diff --git a/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf b/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf index efe23e3..5e1188d 100644 Binary files a/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf and b/semester3/analysis-ii/analysis-ii-cheat-sheet.pdf differ diff --git a/semester3/analysis-ii/parts/diffeq/linear-ode/02_constant-coefficient.tex b/semester3/analysis-ii/parts/diffeq/linear-ode/02_constant-coefficient.tex index 94b536e..061acdd 100644 --- a/semester3/analysis-ii/parts/diffeq/linear-ode/02_constant-coefficient.tex +++ b/semester3/analysis-ii/parts/diffeq/linear-ode/02_constant-coefficient.tex @@ -3,5 +3,5 @@ The coefficients $a_i$ are constant functions of form $a_i(x) = k$ with $k$ constant, where $b(x)$ can be any function.\\ % \shade{gray}{Homo. Sol.} Find \textit{characteristic polynomial} (of form $\lambda^k + a_{k - 1} \lambda^{k - 1} + \ldots + a_1 \lambda + a_0$ for order $k$ lin. ODE with coefficients $a_i$). -Find the roots of polynomial. The solution space is given by $\{ x^{v_j} e^{\gamma_i x} \divides v_j \in \N, \gamma_i \in \R \}$ where $v_j$ is the multiplicity of the root $\gamma_i$. +Find the roots of polynomial. The solution space is given by $\{ x^{v_j - 1} e^{\gamma_i x} \divides v_j \in \N, \gamma_i \in \R \}$ where $v_j$ is the multiplicity of the root $\gamma_i$. For $\gamma_i = \alpha + \beta i \in \C$, we have $e^{\alpha x}\cos(\beta x)$, $e^{\alpha x}\sin(\beta x)$.