mirror of
https://github.com/janishutz/eth-summaries.git
synced 2025-11-25 18:44:24 +00:00
66 lines
2.9 KiB
TeX
66 lines
2.9 KiB
TeX
\newpage
|
|
\subsection{Nichtdeterministische Komplexitätsmasse}
|
|
|
|
\begin{definition}[]{Zeit- und Speicherkomplexität}
|
|
Sei $M$ eine NMTM oder MTM und $x \in L(M) \subseteq \word$. $\tc_M(x)$ ist die länge einer kürzesten akzeptierenden Berechnung von $M$ auf $x$
|
|
und $\tc_M(n) = \max(\{ \tc_M(x) \divides x \in L(M) \text{ und }|x| = n \} \cup \{ 0 \} )$.
|
|
|
|
\vspace{0.25cm}
|
|
|
|
$\spc_M(C_i)$ ist die Speicherkomplexität von Konfiguration $C_i$ und $\spc_M(C) = \max\{ \spc_M(C_i) \divides i = 1, 2, \ldots, m \}$.
|
|
Zudem ist $\spc_M(x) = \min\{ \spc_M(C) \divides C \text{ ist akzeptierende Berechnung von $M$ auf } x \}$.
|
|
Ausserdem ist $\spc_M(n) = \max(\{ \spc_M(x) \divides x \in L(M) \text{ und } |x| = n \} \cup \{ 0 \})$
|
|
\end{definition}
|
|
|
|
|
|
\begin{definition}[]{Komplexitätsklassen}
|
|
Für alle $f, g : \N \rightarrow \R^+$ definieren wir:
|
|
\begin{align*}
|
|
\text{NTIME}(f) & = \{ L(M) \divides M \text{ ist eine NMTM mit } \tc_M(n) \in \tco{f(n)} \} \\
|
|
\text{NSPACE}(g) & = \{ L(M) \divides M \text{ ist eine NMTM mit } \spc_M(n) \in \tco{g(n)} \} \\
|
|
\text{NLOG} & = \text{NSPACE}(\log_2(n)) \\
|
|
\text{NP} & = \bigcup_{c \in \N} \text{NTIME}(n^c) \\
|
|
\text{NPSPACE} & = \bigcup_{c \in \N} \text{NSPACE}(n^c)
|
|
\end{align*}
|
|
\end{definition}
|
|
|
|
|
|
\inlinelemma Für alle $t$ und $s$ mit $s(n) \geq \log_2(n)$ gilt: $\text{NTIME}(t) \subseteq \text{NSPACE}(t)$, $\text{NSPACE}(s) \subseteq \bigcup_{c \in \N} \text{NTIME}(c^{s(n)})$
|
|
|
|
\inlinetheorem Für jedes $t : \N \rightarrow \R^+$ und jedes platzkonstruierbare $s$ mit $s(n) \geq \log_2(n)$ gilt:
|
|
\rmvspace
|
|
\begin{multicols}{2}
|
|
\begin{enumerate}[label=(\roman*)]
|
|
\item $\text{TIME}(t) \subseteq \text{NTIME}(t)$
|
|
\item $\text{SPACE}(t) \subseteq \text{NSPACE}(t)$
|
|
\item $\text{NTIME}(s(n)) \subseteq \text{SPACE}(s(n)) \subseteq \bigcup_{c \in \N} \text{TIME}(c^{s(n)})$
|
|
\end{enumerate}
|
|
\end{multicols}
|
|
|
|
\drmvspace
|
|
\inlinecorollary $\text{NP} \subseteq \text{PSPACE}$
|
|
|
|
\inlineremark Für jede platzkonstruierbare Funktion $s$ mit $s(n) \geq \log_2(n)$ gilt
|
|
\rmvspace
|
|
\begin{align*}
|
|
\text{NSPACE}(s(n)) \subseteq \bigcup_{c \in \N} \text{TIME}(c^{s(n)})
|
|
\end{align*}
|
|
|
|
\drmvspace
|
|
\inlinecorollary $\text{NLOG} \subseteq \text{P}$ und $\text{NPSPACE} \subseteq \text{EXPTIME}$
|
|
|
|
|
|
\fancytheorem{Satz von Savitch} Sei $s$ mit $s(n) \geq \log_2(n)$ eine platzkonstruierbare Funktion. Dann gilt:
|
|
\rmvspace
|
|
\begin{align*}
|
|
\text{NSPACE}(s(n)) \subseteq \text{SPACE}(s(n)^2)
|
|
\end{align*}
|
|
|
|
\drmvspace
|
|
\inlinecorollary $\text{PSPACE} = \text{NPSPACE}$
|
|
|
|
Aus den obigen Resultaten resultiert die Komplexitätsklassenhierarchie der sequentiellen Berechnungen:
|
|
\begin{align*}
|
|
\text{DLOG} \subseteq \text{NLOG} \subseteq \text{P} \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME}
|
|
\end{align*}
|