mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-11 13:38:24 +00:00
[Analysis] Update to new helper import scheme, continue differentiability summary
This commit is contained in:
Binary file not shown.
@@ -1,8 +1,6 @@
|
||||
\documentclass{article}
|
||||
|
||||
\newcommand{\dir}{~/projects/latex}
|
||||
\input{\dir/include.tex}
|
||||
\load{recommended}
|
||||
\input{~/projects/latex/dist/recommended.tex}
|
||||
|
||||
\setupCheatSheet{Analysis II}
|
||||
|
||||
@@ -59,13 +57,16 @@ If you discover any errors, please open an issue or fix the issue yourself and t
|
||||
This Cheat-Sheet was designed with the HS2025 page limit of 10 A4 pages in mind.
|
||||
Thus, the whole Cheat-Sheet can be printed full-sized, if you exclude the title page, contents and this page.
|
||||
You could also print it as two A5 pages per A4 page and also print the
|
||||
\color{MidnightBlue}\fbox{\href{https://github.com/janishutz/eth-summaries/blob/master/semester2/analysis-i/cheat-sheet.pdf}{Analysis I summary}}\color{black}
|
||||
\hlhref{https://github.com/janishutz/eth-summaries/blob/master/semester2/analysis-i/cheat-sheet-jh/cheat-sheet-en.pdf}{Analysis I summary}
|
||||
\smallhspace in the same manner, allowing you to bring both to the exam.
|
||||
|
||||
And yes, she did really miss an opportunity there with the quote\dots But she was also sick, so it's not as unexpected
|
||||
|
||||
This summary also uses tips and tricks from this \hlhref{https://polybox.ethz.ch/index.php/s/WBGFTRdEjRwJjQC}{Exercise Session}
|
||||
|
||||
|
||||
% TODO: Everywhere: Check with TA notes to add tips and tricks
|
||||
|
||||
% ╭────────────────────────────────────────────────╮
|
||||
% │ Content │
|
||||
% ╰────────────────────────────────────────────────╯
|
||||
@@ -76,10 +77,23 @@ And yes, she did really miss an opportunity there with the quote\dots But she wa
|
||||
\input{parts/diffeq/linear-ode/01_order-one.tex}
|
||||
\input{parts/diffeq/linear-ode/02_constant-coefficient.tex}
|
||||
|
||||
\newsection
|
||||
\section{Differential Calculus in Vector Space}
|
||||
\input{parts/vectors/differentiation/00_continuity.tex}
|
||||
\input{parts/vectors/differentiation/01_partial_derivatives.tex}
|
||||
\input{parts/vectors/differentiation/02_differential.tex}
|
||||
\input{parts/vectors/differentiation/03_higher_diff.tex}
|
||||
\input{parts/vectors/differentiation/04_change_of_variable.tex}
|
||||
\input{parts/vectors/differentiation/05_taylor_polynomials.tex}
|
||||
\input{parts/vectors/differentiation/06_critical_points.tex}
|
||||
|
||||
\newsection
|
||||
\section{Integral Calculus in Vector Space}
|
||||
\input{parts/vectors/integration/00_line_integrals.tex}
|
||||
\input{parts/vectors/integration/01_int_in_rn.tex}
|
||||
\input{parts/vectors/integration/02_improper_int.tex}
|
||||
\input{parts/vectors/integration/03_change_of_variable_formula.tex}
|
||||
\input{parts/vectors/integration/04_green_formula.tex}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
@@ -8,17 +8,36 @@ $\{ y = (y_1, \ldots, y_n) \in \R^n : |x_i - y_i| < \delta \smallhspace \forall
|
||||
\shortex \bi{(1)} $\emptyset$ and $\R^n$ are both open and closed.
|
||||
\bi{(2)} Open ball $D = \{ x \in \R^n : ||x - x_0|| < r \}$ is open in $\R^n$ ($x_0$ the center and $r$ radius)
|
||||
\bi{(3)} $I_1 \times \dots \times I_n$ is open in $\R^n$ for $I_i$ open
|
||||
\bi{(4)} $X \subseteq \R^n$ open $\Leftrightarrow$ $\forall x \in X \exists \delta > 0$ s.t. open ball of center $x$ and radius $\delta$ is contained in $X$
|
||||
|
||||
\bi{(4)} $X \subseteq \R^n$ open $\Leftrightarrow$ $\forall x \in X \exists \delta > 0$ s.t. open ball of center $x$ and radius $\delta$ is contained in $X$\\
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
\compactdef{Partial derivative} Let $X \subseteq \R^n$ open, $f: X \rightarrow \R^m$ and $1 \leq i \leq n$.
|
||||
Then $f$ has partial derivative on $X$ with respect to the $i$-th variable (or coordinate),
|
||||
if $\forall x_0 = (x_{0, 1}, \ldots, x_{0, n}) \in X$, $g(t) = f(x_{0, 1}, \ldots, x_{0, i - 1}, t, x_{0, i + 1}, x_{0, n})$ on set
|
||||
$I = \{ t \in \R : (x_{0, 1}, \ldots, x_{0, i - 1}, t, x_{0, i + 1}, \ldots, x_{0, n}) \in X \}$ is differentiable at $t = x_{0, i}$.
|
||||
The derivative $g'(x_{0, i})$ at $x_{0, i}$ is denoted:
|
||||
$\frac{\partial f}{\partial x_i}(x_0), \partial_{x_i} f(x_0) \text{ or } \partial_i f(x_0)$\\
|
||||
%
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
\stepLabelNumber{all}
|
||||
\shortproposition Let $X \subseteq \R^n$ open, $f, g : X \rightarrow \R^m$ and $1 \leq i \leq n$. Then:
|
||||
\bi{(1)} If $f$ \& $g$ have $\partial_i$ on $X$, then so does $f + g$ and $\partial_{x_i} (f + g) = \partial_{x_i}(f) + \partial_{x_i}(g)$
|
||||
\bi{(2)} If $m = 1$ (i.e. $\R^1$) and $f$ \& $g$ have $\partial_i$ on $X$, then so does $fg$ and $\partial_{x_i} (fg) = \partial_{x_i}(f)g + f \partial_{x_i}(g)$
|
||||
and if $g(x) \neq 0 \smallhspace \forall x \in X$, then if $f \div g$ has $\partial_i$ on $X$, then so does $f \div g$ and
|
||||
$\partial_{x_i}(f \div g) = (\partial_{x_i}(f) g - f \partial_{x_i}(g)) \div g^2$
|
||||
$\partial_{x_i}(f \div g) = (\partial_{x_i}(f) g - f \partial_{x_i}(g)) \div g^2$\\
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
\compactdef{Jacobi Matrix $J$} Element $J_ij = \partial_{x_j} f_i(x)$ for function $f: X \rightarrow \R^m$ with $X \subseteq \R^n$ open. $x_j$ is the $j$-th variable,
|
||||
$f_i$ is the $i$-th component of the equation (i.e. in the vector of the function). $J$ has $m$ rows and $n$ columns.\\
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
|
||||
\drmvspace\drmvspace
|
||||
\stepLabelNumber{all}
|
||||
\compactdef{Gradient, Divergence} for $f : X \rightarrow \R$ with $X \in \R^n$ open, the \bi{gradient} is given by
|
||||
$\nabla f(x_0) = \begin{pmatrix}
|
||||
\partial_{x_1} f(x_0) \\
|
||||
\vdots \\
|
||||
\partial_{x_n} f(x_0)
|
||||
\end{pmatrix}$
|
||||
and the
|
||||
|
||||
\drmvspace\rmvspace
|
||||
trace of the Jacobi Matrix, $\text{div}(f)(x_0) = \text{Tr}(J_f(x_0)) = \sum_{i = 1}^{n} \partial_{x_i} f_i(x_0)$ is called the \bi{divergence} of $f$ at $x_0$.
|
||||
\rmvspace
|
||||
|
||||
@@ -0,0 +1,14 @@
|
||||
\newsectionNoPB
|
||||
\subsection{The differential}
|
||||
\setLabelNumber{all}{2}
|
||||
\compactdef{Differentiable function} We have function $f: X \rightarrow \R^m$, linear map $u : \R^n \rightarrow \R^m$ and $x_0 \in X$. $f$ is differentiable at $x_0$ with differential $u$ if
|
||||
$\displaystyle \lim_{\elementstack{x \rightarrow x_0}{x \neq x_0}} \frac{1}{||x - x_0||} (f(x) - f(x_0) - u(x - x_0) = 0$ where the limit is in $\R^m$.
|
||||
We denote $\dx f(x_0) = u$.
|
||||
If $f$ is differentiable at every $x_0 \in X$, then $f$ is differentiable on $X$
|
||||
|
||||
% ────────────────────────────────────────────────────────────────────
|
||||
\stepLabelNumber{all}
|
||||
\shortproposition Let $f, g : X \rightarrow \R^m$ with $X \subseteq \R^n$ open
|
||||
\begin{itemize}[noitemsep]
|
||||
\item The function $f + g$ is differentiable with differential $\dx (f + g) = \dx f + \dx g$
|
||||
\end{itemize}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Higher derivatives}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Change of variable}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Taylor polynomials}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Critical points}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Line integrals}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Riemann integral in Vector Space}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Improper integrals}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsectionNoPB
|
||||
\subsection{Change of Variable Formula}
|
||||
@@ -0,0 +1,2 @@
|
||||
\newsectionNoPB
|
||||
\subsection{The Green Formula}
|
||||
Reference in New Issue
Block a user