[Analysis] Notes from exercise session

This commit is contained in:
2025-10-27 11:22:06 +01:00
parent 3a4dfc028d
commit 8bebbe584c
2 changed files with 1 additions and 0 deletions

View File

@@ -47,6 +47,7 @@ $\Rightarrow f = (f_1, f_2): \R^n \rightarrow \R^{m_1 + m_2}$ is continuous (Car
% ────────────────────────────────────────────────────────────────────
\shortdef \bi{(1)} $X \subseteq \R^n$ is \bi{bounded} if the set of $||x||$ for $x \in X$ is bounded in $\R$
\bi{(2)} $X \subseteq \R^n$ is \bi{closed} if $\forall (x_k)$ in $X$ that converge in $\R^n$ to some vector $y \in \R^n$, we have $y \in X$
% Closed simple explanation: "border" included or not (and is not in case of open disc because limit is outside, i.e. limit of a_n = (n / (n + 1), 0) is 1)
\bi{(3)} $X \subseteq \R^n$ is \bi{compact} if it is bounded and closed\\
% ────────────────────────────────────────────────────────────────────
\shortex \bi{(1)} $\emptyset$ and $\R^n$ are closed.