\newsectionNoPB \subsection{The differential} \setLabelNumber{all}{2} \compactdef{Differentiable function} We have function $f: X \rightarrow \R^m$, linear map $u : \R^n \rightarrow \R^m$ and $x_0 \in X$. $f$ is differentiable at $x_0$ with differential $u$ if $\displaystyle \lim_{\elementstack{x \rightarrow x_0}{x \neq x_0}} \frac{1}{||x - x_0||} (f(x) - f(x_0) - u(x - x_0) = 0$ where the limit is in $\R^m$. We denote $\dx f(x_0) = u$. If $f$ is differentiable at every $x_0 \in X$, then $f$ is differentiable on $X$ % ──────────────────────────────────────────────────────────────────── \stepLabelNumber{all} \shortproposition Let $f, g : X \rightarrow \R^m$ with $X \subseteq \R^n$ open \begin{itemize}[noitemsep] \item The function $f + g$ is differentiable with differential $\dx (f + g) = \dx f + \dx g$ \end{itemize}