Files
eth-summaries/semester3/analysis-ii/cheat-sheet-jh/parts/vectors/differentiation/02_differential.tex

15 lines
969 B
TeX

\newsectionNoPB
\subsection{The differential}
\setLabelNumber{all}{2}
\compactdef{Differentiable function} We have function $f: X \rightarrow \R^m$, linear map $u : \R^n \rightarrow \R^m$ and $x_0 \in X$. $f$ is differentiable at $x_0$ with differential $u$ if
$\displaystyle \lim_{\elementstack{x \rightarrow x_0}{x \neq x_0}} \frac{1}{||x - x_0||} (f(x) - f(x_0) - u(x - x_0) = 0$ where the limit is in $\R^m$.
We denote $\dx f(x_0) = u$.
If $f$ is differentiable at every $x_0 \in X$, then $f$ is differentiable on $X$
% ────────────────────────────────────────────────────────────────────
\stepLabelNumber{all}
\shortproposition Let $f, g : X \rightarrow \R^m$ with $X \subseteq \R^n$ open
\begin{itemize}[noitemsep]
\item The function $f + g$ is differentiable with differential $\dx (f + g) = \dx f + \dx g$
\end{itemize}