[Analysis] Diff. Calc.

This commit is contained in:
RobinB27
2026-01-02 12:55:07 +01:00
parent 056524cdec
commit f9b78d7735
6 changed files with 106 additions and 18 deletions

View File

@@ -16,8 +16,12 @@
\section{Differential Equations}
\input{parts/02_diffeq.tex}
\newpage
\section{Continuous functions in $\R^n$}
\input{parts/03_cont.tex}
\newpage
\section{Differential Calculus in $\R^n$}
\input{parts/03_diff.tex}
\input{parts/04_diff.tex}
\end{document}

View File

@@ -1,5 +1,7 @@
Relevant definitions used throughout Analysis II.
\subtext{$\textbf{A} \in \R^{m \times n},\quad x,y \in \R^n,\quad \alpha \in \R$}
\definition \textbf{Euclidian Norm} $||x|| := \displaystyle\sqrt{\sum_{i=1}^{n} x_i^2}$\\
\subtext{Used to generalize $|x|$ in many Analysis I definitions}
@@ -14,4 +16,5 @@ Relevant definitions used throughout Analysis II.
\end{array}
$
\end{center}
\subtext{$\forall x,y \in \R^n,\quad \alpha \in \R\\$}
\definition \textbf{Trace} $\text{Tr}(\textbf{A}) := \displaystyle\sum_{i=0}^{\text{min}(m,n)} \textbf{A}_{i, i}$

View File

@@ -58,6 +58,17 @@ $
\end{array}
$
\definition \textbf{Limits at points}
\begin{align*}
& \underset{x \neq x_0 \to x_0}{\lim} \Bigl( f(x) \Bigr) = y \iffdef \forall \epsilon > 0, \exists \delta > 0: \\
& \forall x \neq x_0 \in X: \big\| x - x_0 \big\| < \delta \implies \big\| f(x) - y \big\| < \epsilon
\end{align*}
\subtext{$X \subset \R^n,\quad f:X \to \R^m,\quad x_0 \in X,\quad y \in \R^m$}
The sequence test for Continuity works for point-limits too.
\subsection{Continuity in $\R^n$}
\definition \textbf{Continuity in $\R^n$}\\
$f \text{ continuous at } x_0 \in X \iffdef \forall \epsilon > 0, \exists \delta > 0:\\$
$$
@@ -73,15 +84,6 @@ $$
$$
\subtext{$X \subset \R^n,\quad f:X \to \R^m$}
\definition \textbf{Limits at points}
\begin{align*}
& \underset{x \neq x_0 \to x_0}{\lim} \Bigl( f(x) \Bigr) = y \iffdef \forall \epsilon > 0, \exists \delta > 0: \\
& \forall x \neq x_0 \in X: \big\| x - x_0 \big\| < \delta \implies \big\| f(x) - y \big\| < \epsilon
\end{align*}
\subtext{$X \subset \R^n,\quad f:X \to \R^m,\quad x_0 \in X,\quad y \in \R^m$}
The sequence test for Continuity works for point-limits too.
\lemma \textbf{Continuity of Compositions}\\
$f: X \to Y,\ g: Y \to \R^p \text{ continuous } \implies g \circ f \text{ continuous}$\\
\subtext{$X \subset \R^n,\quad Y \subset \R^m,\quad p \geq 1$}
@@ -102,20 +104,31 @@ $X \subset \R^n$ closed $\iffdef \forall (x_k)_{k\geq 1} \in X:\quad \underset{x
\definition \textbf{Compact} if closed and bounded.\\
\subtext{Example: The closed Disc $\Lambda = \{ x \in \R^n \sep \big\| x - x_0 \big\| \leq r \}$ is compact.}
\lemma The Cartesian Product preserves these properties.
\definition \textbf{Open}\\
$X \subset \R^n$ open $\iffdef \forall x \in X,\ \exists \delta > 0:$
$$\bigl\{ y \in \R^n \sep |x_i - y_i| < \delta,\ \ \forall i \leq n \bigr\} \subset X$$
\subtext{In other words: Changing any coord. $x_i$ by $\delta$ keeps $x'$ in $X$}\\
\subtext{Example: $\emptyset, \R^n$ are open (and closed)}
\lemma \textbf{Continous functions preserve closedness}
\lemma The Cartesian Product preserves bounded/closed.
\lemma \textbf{Continous functions preserve closed/open}
\smalltext{$\forall \text{ closed/open } Y:$}
$$
\forall \text{ closed } Y:\quad f^{-1}(Y) = \bigl\{ x \in \R^n \sep f(x) \in Y \bigr\} \text{ is closed.}
f^{-1}(Y) = \bigl\{ x \in \R^n \sep f(x) \in Y \bigr\} \text{ is closed/open.}
$$
\subtext{$f: \R^n \to \R^m$ is continuous,$\quad Y \subset \R^m$}
\lemma \textbf{The complement of open sets is closed}
$$
X \subset \R^n \text{ is open } \iff \underbrace{\bigl\{ x \in \R^n \sep x \notin X \bigr\}}_{\text{Complement}} \text{ is closed}
$$
\begin{subbox}{Min-Max Theorem}
\smalltext{For compact, non-empty $X \subset \R^n$, continuous $f: X \to \R$:}
$$
\exists x_1,x_2 \in X :\quad f(x_1) = \underset{x \in X}{\sup} f(x),\quad f(x_2) = \underset{x \in X}{\inf} f(x)
$$
\end{subbox}
\subsection{Partial Derivatives}
\end{subbox}

View File

@@ -0,0 +1,62 @@
\subsection{Partial Derivatives}
\begin{subbox}{Partial Derivative}
\smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R,\quad 1 \leq i \leq n,\quad x_0 \in X$}
$$\dfd{i}(x_{0}) := g'(x_{0,i})$$
\smalltext{for $g: \{ t \in \R \sep (x_{0, 1}, \ldots,\ t\ ,\ldots, x_{0, n}) \in X \} \to \R^n$}
$$ g(t) := \underbrace{f(x_{0,i}, \ldots, x_{0,t-1},\ t\ , x_{0, t+1},\ldots,x_{0, n})}_{ \text{ Freeze all }x_{0, k} \text{ except one } x_{0, i} \to t}$$
\end{subbox}
\notation $\dfd{i}(x_0) = \sdfd{i}(x_0) =\ssdfd{i}(x_0)$
\lemma \textbf{Properties of Partial Derivatives}\\
\smalltext{Assuming $\sdfd{i} \text{ and } \partial_{x_i} g \text{ exist }$:}
$
\begin{array}{ll}
(i) & \partial x_i (f+g) = \partial x_i f + \partial x_i g \\
(ii) & \partial x_i (fg) = \partial x_i (f)g + \partial x_i (g)f\quad \text{ if } m=1\\
(iii) & \partial x_i \Bigr(\displaystyle\frac{f}{g}\Bigl) = \displaystyle\frac{\partial x_i(f)g - \partial x_i(g)f}{g^2}\quad \text{ if } g(x) \neq 0\ \forall x \in X\\
\end{array}
$\\
\subtext{$X \subset \R^n \text{ open},\quad f.g: X \to \R^n,\quad 1 \leq i \leq n$}
\begin{subbox}{The Jacobian}
\smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R^n \text{ with partial derivatives existing}$}
$$
\textbf{J}_f(x) := \begin{bmatrix}
\partial x_1 f_1(x) & \partial x_2 f_1(x) & \cdots & \partial x_n f_1(x) \\
\partial x_1 f_2(x) & \partial x_2 f_2(x) & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\partial x_1 f_n(x) & \partial x_2 f_n(x) & \cdots & \partial x_n f_m(x)
\end{bmatrix}
$$
\end{subbox}
\subtext{Think of $f$ as a vector of $f_i$, then $\textbf{J}_f$ is that vector stretched for all $x_j$}
\definition \textbf{Gradient} $\nabla f(x_0) := \begin{bmatrix}
\partial x_1 f(x_0) \\
\vdots \\
\partial x_n f(x_0)
\end{bmatrix} = \textbf{J}_f(x)^\top$\\
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R$}
\definition \textbf{Divergence} $\text{div}(f)(x_0) := \text{Tr}\bigr(\textbf{J}_f(x_0)\bigl)$\\
\subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^n,\quad \textbf{J}_f \text{ exists}$}
\subsection{The Differential}
\smalltext{
Partial derivatives don't provide a good approx. of $f$, unlike in the $1$-dimensional case. The \textit{differential} is a linear map which replicates this purpose in $\R^n$.
}
\begin{subbox}{Differentiability in $\R^n$}
\smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R^n,\quad u: \R^n \to \R^m \text{ linear map}$}
$$
df(x_0) := u
$$
If $f$ is differentiable at $x_0 \in X$ with $u$ s.t.
$$
\underset{x \neq x_0 \to x_0}{\lim} \frac{1}{\big\| x - x_0 \big\|}\Biggl( f(x) - f(x_0) - u(x - x_0) \Biggr) = 0
$$
\end{subbox}

View File

@@ -55,6 +55,12 @@
\def \lemma{\colorbox{lightgray}{Lem.} }
\def \method{\colorbox{lightgray}{Method} }
% partial derivatives
\def \dfd#1{\frac{\partial f}{\partial x_#1}}
\def \sdfd#1{\partial_{x_#1}f}
\def \ssdfd#1{\partial_#1f}
\def \dd#1#2{\frac{\partial_#1}{\partial x_#2}} % to replace f
% For intuiton and less important notes
\def \subtext#1{
\color{gray}\footnotesize