Files
eth-summaries/semester3/ti-compact/parts/04_computability.tex

158 lines
8.8 KiB
TeX

\newsection
\section{Computability}
\stepcounter{subsection}
\subsection{Diagonalization}
The \bi{set of binary encodings of all TMs} is denoted $\text{KodTM}$ and $\text{KodTM} \subseteq \wordbool$ and the upper bound of the cardinality is $|\wordbool|$,
as there are infinitely many TMs.
Below is a list of countable objects. They all have corresponding Lemmas in the script, but omitted here:
\drmvspace
\begin{multicols}{4}
\begin{itemize}
\item $\word$ for any $\Sigma$
\item $\text{KodTM}$
\item $\N \times \N$
\item $\Q^+$
\end{itemize}
\end{multicols}
\rmvspace
\drmvspace
The following objects are uncountable: $[0, 1]$, $\R$, $\cP(\wordbool)$
\inlinecorollary $|\text{KodTM}| < |\cP(\wordbool)|$ and thus there exist infinitely many not recursively enumerable languages over $\alphabetbool$
\fhlc{Cyan}{Proof of $L$ (not) recursively enumerable}
Proving that a language \textit{is} recursively enumerable is as difficult as providing a Turing Machine that accepts it.
Proving that a language is \textit{not} recursively enumerable is likely easier. For it, let $d_{ij} = 1 \Longleftrightarrow M_i$ accepts $w_j$.
\inlineex Assume towards contradiction that $L_\text{diag} \in \cL_{RE}$. Let
\rmvspace
\begin{align*}
L_{\text{diag}} & = \{ w \in \wordbool \divides w = w_i \text{ for an } i \in \N - \{ 0 \} \text{ and $M_i$ does not accept } w_i \} \\
& = \{ w \in \wordbool \divides w = w_i \text{ for an } i \in \N - \{ 0 \} \text{ and } d_{ii} = 0\}
\end{align*}
Thus assume that, $L_\text{diag} = L(M)$ for a Turing Machine $M$.
Since $M$ is a Turing Machine in the canonical ordering of all Turing Machines, so there exists an $i \in \N - \{ 0 \}$, such that $M = M_i$.
This however leads to a contradiction, as $w_i \in L_\text{diag} \Longleftrightarrow d_{ii} = 0 \Longleftrightarrow w_i \notin L(M_i)$.
In other words, $w_i$ is in $L_\text{diag}$ if and only if $w_i$ is not in $L(M_i)$, which contradicts our statement above, in which we assumed that $L_\text{diag} \in \cL_{RE}$
In other, more different, words, $w_i$ being in $L_\text{diag}$ implies (from the definition) that $d_{ii} = 0$, which from its definition implies that $w_i \notin L(M_i)$
\setLabelNumber{theorem}{3}
\inlinetheorem $L_\text{diag} \notin \cL_{RE}$
% ────────────────────────────────────────────────────────────────────
\subsection{Reductions}
This is the start of the topics that are part of the endterm.
First off, a list of important languages for this and the next section:
\begin{itemize}
\item $L_U = \{ \text{Kod}(M)\# w \divides w \in \wordbool \text{ and TM $M$ accepts } w \}$ ($\in \cL_{RE}$, but $\notin \cL_R$)
\item $L_H = \{ \text{Kod}(M)\# x \divides x \in \wordbool \text{ and TM $M$ halts on } x \}$ ($\in \cL_{RE}$, but $\notin \cL_R$)
\item $L_{\text{diag}} = \{ w \in \wordbool \divides w = w_i \text{ for an } i \in \N - \{ 0 \} \text{ and $M_i$ does not accept } w_i \}$ ($\notin \cL_{RE}$ and thus $\notin \cL_R$)
\item $(L_{\text{diag}})^C$ ($\in \cL_{RE}$, but $\notin \cL_R$)
\item $L_{EQ} = \{ \text{Kod}(M)\# \text{Kod}(\overline{M}) \divides L(M) = L(\overline{M}) \}$ ($\in \cL_{RE}$, but $\notin \cL_R$)
\item $\lempty = \{ \text{Kod}(M) \divides L(M) = \emptyset \}$ ($\in \cL_{RE}$, but $\notin \cL_R$)
\item $(\lempty)^C = \{ x \in \wordbool \divides x \notin \text{Kod}(\overline{M}) \forall \text{ TM } \overline{M} \text{ or } x = \text{Kod}(M) \text{ and } L(M) \neq \emptyset \}$
($\in \cL_{RE}$, but $\notin \cL_R$)
\item $L_{H, \lambda} = \{ \text{Kod}(M) \divides M \text{ halts on } \lambda \}$ ($\in \cL_{RE}$, but $\notin \cL_R$)
\end{itemize}
\newpage
\setLabelNumber{definition}{3}
\fancydef{Recursively reducible languages} $L_1 \leq_R L_2$ ($L_1$ reducible into $L_2$), if $L_2 \in \cL_R \Rightarrow L_1 \in \cL_R$
\fancydef{$EE$-Reductions} $L_1 \leq_{EE} L_2$ if there exists a TM $M$ that implements image $f_M : \word_1 \rightarrow \word_2$,
for which we have $x \in L_1 \Leftrightarrow f_M(x) \in L_2$ for all $x \in \wordbool_1$
\setLabelNumber{lemma}{3}
\inlinelemma If $L_1 \leq_{EE} L_2$ then also $L_1 \leq_R L_2$
\inlinelemma For each language $L \subseteq \word$ we have: $L \leq_R L^C$ and $L^C \leq_R L$
\setLabelNumber{theorem}{6}
\fancytheorem{Universal TM} A TM $U$, such that $L(U) = L_U$
\fhlc{Cyan}{Showing reductions} First, a general guide to reductions and below what else we need to keep in mind for specific reductions:
\begin{enumerate}
\item We construct a TM $A$ that:
\begin{enumerate}
\item Checks if the input has the right form and if it does not, returns some output that is $\notin L_2$
\item Applies the transformation to all remaining input
\end{enumerate}
\item We show $x \in L_1 \Leftrightarrow A(x) \in L_2$ by showing the implications:
\begin{enumerate}
\item For $\Rightarrow$, we show it directly, by assuming that $x \in L_1$ (obviously) and we can ignore the invalid input (as that $\notin L_1$ anyway)
\item For $\Leftarrow$, we have two options (mention what happens to invalid input here):
\begin{itemize}
\item We show $A(x) \in L_2 \Rightarrow x \in L_1$ directly (usually harder)
\item We show $x \notin L_1 \Rightarrow A(x) \notin L_2$ (contraposition)
\end{itemize}
\end{enumerate}
\item Show that the TM always halts (for $P$, $EE$ and $R$ reductions at least)
\end{enumerate}
\shade{Cyan}{$EE$-reductions} They follow the above scheme exactly
\shade{Cyan}{$R$-reductions} It is usually a good idea to draw the setup here. We have a TM $C$ that basically executes an $EE$-reduction and we have a TM $A$ that can check $L_2$.
Then, we have a TM $B$ that wraps the whole thing: It first executes TM $C$, which will either output an transformation of $L_1$ for $L_2$ (i.e. execute an $EE$-reduction) or
output some encoding for \textit{invalid word}.
If it outputs the encoding for \textit{invalid word}, $B$ will output $x \notin L_1$.
If $C$ does not output an encoding for \textit{invalid word}, then $B$ will execute $A$ on the output of $C$ and then use the output of $A$ (either accepting or rejecting)
to output the same (i.e. if $A$ accepts, then $B$ will output $x \in L_1$ and if $A$ rejects, $B$ outputs $x \notin L_1$)
\inlineintuition In $R$-reductions, we construct a full verifier for $L_1$ using the verifier for $L_2$, i.e. we can use TM $B$ directly to check if a given word is in $L_1$
given that the transformed word is also in $L_2$.
\shade{Cyan}{$P$-reductions} (Used in Chapter \ref{sec:complexity}). We need to also show that $A$ terminates in polynomial time.
\shade{orange}{Tips \& Tricks:}
\begin{itemize}
\item The TM $A$ has to terminate always
\item Check the input for the correct form first
\item For the correctness, show $x \in L_1 \Leftrightarrow A(x) \in L_2$
\item The following tricks can be useful:
\begin{itemize}
\item Transitions into $\qacc$ and $\qrej$ can be redirected to $\qacc / \qrej$ or into an infinite loop
\item Construct TM $M'$ that ignores input and does the same, regardless of input
\end{itemize}
\item Generate encoding of a $TM$ with special properties (e.g. accepts all input, never halts, \dots)
\end{itemize}
% ────────────────────────────────────────────────────────────────────
\newpage
\subsection{Rice's Theorem}
\setLabelNumber{definition}{7}
\inlinedef $L$ is called a \bi{semantically non-trivial decision problem}, if these conditions apply:
\begin{enumerate}[label=\textit{(\roman*)}]
\item There exists a TM $M_1$, such that $\text{Kod}(M_1) \in L$ (i.e. $L \neq \emptyset$)
\item There exists a TM $M_2$, such that $\text{Kod}(M_2) \notin L$ (not all encodings are in $L$)
\item For two TM $A$ and $B$: $L(A) = L(B) \Rightarrow \text{Kod}(A) \in L \Rightarrow \text{Kod}(B) \in L$
\end{enumerate}
\setLabelNumber{theorem}{9}
\fancytheorem{Rice's Theorem} Every semantically non-trivial decision problem over TMs is undecidable
\fhlc{Cyan}{Using Rice's Theorem} We only need to show that a language is semantically non-trivial, which we do by checking the above conditions.
For the third condition, intuitively, we only need to check if in the definition of $L$ only $L(M)$ appears and nowhere $M$ directly (except of course, to say that $M$ has to be a TM),
or the condition can be restated such that only $L(M)$ is described by it.
For a more formal proof of that condition, simply show that the implication holds
As of HS2025, chapters 5.5 and 5.6 are not relevant for the Endterm or Session exam, so they are omitted here