mirror of
https://github.com/janishutz/eth-summaries.git
synced 2025-11-25 18:44:24 +00:00
[Analysis] Fix error
This commit is contained in:
Binary file not shown.
@@ -3,5 +3,5 @@
|
|||||||
The coefficients $a_i$ are constant functions of form $a_i(x) = k$ with $k$ constant, where $b(x)$ can be any function.\\
|
The coefficients $a_i$ are constant functions of form $a_i(x) = k$ with $k$ constant, where $b(x)$ can be any function.\\
|
||||||
%
|
%
|
||||||
\shade{gray}{Homo. Sol.} Find \textit{characteristic polynomial} (of form $\lambda^k + a_{k - 1} \lambda^{k - 1} + \ldots + a_1 \lambda + a_0$ for order $k$ lin. ODE with coefficients $a_i$).
|
\shade{gray}{Homo. Sol.} Find \textit{characteristic polynomial} (of form $\lambda^k + a_{k - 1} \lambda^{k - 1} + \ldots + a_1 \lambda + a_0$ for order $k$ lin. ODE with coefficients $a_i$).
|
||||||
Find the roots of polynomial. The solution space is given by $\{ x^{v_j} e^{\gamma_i x} \divides v_j \in \N, \gamma_i \in \R \}$ where $v_j$ is the multiplicity of the root $\gamma_i$.
|
Find the roots of polynomial. The solution space is given by $\{ x^{v_j - 1} e^{\gamma_i x} \divides v_j \in \N, \gamma_i \in \R \}$ where $v_j$ is the multiplicity of the root $\gamma_i$.
|
||||||
For $\gamma_i = \alpha + \beta i \in \C$, we have $e^{\alpha x}\cos(\beta x)$, $e^{\alpha x}\sin(\beta x)$.
|
For $\gamma_i = \alpha + \beta i \in \C$, we have $e^{\alpha x}\cos(\beta x)$, $e^{\alpha x}\sin(\beta x)$.
|
||||||
|
|||||||
Reference in New Issue
Block a user