mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-11 01:18:27 +00:00
[Analysis} Finish Taylor polynomials, start critical points
This commit is contained in:
Binary file not shown.
@@ -22,4 +22,13 @@ where $i$ is a \textit{multi-index}, so:
|
||||
\end{multicols}
|
||||
|
||||
\drmvspace\rmvspace
|
||||
The concept this formula uses is that we iterate through all possible partial derivatives of $f$ and assigns each a multi-index $i$
|
||||
The concept this formula uses is that we iterate through all possible partial derivatives of $f$ and assigns each a multi-index $i$.
|
||||
To denote that we want to take the partial derivative $\partial_{112}$, we use $i = (2, 1, 0)$, since we take the derivative of the first variable twice,
|
||||
of the second variable once and never of the third variable.
|
||||
So the expression is thus now:
|
||||
\mrmvspace
|
||||
\begin{align*}
|
||||
\frac{\partial_{112} f(y) (x_1 - y_1)^2 (x_2 - y_2)^1 (x_3 y_3)^0}{2!1!0!} = \frac{\partial_{112} f(y) (x_1 - y_1)^2 (x_2 - y_2)}{2}
|
||||
\end{align*}
|
||||
|
||||
\drmvspace
|
||||
|
||||
@@ -1,2 +1,25 @@
|
||||
\newsectionNoPB
|
||||
\newsection
|
||||
\subsection{Critical points}
|
||||
\stepLabelNumber{all}
|
||||
\compactdef{Critical Point} For $f: X \rightarrow \R^n$ differentiable, $x_0 \in X$ is called a \bi{critical point} of $f$ if $\nabla f(x_0) = 0$
|
||||
\shortremark As in 1 dimensional case, check edges of the interval for the critical point.\\
|
||||
%
|
||||
To determine the kind of critical point, we need to determine if $H_f(x_0)$ is definite:
|
||||
\drmvspace
|
||||
\begin{multicols}{3}
|
||||
\begin{itemize}[noitemsep]
|
||||
\item positive definite $\Rightarrow x_0$ local max
|
||||
\item negative definite $\Rightarrow x_0$ local min
|
||||
\item indefinite $\Rightarrow x_0$ point of inflection
|
||||
\end{itemize}
|
||||
\end{multicols}
|
||||
|
||||
\dhrmvspace
|
||||
\setLabelNumber{all}{6}
|
||||
\compactdef{Non-degenerate critical point} If $\det(H_f(x_0)) \neq 0$ (if $H_f(x_0)$ is semi-definite, then $\det(H_f(x_0)) = 0$, thus degenerate)\\
|
||||
To figure out if a matrix is definite, we can compute the eigenvalues. $A$ is positive (negative) definite, if and only if all eigenvalues are greater (lower) than $0$.
|
||||
$A$ is indefinite if and only if it has both positive and negative eigenvalues.
|
||||
$A$ is positive (negative) semi-definite if and only if all eigenvalues are greater (lower) or equal to $0$.
|
||||
(Compute Eigenvalues using $\det(A - \lambda I) = 0$)
|
||||
|
||||
For $2 \times 2$ matrices, we can use the following scheme:
|
||||
|
||||
Reference in New Issue
Block a user