mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-13 02:38:25 +00:00
[Analysis] Update to new helper import scheme, continue differentiability summary
This commit is contained in:
@@ -0,0 +1,14 @@
|
||||
\newsectionNoPB
|
||||
\subsection{The differential}
|
||||
\setLabelNumber{all}{2}
|
||||
\compactdef{Differentiable function} We have function $f: X \rightarrow \R^m$, linear map $u : \R^n \rightarrow \R^m$ and $x_0 \in X$. $f$ is differentiable at $x_0$ with differential $u$ if
|
||||
$\displaystyle \lim_{\elementstack{x \rightarrow x_0}{x \neq x_0}} \frac{1}{||x - x_0||} (f(x) - f(x_0) - u(x - x_0) = 0$ where the limit is in $\R^m$.
|
||||
We denote $\dx f(x_0) = u$.
|
||||
If $f$ is differentiable at every $x_0 \in X$, then $f$ is differentiable on $X$
|
||||
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
\stepLabelNumber{all}
|
||||
\shortproposition Let $f, g : X \rightarrow \R^m$ with $X \subseteq \R^n$ open
|
||||
\begin{itemize}[noitemsep]
|
||||
\item The function $f + g$ is differentiable with differential $\dx (f + g) = \dx f + \dx g$
|
||||
\end{itemize}
|
||||
Reference in New Issue
Block a user