mirror of
https://github.com/janishutz/eth-summaries.git
synced 2025-11-25 10:34:23 +00:00
34 lines
1.3 KiB
TeX
34 lines
1.3 KiB
TeX
% ┌ ┐
|
|
% │ AUTHOR: Janis Hutz<info@janishutz.com> │
|
|
% └ ┘
|
|
|
|
\newsectionNoPB
|
|
\subsection{Quadratur in $\R^d$ und dünne Gitter}
|
|
Eine einfache Option wäre natürlich, zwei eindimensionale Quadraturformeln aneinander zu hängen.
|
|
Für zweidimensionale Funktionen sieht dies so aus:
|
|
\rmvspace
|
|
\begin{align*}
|
|
I = \int_{j_1}^{n_1} \sum_{j_2}^{n_2} \omega_{j_1}^1 \omega_{j_2}^2 f(c_{j_1}^1, c_{j_2}^2)
|
|
\end{align*}
|
|
|
|
\drmvspace
|
|
und für beliebige $d$ haben wir
|
|
\rmvspace
|
|
\begin{align*}
|
|
\left( w_{j_k}^k, c_{j_k}^k \right)_{1 \leq j_k \leq n_k} \smallhspace k = 1, \ldots, d
|
|
\end{align*}
|
|
|
|
\drmvspace
|
|
Was dasselbe ist, wie oben, aber mit $d$ Summen und $d$-mal ein $w_{j_k}$ und eine $d$-dimensionale Funktion $f$
|
|
|
|
% https://www.slingacademy.com/article/scipy-integrate-simpson-function-4-examples/ explains scipy's n-d integration well
|
|
% TODO: Insert code for multi dimensional quadrature from exercise
|
|
|
|
\begin{recall}[]{Tensor-Produkt}
|
|
\TODO Write this section
|
|
\end{recall}
|
|
|
|
Die wichtigste Erkenntnis aus diesem Abschnitt ist die Idee, ein \bi{Sparse-Grid} zu verwenden, um die Rechenarbeit zu reduzieren.
|
|
|
|
\innumpy Gibt es die Möglichkeit Sparse-Grid arrays mit \texttt{scipy.sparse} zu erstellen.
|