f, x) # Integrates the function analytically in x F = sp.integrate(f, (x, a, b)) # Indefinite integral in x in interval [a, b] lambda_f = sp.lambdify(x, F) # Creates a lambda function of F in variable x lambda_f = sp.lambdify([x, y], F) # Creates a lambda function of F in variables x and y roots = sp.roots(f) # Computes the roots of function f analytically sp.hermite_poly(5) # Creates hermite poly of degree 5 sp.chebyshevt_poly(5) # Creates chebychev T (first kind) poly of degree 5 sp.chebyshevu_poly(5) # Creates chebychev U (second kind) poly of degree 5