[TI] Compact: Finish computability, start complexity

This commit is contained in:
2025-12-06 12:25:37 +01:00
parent c656bfa2e7
commit 3559973e6d
3 changed files with 54 additions and 0 deletions

View File

@@ -152,3 +152,6 @@ For the third condition, intuitively, we only need to check if in the definition
or the condition can be restated such that only $L(M)$ is described by it.
For a more formal proof of that condition, simply show that the implication holds
As of HS2025, chapters 5.5 and 5.6 are not relevant for the Endterm or Session exam, so they are omitted here

View File

@@ -1,3 +1,54 @@
\newsection
\section{Complexity}
\label{sec:complexity}
\stepcounter{subsection}
\subsection{Measurements of Complexity}
\compactdef{Time complexity} For a computation $D = C_1, \ldots, C_k$ of $M$ on $x$ is defined by $\text{Time}_M(x) = k - 1$.
For the TM $M$ itself, we have $\text{Time}_M(n) = \max\{ \text{Time}_M(x) \divides x \in \Sigma^n \}$
\begin{definition}[]{Space complexity}
Let $C = (q, x, i, \alpha_1, i_1, \ldots, \alpha_k, i_k)$,
with $0 \leq i \leq |x| + 1$ and $0 \leq i_j \leq |\alpha_j|$ for $j = 1, \ldots, k$ be a configuration.
The space complexity of configuration $C$ is $\text{Space}_M(C) = \max\{ |\alpha_i| \divides i = 1, \ldots, k \}$.
The space complexity of a calculation $D = C_1, \ldots, C_l$ on $x$ is $\text{Space}_M(x) = \max\{ \text{Space}_M(C_i) \divides i = 1, \ldots, l \}$
The space complexity of a TM $M$ is $\text{Space}_M(n) = \max\{ \text{Space}_M(x) \divides x \in \Sigma^n \}$
\end{definition}
\inlinelemma For every $k$-tape-TM $A$, there exists an equivalent $1$-tape-TM $B$ such that $\text{Space}_B(n) \leq \text{Space}_A(n)$
\inlinelemma For every $k$-tape-TM $A$, $\exists$ a $k$-tape-TM such that $L(A) = L(B)$ and $\text{Space}_B(n) \leq \frac{\text{Space}_A(n)}{2} + 2$
\inlinedef The big-O-notation is defined as in A\&D, we however write $\text{Time}_A(n) \in \tco{g(n)}$, etc
\inlinedef An MTM $C$ is \bi{optimal} for $L$, if $\text{Time}_C(n) \in \tco{f(n)}$ and $\tcl(f(n))$ is a lower bound for the time complexity of $L$
\subsection{Complexity classes}
Below is a list of complexity classes
\begin{definition}[]{Complexity classes}
\begin{align*}
\text{TIME}(f) & = \{ L(B) \divides B \text{ is an MTM with } \tc_B(n) \in \tco{f(n)} \} \\
\text{SPACE}(g) & = \{ L(A) \divides A \text{ is an MTM with } \spc_A(n) \in \tco{g(n)} \} \\
\text{DLOG} & = \text{SPACE}(\log_2(n)) \\
\text{P} & = \bigcup_{c \in \N} \text{TIME}(n^c) \\
\text{PSPACE} & = \bigcup_{c \in \N} \text{SPACE}(n^c) \\
\text{EXPTIME} & = \bigcup_{d \in \N} \text{TIME}(2^{n^d})
\end{align*}
\end{definition}
For any function $t : \N \rightarrow \R^+$, we have $\text{TIME}(t(n)) \subseteq \text{SPACE}(t(n))$.
A list of relationships for these classes:
\rmvspace
\begin{multicols}{2}
\begin{itemize}
\item $P \subseteq \text{PSPACE}$
\item $\text{DLOG} \subseteq P$
\item $\text{PSPACE} \subseteq \text{EXPTIME}$
\item $\text{DLOG} \subseteq P \subseteq \text{PSPACE} \subseteq \text{EXPTIME}
\end{itemize}
\end{multicols}
\inlinedef

Binary file not shown.