diff --git a/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf b/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf index a24de26..368ef21 100644 Binary files a/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf and b/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf differ diff --git a/semester3/analysis-ii/parts/vectors/differentiation/00_continuity.tex b/semester3/analysis-ii/parts/vectors/differentiation/00_continuity.tex index c2c177f..0e5b451 100644 --- a/semester3/analysis-ii/parts/vectors/differentiation/00_continuity.tex +++ b/semester3/analysis-ii/parts/vectors/differentiation/00_continuity.tex @@ -47,6 +47,7 @@ $\Rightarrow f = (f_1, f_2): \R^n \rightarrow \R^{m_1 + m_2}$ is continuous (Car % ──────────────────────────────────────────────────────────────────── \shortdef \bi{(1)} $X \subseteq \R^n$ is \bi{bounded} if the set of $||x||$ for $x \in X$ is bounded in $\R$ \bi{(2)} $X \subseteq \R^n$ is \bi{closed} if $\forall (x_k)$ in $X$ that converge in $\R^n$ to some vector $y \in \R^n$, we have $y \in X$ +% Closed simple explanation: "border" included or not (and is not in case of open disc because limit is outside, i.e. limit of a_n = (n / (n + 1), 0) is 1) \bi{(3)} $X \subseteq \R^n$ is \bi{compact} if it is bounded and closed\\ % ──────────────────────────────────────────────────────────────────── \shortex \bi{(1)} $\emptyset$ and $\R^n$ are closed.