[Analysis} Finish Taylor polynomials, start critical points

This commit is contained in:
2026-01-02 08:55:15 +01:00
parent 8e0192803c
commit 056524cdec
3 changed files with 34 additions and 2 deletions

View File

@@ -22,4 +22,13 @@ where $i$ is a \textit{multi-index}, so:
\end{multicols} \end{multicols}
\drmvspace\rmvspace \drmvspace\rmvspace
The concept this formula uses is that we iterate through all possible partial derivatives of $f$ and assigns each a multi-index $i$ The concept this formula uses is that we iterate through all possible partial derivatives of $f$ and assigns each a multi-index $i$.
To denote that we want to take the partial derivative $\partial_{112}$, we use $i = (2, 1, 0)$, since we take the derivative of the first variable twice,
of the second variable once and never of the third variable.
So the expression is thus now:
\mrmvspace
\begin{align*}
\frac{\partial_{112} f(y) (x_1 - y_1)^2 (x_2 - y_2)^1 (x_3 y_3)^0}{2!1!0!} = \frac{\partial_{112} f(y) (x_1 - y_1)^2 (x_2 - y_2)}{2}
\end{align*}
\drmvspace

View File

@@ -1,2 +1,25 @@
\newsectionNoPB \newsection
\subsection{Critical points} \subsection{Critical points}
\stepLabelNumber{all}
\compactdef{Critical Point} For $f: X \rightarrow \R^n$ differentiable, $x_0 \in X$ is called a \bi{critical point} of $f$ if $\nabla f(x_0) = 0$
\shortremark As in 1 dimensional case, check edges of the interval for the critical point.\\
%
To determine the kind of critical point, we need to determine if $H_f(x_0)$ is definite:
\drmvspace
\begin{multicols}{3}
\begin{itemize}[noitemsep]
\item positive definite $\Rightarrow x_0$ local max
\item negative definite $\Rightarrow x_0$ local min
\item indefinite $\Rightarrow x_0$ point of inflection
\end{itemize}
\end{multicols}
\dhrmvspace
\setLabelNumber{all}{6}
\compactdef{Non-degenerate critical point} If $\det(H_f(x_0)) \neq 0$ (if $H_f(x_0)$ is semi-definite, then $\det(H_f(x_0)) = 0$, thus degenerate)\\
To figure out if a matrix is definite, we can compute the eigenvalues. $A$ is positive (negative) definite, if and only if all eigenvalues are greater (lower) than $0$.
$A$ is indefinite if and only if it has both positive and negative eigenvalues.
$A$ is positive (negative) semi-definite if and only if all eigenvalues are greater (lower) or equal to $0$.
(Compute Eigenvalues using $\det(A - \lambda I) = 0$)
For $2 \times 2$ matrices, we can use the following scheme: