3426 lines
168 KiB
TypeScript
3426 lines
168 KiB
TypeScript
/// <reference path="./nm-1.0.d.ts" />
|
||
/// <reference path="./gio-2.0.d.ts" />
|
||
/// <reference path="./gobject-2.0.d.ts" />
|
||
/// <reference path="./glib-2.0.d.ts" />
|
||
/// <reference path="./gmodule-2.0.d.ts" />
|
||
/// <reference path="./gtk-3.0.d.ts" />
|
||
/// <reference path="./xlib-2.0.d.ts" />
|
||
/// <reference path="./gdk-3.0.d.ts" />
|
||
/// <reference path="./cairo-1.0.d.ts" />
|
||
/// <reference path="./cairo.d.ts" />
|
||
/// <reference path="./pango-1.0.d.ts" />
|
||
/// <reference path="./harfbuzz-0.0.d.ts" />
|
||
/// <reference path="./freetype2-2.0.d.ts" />
|
||
/// <reference path="./gdkpixbuf-2.0.d.ts" />
|
||
/// <reference path="./atk-1.0.d.ts" />
|
||
|
||
/**
|
||
* Type Definitions for Gjs (https://gjs.guide/)
|
||
*
|
||
* These type definitions are automatically generated, do not edit them by hand.
|
||
* If you found a bug fix it in `ts-for-gir` or create a bug report on https://github.com/gjsify/ts-for-gir
|
||
*
|
||
* The based EJS template file is used for the generated .d.ts file of each GIR module like Gtk-4.0, GObject-2.0, ...
|
||
*/
|
||
|
||
declare module 'gi://NMA?version=1.0' {
|
||
// Module dependencies
|
||
import type NM from 'gi://NM?version=1.0';
|
||
import type Gio from 'gi://Gio?version=2.0';
|
||
import type GObject from 'gi://GObject?version=2.0';
|
||
import type GLib from 'gi://GLib?version=2.0';
|
||
import type GModule from 'gi://GModule?version=2.0';
|
||
import type Gtk from 'gi://Gtk?version=3.0';
|
||
import type xlib from 'gi://xlib?version=2.0';
|
||
import type Gdk from 'gi://Gdk?version=3.0';
|
||
import type cairo from 'cairo';
|
||
import type Pango from 'gi://Pango?version=1.0';
|
||
import type HarfBuzz from 'gi://HarfBuzz?version=0.0';
|
||
import type freetype2 from 'gi://freetype2?version=2.0';
|
||
import type GdkPixbuf from 'gi://GdkPixbuf?version=2.0';
|
||
import type Atk from 'gi://Atk?version=1.0';
|
||
|
||
export namespace NMA {
|
||
/**
|
||
* NMA-1.0
|
||
*/
|
||
|
||
/**
|
||
* Flags that controls what is the certificate chooser button able to pick.
|
||
* Currently only local files are supported, but might be extended to use URIs,
|
||
* such as PKCS\#11 certificate URIs in future as well.
|
||
*/
|
||
|
||
/**
|
||
* Flags that controls what is the certificate chooser button able to pick.
|
||
* Currently only local files are supported, but might be extended to use URIs,
|
||
* such as PKCS\#11 certificate URIs in future as well.
|
||
*/
|
||
export namespace CertChooserFlags {
|
||
export const $gtype: GObject.GType<CertChooserFlags>;
|
||
}
|
||
|
||
enum CertChooserFlags {
|
||
/**
|
||
* No flags
|
||
*/
|
||
NONE,
|
||
/**
|
||
* Only pick a certificate, not a key
|
||
*/
|
||
CERT,
|
||
/**
|
||
* Hide all controls but the secrets entries
|
||
*/
|
||
PASSWORDS,
|
||
/**
|
||
* Ensure the chooser only selects regular PEM files
|
||
*/
|
||
PEM,
|
||
/**
|
||
* Do not show password entries (Since: 1.8.34)
|
||
*/
|
||
NO_PASSWORDS,
|
||
}
|
||
|
||
export namespace MobileFamily {
|
||
export const $gtype: GObject.GType<MobileFamily>;
|
||
}
|
||
|
||
enum MobileFamily {
|
||
/**
|
||
* Unknown or invalid network access method
|
||
*/
|
||
UNKNOWN,
|
||
/**
|
||
* 3rd Generation Partnership Project (3GPP) network
|
||
*/
|
||
'3GPP',
|
||
/**
|
||
* A CDMA network
|
||
*/
|
||
CDMA,
|
||
}
|
||
const BAR_CODE_SIZE: string;
|
||
const BAR_CODE_TEXT: string;
|
||
const BAR_CODE_WIDGET_CONNECTION: string;
|
||
/**
|
||
* Evaluates to the major version number of NetworkManager which this source
|
||
* is compiled against.
|
||
*/
|
||
const MAJOR_VERSION: number;
|
||
/**
|
||
* Evaluates to the micro version number of NetworkManager which this source
|
||
* compiled against.
|
||
*/
|
||
const MICRO_VERSION: number;
|
||
/**
|
||
* Evaluates to the minor version number of NetworkManager which this source
|
||
* is compiled against.
|
||
*/
|
||
const MINOR_VERSION: number;
|
||
/**
|
||
* Splits the input MCCMNC string into separate MCC and MNC strings.
|
||
* @param mccmnc input MCCMNC string.
|
||
* @returns %TRUE if correctly split and @mcc and @mnc are set; %FALSE otherwise.
|
||
*/
|
||
function mobile_providers_split_3gpp_mcc_mnc(mccmnc: string): [boolean, string, string];
|
||
/**
|
||
* Returns secret flags corresponding to the selected password storage menu
|
||
* in the attached icon
|
||
* @param passwd_entry password #GtkEntry which the password icon/menu is attached to
|
||
* @returns secret flags corresponding to the active item in password menu
|
||
*/
|
||
function utils_menu_to_secret_flags(passwd_entry: Gtk.Widget): NM.SettingSecretFlags;
|
||
/**
|
||
* Adds a secondary icon and creates a popup menu for password entry.
|
||
* The active menu item is set up according to initial_flags, or
|
||
* from `setting/``password_flags_name` (if they are not NULL).
|
||
* If the `setting/``password_flags_name` are not NULL, secret flags will
|
||
* be automatically updated in the setting when menu is changed.
|
||
* @param passwd_entry password #GtkEntry which the icon is attached to
|
||
* @param initial_flags initial secret flags to setup password menu from
|
||
* @param setting #NMSetting containing the password, or NULL
|
||
* @param password_flags_name name of the secret flags (like psk-flags), or NULL
|
||
* @param with_not_required whether to include "Not required" menu item
|
||
* @param ask_mode %TRUE if the entry is shown in ASK mode. That means, while prompting for a password, contrary to being inside the editor mode. If %TRUE, the entry should be sensivive on selected "always-ask" icon (this is e.f. for nm-applet asking for password), otherwise not. If %FALSE, it shall not be possible to select a different storage, because we only prompt for a password, we cannot change the password location.
|
||
*/
|
||
function utils_setup_password_storage(
|
||
passwd_entry: Gtk.Widget,
|
||
initial_flags: NM.SettingSecretFlags | null,
|
||
setting: NM.Setting,
|
||
password_flags_name: string,
|
||
with_not_required: boolean,
|
||
ask_mode: boolean,
|
||
): void;
|
||
/**
|
||
* Updates secret flags in the password storage popup menu and also
|
||
* in the `setting` (if `setting` and `password_flags_name` are not NULL).
|
||
* @param passwd_entry #GtkEntry with the password
|
||
* @param secret_flags secret flags to set
|
||
* @param setting #NMSetting containing the password, or NULL
|
||
* @param password_flags_name name of the secret flags (like psk-flags), or NULL
|
||
*/
|
||
function utils_update_password_storage(
|
||
passwd_entry: Gtk.Widget,
|
||
secret_flags: NM.SettingSecretFlags | null,
|
||
setting: NM.Setting,
|
||
password_flags_name: string,
|
||
): void;
|
||
interface MobileWizardCallback {
|
||
(self: MobileWizard, canceled: boolean, method: MobileWizardAccessMethod): void;
|
||
}
|
||
namespace BarCode {
|
||
// Constructor properties interface
|
||
|
||
interface ConstructorProps extends GObject.Object.ConstructorProps {
|
||
size: number;
|
||
text: string;
|
||
}
|
||
}
|
||
|
||
class BarCode extends GObject.Object {
|
||
static $gtype: GObject.GType<BarCode>;
|
||
|
||
// Properties
|
||
|
||
get size(): number;
|
||
set text(val: string);
|
||
|
||
// Constructors
|
||
|
||
constructor(properties?: Partial<BarCode.ConstructorProps>, ...args: any[]);
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
static ['new'](text: string): BarCode;
|
||
|
||
// Methods
|
||
|
||
/**
|
||
* Draws the QR code onto the given context.
|
||
* @param cr cairo context
|
||
*/
|
||
draw(cr: cairo.Context): void;
|
||
get_size(): number;
|
||
/**
|
||
* Regenerates the QR code for a different text.
|
||
* @param text new bar code text
|
||
*/
|
||
set_text(text: string): void;
|
||
}
|
||
|
||
namespace BarCodeWidget {
|
||
// Constructor properties interface
|
||
|
||
interface ConstructorProps
|
||
extends Gtk.Box.ConstructorProps,
|
||
Atk.ImplementorIface.ConstructorProps,
|
||
Gtk.Buildable.ConstructorProps,
|
||
Gtk.Orientable.ConstructorProps {
|
||
connection: NM.Connection;
|
||
}
|
||
}
|
||
|
||
class BarCodeWidget extends Gtk.Box implements Atk.ImplementorIface, Gtk.Buildable, Gtk.Orientable {
|
||
static $gtype: GObject.GType<BarCodeWidget>;
|
||
|
||
// Properties
|
||
|
||
get connection(): NM.Connection;
|
||
set connection(val: NM.Connection);
|
||
|
||
// Constructors
|
||
|
||
constructor(properties?: Partial<BarCodeWidget.ConstructorProps>, ...args: any[]);
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
// Inherited properties
|
||
/**
|
||
* The orientation of the orientable.
|
||
*/
|
||
get orientation(): Gtk.Orientation;
|
||
set orientation(val: Gtk.Orientation);
|
||
|
||
// Inherited methods
|
||
/**
|
||
* Retrieves the orientation of the `orientable`.
|
||
* @returns the orientation of the @orientable.
|
||
*/
|
||
get_orientation(): Gtk.Orientation;
|
||
/**
|
||
* Sets the orientation of the `orientable`.
|
||
* @param orientation the orientable’s new orientation.
|
||
*/
|
||
set_orientation(orientation: Gtk.Orientation | null): void;
|
||
/**
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target`.
|
||
*
|
||
* Whenever the `source_property` is changed the `target_property` is
|
||
* updated using the same value. For instance:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
||
* ```
|
||
*
|
||
*
|
||
* Will result in the "sensitive" property of the widget #GObject instance to be
|
||
* updated with the same value of the "active" property of the action #GObject
|
||
* instance.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well.
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. To remove the binding without affecting the
|
||
* `source` and the `target` you can just call g_object_unref() on the returned
|
||
* #GBinding instance.
|
||
*
|
||
* Removing the binding by calling g_object_unref() on it must only be done if
|
||
* the binding, `source` and `target` are only used from a single thread and it
|
||
* is clear that both `source` and `target` outlive the binding. Especially it
|
||
* is not safe to rely on this if the binding, `source` or `target` can be
|
||
* finalized from different threads. Keep another reference to the binding and
|
||
* use g_binding_unbind() instead to be on the safe side.
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
): GObject.Binding;
|
||
/**
|
||
* Complete version of g_object_bind_property().
|
||
*
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target,` allowing you to set the transformation functions to be used by
|
||
* the binding.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well. The `transform_from` function is only used in case
|
||
* of bidirectional bindings, otherwise it will be ignored
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. This will release the reference that is
|
||
* being held on the #GBinding instance; if you want to hold on to the
|
||
* #GBinding instance, you will need to hold a reference to it.
|
||
*
|
||
* To remove the binding, call g_binding_unbind().
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
*
|
||
* The same `user_data` parameter will be used for both `transform_to`
|
||
* and `transform_from` transformation functions; the `notify` function will
|
||
* be called once, when the binding is removed. If you need different data
|
||
* for each transformation function, please use
|
||
* g_object_bind_property_with_closures() instead.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
||
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
||
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property_full(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
transform_to?: GObject.BindingTransformFunc | null,
|
||
transform_from?: GObject.BindingTransformFunc | null,
|
||
notify?: GLib.DestroyNotify | null,
|
||
): GObject.Binding;
|
||
// Conflicted with GObject.Object.bind_property_full
|
||
bind_property_full(...args: never[]): any;
|
||
/**
|
||
* This function is intended for #GObject implementations to re-enforce
|
||
* a [floating][floating-ref] object reference. Doing this is seldom
|
||
* required: all #GInitiallyUnowneds are created with a floating reference
|
||
* which usually just needs to be sunken by calling g_object_ref_sink().
|
||
*/
|
||
force_floating(): void;
|
||
/**
|
||
* Increases the freeze count on `object`. If the freeze count is
|
||
* non-zero, the emission of "notify" signals on `object` is
|
||
* stopped. The signals are queued until the freeze count is decreased
|
||
* to zero. Duplicate notifications are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property modified while the
|
||
* object is frozen.
|
||
*
|
||
* This is necessary for accessors that modify multiple properties to prevent
|
||
* premature notification while the object is still being modified.
|
||
*/
|
||
freeze_notify(): void;
|
||
/**
|
||
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
||
* @param key name of the key for that association
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
get_data(key: string): any | null;
|
||
/**
|
||
* Gets a property of an object.
|
||
*
|
||
* The value can be:
|
||
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
||
* - a GObject.Value initialized with the expected type of the property
|
||
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
||
*
|
||
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
||
*
|
||
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
||
* @param property_name The name of the property to get
|
||
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
||
*/
|
||
get_property(property_name: string, value: GObject.Value | any): any;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
get_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Gets `n_properties` properties for an `object`.
|
||
* Obtained properties will be set to `values`. All properties must be valid.
|
||
* Warnings will be emitted and undefined behaviour may result if invalid
|
||
* properties are passed in.
|
||
* @param names the names of each property to get
|
||
* @param values the values of each property to get
|
||
*/
|
||
getv(names: string[], values: (GObject.Value | any)[]): void;
|
||
/**
|
||
* Checks whether `object` has a [floating][floating-ref] reference.
|
||
* @returns %TRUE if @object has a floating reference
|
||
*/
|
||
is_floating(): boolean;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param property_name the name of a property installed on the class of @object.
|
||
*/
|
||
notify(property_name: string): void;
|
||
/**
|
||
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
||
*
|
||
* This function omits the property name lookup, hence it is faster than
|
||
* g_object_notify().
|
||
*
|
||
* One way to avoid using g_object_notify() from within the
|
||
* class that registered the properties, and using g_object_notify_by_pspec()
|
||
* instead, is to store the GParamSpec used with
|
||
* g_object_class_install_property() inside a static array, e.g.:
|
||
*
|
||
*
|
||
* ```c
|
||
* typedef enum
|
||
* {
|
||
* PROP_FOO = 1,
|
||
* PROP_LAST
|
||
* } MyObjectProperty;
|
||
*
|
||
* static GParamSpec *properties[PROP_LAST];
|
||
*
|
||
* static void
|
||
* my_object_class_init (MyObjectClass *klass)
|
||
* {
|
||
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
||
* 0, 100,
|
||
* 50,
|
||
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
||
* g_object_class_install_property (gobject_class,
|
||
* PROP_FOO,
|
||
* properties[PROP_FOO]);
|
||
* }
|
||
* ```
|
||
*
|
||
*
|
||
* and then notify a change on the "foo" property with:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
||
* ```
|
||
*
|
||
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
||
*/
|
||
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Increases the reference count of `object`.
|
||
*
|
||
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
||
* of `object` will be propagated to the return type (using the GCC typeof()
|
||
* extension), so any casting the caller needs to do on the return type must be
|
||
* explicit.
|
||
* @returns the same @object
|
||
*/
|
||
ref(): GObject.Object;
|
||
/**
|
||
* Increase the reference count of `object,` and possibly remove the
|
||
* [floating][floating-ref] reference, if `object` has a floating reference.
|
||
*
|
||
* In other words, if the object is floating, then this call "assumes
|
||
* ownership" of the floating reference, converting it to a normal
|
||
* reference by clearing the floating flag while leaving the reference
|
||
* count unchanged. If the object is not floating, then this call
|
||
* adds a new normal reference increasing the reference count by one.
|
||
*
|
||
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
||
* under the same conditions as for g_object_ref().
|
||
* @returns @object
|
||
*/
|
||
ref_sink(): GObject.Object;
|
||
/**
|
||
* Releases all references to other objects. This can be used to break
|
||
* reference cycles.
|
||
*
|
||
* This function should only be called from object system implementations.
|
||
*/
|
||
run_dispose(): void;
|
||
/**
|
||
* Each object carries around a table of associations from
|
||
* strings to pointers. This function lets you set an association.
|
||
*
|
||
* If the object already had an association with that name,
|
||
* the old association will be destroyed.
|
||
*
|
||
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
||
* This means a copy of `key` is kept permanently (even after `object` has been
|
||
* finalized) — so it is recommended to only use a small, bounded set of values
|
||
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
||
* @param key name of the key
|
||
* @param data data to associate with that key
|
||
*/
|
||
set_data(key: string, data?: any | null): void;
|
||
/**
|
||
* Sets a property on an object.
|
||
* @param property_name The name of the property to set
|
||
* @param value The value to set the property to
|
||
*/
|
||
set_property(property_name: string, value: GObject.Value | any): void;
|
||
/**
|
||
* Remove a specified datum from the object's data associations,
|
||
* without invoking the association's destroy handler.
|
||
* @param key name of the key
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
steal_data(key: string): any | null;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata() and removes the `data` from object
|
||
* without invoking its destroy() function (if any was
|
||
* set).
|
||
* Usually, calling this function is only required to update
|
||
* user data pointers with a destroy notifier, for example:
|
||
*
|
||
* ```c
|
||
* void
|
||
* object_add_to_user_list (GObject *object,
|
||
* const gchar *new_string)
|
||
* {
|
||
* // the quark, naming the object data
|
||
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
||
* // retrieve the old string list
|
||
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
||
*
|
||
* // prepend new string
|
||
* list = g_list_prepend (list, g_strdup (new_string));
|
||
* // this changed 'list', so we need to set it again
|
||
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
||
* }
|
||
* static void
|
||
* free_string_list (gpointer data)
|
||
* {
|
||
* GList *node, *list = data;
|
||
*
|
||
* for (node = list; node; node = node->next)
|
||
* g_free (node->data);
|
||
* g_list_free (list);
|
||
* }
|
||
* ```
|
||
*
|
||
* Using g_object_get_qdata() in the above example, instead of
|
||
* g_object_steal_qdata() would have left the destroy function set,
|
||
* and thus the partial string list would have been freed upon
|
||
* g_object_set_qdata_full().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
steal_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Reverts the effect of a previous call to
|
||
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
||
* and when it reaches zero, queued "notify" signals are emitted.
|
||
*
|
||
* Duplicate notifications for each property are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property, in the reverse order
|
||
* in which they have been queued.
|
||
*
|
||
* It is an error to call this function when the freeze count is zero.
|
||
*/
|
||
thaw_notify(): void;
|
||
/**
|
||
* Decreases the reference count of `object`. When its reference count
|
||
* drops to 0, the object is finalized (i.e. its memory is freed).
|
||
*
|
||
* If the pointer to the #GObject may be reused in future (for example, if it is
|
||
* an instance variable of another object), it is recommended to clear the
|
||
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
||
* invalid #GObject instance. Use g_clear_object() for this.
|
||
*/
|
||
unref(): void;
|
||
/**
|
||
* This function essentially limits the life time of the `closure` to
|
||
* the life time of the object. That is, when the object is finalized,
|
||
* the `closure` is invalidated by calling g_closure_invalidate() on
|
||
* it, in order to prevent invocations of the closure with a finalized
|
||
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
||
* added as marshal guards to the `closure,` to ensure that an extra
|
||
* reference count is held on `object` during invocation of the
|
||
* `closure`. Usually, this function will be called on closures that
|
||
* use this `object` as closure data.
|
||
* @param closure #GClosure to watch
|
||
*/
|
||
watch_closure(closure: GObject.Closure): void;
|
||
/**
|
||
* the `constructed` function is called by g_object_new() as the
|
||
* final step of the object creation process. At the point of the call, all
|
||
* construction properties have been set on the object. The purpose of this
|
||
* call is to allow for object initialisation steps that can only be performed
|
||
* after construction properties have been set. `constructed` implementors
|
||
* should chain up to the `constructed` call of their parent class to allow it
|
||
* to complete its initialisation.
|
||
*/
|
||
vfunc_constructed(): void;
|
||
/**
|
||
* emits property change notification for a bunch
|
||
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
||
* needed.
|
||
* @param n_pspecs
|
||
* @param pspecs
|
||
*/
|
||
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
||
/**
|
||
* the `dispose` function is supposed to drop all references to other
|
||
* objects, but keep the instance otherwise intact, so that client method
|
||
* invocations still work. It may be run multiple times (due to reference
|
||
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
||
* of the parent class.
|
||
*/
|
||
vfunc_dispose(): void;
|
||
/**
|
||
* instance finalization function, should finish the finalization of
|
||
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
||
* parent class.
|
||
*/
|
||
vfunc_finalize(): void;
|
||
/**
|
||
* the generic getter for all properties of this type. Should be
|
||
* overridden for every type with properties.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param pspec
|
||
*/
|
||
vfunc_notify(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* the generic setter for all properties of this type. Should be
|
||
* overridden for every type with properties. If implementations of
|
||
* `set_property` don't emit property change notification explicitly, this will
|
||
* be done implicitly by the type system. However, if the notify signal is
|
||
* emitted explicitly, the type system will not emit it a second time.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
||
* @param id Handler ID of the handler to be disconnected
|
||
*/
|
||
disconnect(id: number): void;
|
||
/**
|
||
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
||
* @param properties Object containing the properties to set
|
||
*/
|
||
set(properties: { [key: string]: any }): void;
|
||
/**
|
||
* Blocks a handler of an instance so it will not be called during any signal emissions
|
||
* @param id Handler ID of the handler to be blocked
|
||
*/
|
||
block_signal_handler(id: number): void;
|
||
/**
|
||
* Unblocks a handler so it will be called again during any signal emissions
|
||
* @param id Handler ID of the handler to be unblocked
|
||
*/
|
||
unblock_signal_handler(id: number): void;
|
||
/**
|
||
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
||
* @param detailedName Name of the signal to stop emission of
|
||
*/
|
||
stop_emission_by_name(detailedName: string): void;
|
||
}
|
||
|
||
namespace CertChooser {
|
||
// Signal callback interfaces
|
||
|
||
interface CertPasswordValidate {
|
||
(): GLib.Error;
|
||
}
|
||
|
||
interface CertValidate {
|
||
(): GLib.Error;
|
||
}
|
||
|
||
interface Changed {
|
||
(): void;
|
||
}
|
||
|
||
interface KeyPasswordValidate {
|
||
(): GLib.Error;
|
||
}
|
||
|
||
interface KeyValidate {
|
||
(): GLib.Error;
|
||
}
|
||
|
||
// Constructor properties interface
|
||
|
||
interface ConstructorProps
|
||
extends Gtk.Grid.ConstructorProps,
|
||
Atk.ImplementorIface.ConstructorProps,
|
||
Gtk.Buildable.ConstructorProps,
|
||
Gtk.Orientable.ConstructorProps {
|
||
flags: number;
|
||
title: string;
|
||
}
|
||
}
|
||
|
||
class CertChooser extends Gtk.Grid implements Atk.ImplementorIface, Gtk.Buildable, Gtk.Orientable {
|
||
static $gtype: GObject.GType<CertChooser>;
|
||
|
||
// Properties
|
||
|
||
set flags(val: number);
|
||
set title(val: string);
|
||
|
||
// Constructors
|
||
|
||
constructor(properties?: Partial<CertChooser.ConstructorProps>, ...args: any[]);
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
static ['new'](title: string, flags: CertChooserFlags): CertChooser;
|
||
// Conflicted with Gtk.Grid.new
|
||
|
||
static ['new'](...args: never[]): any;
|
||
|
||
// Signals
|
||
|
||
connect(id: string, callback: (...args: any[]) => any): number;
|
||
connect_after(id: string, callback: (...args: any[]) => any): number;
|
||
emit(id: string, ...args: any[]): void;
|
||
connect(signal: 'cert-password-validate', callback: (_source: this) => GLib.Error): number;
|
||
connect_after(signal: 'cert-password-validate', callback: (_source: this) => GLib.Error): number;
|
||
emit(signal: 'cert-password-validate'): void;
|
||
connect(signal: 'cert-validate', callback: (_source: this) => GLib.Error): number;
|
||
connect_after(signal: 'cert-validate', callback: (_source: this) => GLib.Error): number;
|
||
emit(signal: 'cert-validate'): void;
|
||
connect(signal: 'changed', callback: (_source: this) => void): number;
|
||
connect_after(signal: 'changed', callback: (_source: this) => void): number;
|
||
emit(signal: 'changed'): void;
|
||
connect(signal: 'key-password-validate', callback: (_source: this) => GLib.Error): number;
|
||
connect_after(signal: 'key-password-validate', callback: (_source: this) => GLib.Error): number;
|
||
emit(signal: 'key-password-validate'): void;
|
||
connect(signal: 'key-validate', callback: (_source: this) => GLib.Error): number;
|
||
connect_after(signal: 'key-validate', callback: (_source: this) => GLib.Error): number;
|
||
emit(signal: 'key-validate'): void;
|
||
|
||
// Methods
|
||
|
||
/**
|
||
* Adds the labels to the specified size group so that they are aligned
|
||
* nicely with other entries in a form.
|
||
*
|
||
* It is expected that the NMACertChooser is a GtkGrid with two columns
|
||
* with the labels in the first one.
|
||
* @param group a size group
|
||
*/
|
||
add_to_size_group(group: Gtk.SizeGroup): void;
|
||
/**
|
||
* Gets the real certificate location from the chooser button along with the scheme.
|
||
* @returns the certificate path
|
||
*/
|
||
get_cert(): [string | null, NM.Setting8021xCKScheme];
|
||
/**
|
||
* Obtains the password or a PIN that was be required to access the certificate.
|
||
* @returns the certificate PIN or password
|
||
*/
|
||
get_cert_password(): string;
|
||
/**
|
||
* Returns secret flags corresponding to the certificate password
|
||
* if one is present. The chooser would typically call into
|
||
* nma_utils_menu_to_secret_flags() for the certificate password
|
||
* entry.
|
||
* @returns secret flags corresponding to the certificate password
|
||
*/
|
||
get_cert_password_flags(): NM.SettingSecretFlags;
|
||
/**
|
||
* Gets the real certificate URI from the chooser button along with the scheme.
|
||
* @returns the certificate URI
|
||
*/
|
||
get_cert_uri(): string | null;
|
||
/**
|
||
* Gets the real key location from the chooser button along with the scheme.
|
||
* @returns the key path
|
||
*/
|
||
get_key(): [string | null, NM.Setting8021xCKScheme];
|
||
/**
|
||
* Obtains the password or a PIN that was be required to access the key.
|
||
* @returns the key PIN or password
|
||
*/
|
||
get_key_password(): string;
|
||
/**
|
||
* Returns secret flags corresponding to the key password
|
||
* if one is present. The chooser would typically call into
|
||
* nma_utils_menu_to_secret_flags() for the key password
|
||
* entry.
|
||
* @returns secret flags corresponding to the key password
|
||
*/
|
||
get_key_password_flags(): NM.SettingSecretFlags;
|
||
/**
|
||
* Gets the real key URI from the chooser button along with the scheme.
|
||
* @returns the key URI
|
||
*/
|
||
get_key_uri(): string | null;
|
||
/**
|
||
* Sets the certificate location for the chooser button.
|
||
* @param value the path or URI of a certificate
|
||
* @param scheme the scheme of the certificate path
|
||
*/
|
||
set_cert(value: string, scheme: NM.Setting8021xCKScheme | null): void;
|
||
/**
|
||
* Sets the password or a PIN that might be required to access the certificate.
|
||
* @param password the certificate PIN or password
|
||
*/
|
||
set_cert_password(password: string): void;
|
||
/**
|
||
* Sets the certificate URI for the chooser button.
|
||
* @param uri the path or URI of a certificate
|
||
*/
|
||
set_cert_uri(uri: string): void;
|
||
/**
|
||
* Sets the key location for the chooser button.
|
||
* @param value the path or URI of a key
|
||
* @param scheme the scheme of the key path
|
||
*/
|
||
set_key(value: string, scheme: NM.Setting8021xCKScheme | null): void;
|
||
/**
|
||
* Sets the password or a PIN that might be required to access the key.
|
||
* @param password the key PIN or password
|
||
*/
|
||
set_key_password(password: string): void;
|
||
/**
|
||
* Sets the key URI for the chooser button.
|
||
* @param uri the URI of a key
|
||
*/
|
||
set_key_uri(uri: string): void;
|
||
/**
|
||
* This method basically calls nma_utils_setup_password_storage()
|
||
* on the certificate password entry, in case one is present.
|
||
* @param initial_flags initial secret flags to setup password menu from
|
||
* @param setting #NMSetting containing the password, or NULL
|
||
* @param password_flags_name name of the secret flags (like psk-flags), or NULL
|
||
* @param with_not_required whether to include "Not required" menu item
|
||
* @param ask_mode %TRUE if the entry is shown in ASK mode
|
||
*/
|
||
setup_cert_password_storage(
|
||
initial_flags: NM.SettingSecretFlags | null,
|
||
setting: NM.Setting,
|
||
password_flags_name: string,
|
||
with_not_required: boolean,
|
||
ask_mode: boolean,
|
||
): void;
|
||
/**
|
||
* This method basically calls nma_utils_setup_password_storage()
|
||
* on the key password entry, in case one is present.
|
||
* @param initial_flags initial secret flags to setup password menu from
|
||
* @param setting #NMSetting containing the password, or NULL
|
||
* @param password_flags_name name of the secret flags (like psk-flags), or NULL
|
||
* @param with_not_required whether to include "Not required" menu item
|
||
* @param ask_mode %TRUE if the entry is shown in ASK mode
|
||
*/
|
||
setup_key_password_storage(
|
||
initial_flags: NM.SettingSecretFlags | null,
|
||
setting: NM.Setting,
|
||
password_flags_name: string,
|
||
with_not_required: boolean,
|
||
ask_mode: boolean,
|
||
): void;
|
||
/**
|
||
* This method basically calls nma_utils_update_password_storage()
|
||
* on the certificate password entry, in case one is present.
|
||
* @param secret_flags secret flags to set
|
||
* @param setting #NMSetting containing the password, or NULL
|
||
* @param password_flags_name name of the secret flags (like psk-flags), or NULL
|
||
*/
|
||
update_cert_password_storage(
|
||
secret_flags: NM.SettingSecretFlags | null,
|
||
setting: NM.Setting,
|
||
password_flags_name: string,
|
||
): void;
|
||
/**
|
||
* This method basically calls nma_utils_update_password_storage()
|
||
* on the key password entry, in case one is present.
|
||
* @param secret_flags secret flags to set
|
||
* @param setting #NMSetting containing the password, or NULL
|
||
* @param password_flags_name name of the secret flags (like psk-flags), or NULL
|
||
*/
|
||
update_key_password_storage(
|
||
secret_flags: NM.SettingSecretFlags | null,
|
||
setting: NM.Setting,
|
||
password_flags_name: string,
|
||
): void;
|
||
/**
|
||
* Validates whether the chosen values make sense. The users can do further
|
||
* validation by subscribing to the "*-changed" signals and returning an
|
||
* error themselves.
|
||
* @returns %TRUE if validation passes, %FALSE otherwise
|
||
*/
|
||
validate(): boolean;
|
||
|
||
// Inherited properties
|
||
/**
|
||
* The orientation of the orientable.
|
||
*/
|
||
get orientation(): Gtk.Orientation;
|
||
set orientation(val: Gtk.Orientation);
|
||
|
||
// Inherited methods
|
||
/**
|
||
* Retrieves the orientation of the `orientable`.
|
||
* @returns the orientation of the @orientable.
|
||
*/
|
||
get_orientation(): Gtk.Orientation;
|
||
/**
|
||
* Sets the orientation of the `orientable`.
|
||
* @param orientation the orientable’s new orientation.
|
||
*/
|
||
set_orientation(orientation: Gtk.Orientation | null): void;
|
||
/**
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target`.
|
||
*
|
||
* Whenever the `source_property` is changed the `target_property` is
|
||
* updated using the same value. For instance:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
||
* ```
|
||
*
|
||
*
|
||
* Will result in the "sensitive" property of the widget #GObject instance to be
|
||
* updated with the same value of the "active" property of the action #GObject
|
||
* instance.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well.
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. To remove the binding without affecting the
|
||
* `source` and the `target` you can just call g_object_unref() on the returned
|
||
* #GBinding instance.
|
||
*
|
||
* Removing the binding by calling g_object_unref() on it must only be done if
|
||
* the binding, `source` and `target` are only used from a single thread and it
|
||
* is clear that both `source` and `target` outlive the binding. Especially it
|
||
* is not safe to rely on this if the binding, `source` or `target` can be
|
||
* finalized from different threads. Keep another reference to the binding and
|
||
* use g_binding_unbind() instead to be on the safe side.
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
): GObject.Binding;
|
||
/**
|
||
* Complete version of g_object_bind_property().
|
||
*
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target,` allowing you to set the transformation functions to be used by
|
||
* the binding.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well. The `transform_from` function is only used in case
|
||
* of bidirectional bindings, otherwise it will be ignored
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. This will release the reference that is
|
||
* being held on the #GBinding instance; if you want to hold on to the
|
||
* #GBinding instance, you will need to hold a reference to it.
|
||
*
|
||
* To remove the binding, call g_binding_unbind().
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
*
|
||
* The same `user_data` parameter will be used for both `transform_to`
|
||
* and `transform_from` transformation functions; the `notify` function will
|
||
* be called once, when the binding is removed. If you need different data
|
||
* for each transformation function, please use
|
||
* g_object_bind_property_with_closures() instead.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
||
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
||
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property_full(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
transform_to?: GObject.BindingTransformFunc | null,
|
||
transform_from?: GObject.BindingTransformFunc | null,
|
||
notify?: GLib.DestroyNotify | null,
|
||
): GObject.Binding;
|
||
// Conflicted with GObject.Object.bind_property_full
|
||
bind_property_full(...args: never[]): any;
|
||
/**
|
||
* This function is intended for #GObject implementations to re-enforce
|
||
* a [floating][floating-ref] object reference. Doing this is seldom
|
||
* required: all #GInitiallyUnowneds are created with a floating reference
|
||
* which usually just needs to be sunken by calling g_object_ref_sink().
|
||
*/
|
||
force_floating(): void;
|
||
/**
|
||
* Increases the freeze count on `object`. If the freeze count is
|
||
* non-zero, the emission of "notify" signals on `object` is
|
||
* stopped. The signals are queued until the freeze count is decreased
|
||
* to zero. Duplicate notifications are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property modified while the
|
||
* object is frozen.
|
||
*
|
||
* This is necessary for accessors that modify multiple properties to prevent
|
||
* premature notification while the object is still being modified.
|
||
*/
|
||
freeze_notify(): void;
|
||
/**
|
||
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
||
* @param key name of the key for that association
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
get_data(key: string): any | null;
|
||
/**
|
||
* Gets a property of an object.
|
||
*
|
||
* The value can be:
|
||
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
||
* - a GObject.Value initialized with the expected type of the property
|
||
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
||
*
|
||
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
||
*
|
||
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
||
* @param property_name The name of the property to get
|
||
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
||
*/
|
||
get_property(property_name: string, value: GObject.Value | any): any;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
get_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Gets `n_properties` properties for an `object`.
|
||
* Obtained properties will be set to `values`. All properties must be valid.
|
||
* Warnings will be emitted and undefined behaviour may result if invalid
|
||
* properties are passed in.
|
||
* @param names the names of each property to get
|
||
* @param values the values of each property to get
|
||
*/
|
||
getv(names: string[], values: (GObject.Value | any)[]): void;
|
||
/**
|
||
* Checks whether `object` has a [floating][floating-ref] reference.
|
||
* @returns %TRUE if @object has a floating reference
|
||
*/
|
||
is_floating(): boolean;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param property_name the name of a property installed on the class of @object.
|
||
*/
|
||
notify(property_name: string): void;
|
||
/**
|
||
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
||
*
|
||
* This function omits the property name lookup, hence it is faster than
|
||
* g_object_notify().
|
||
*
|
||
* One way to avoid using g_object_notify() from within the
|
||
* class that registered the properties, and using g_object_notify_by_pspec()
|
||
* instead, is to store the GParamSpec used with
|
||
* g_object_class_install_property() inside a static array, e.g.:
|
||
*
|
||
*
|
||
* ```c
|
||
* typedef enum
|
||
* {
|
||
* PROP_FOO = 1,
|
||
* PROP_LAST
|
||
* } MyObjectProperty;
|
||
*
|
||
* static GParamSpec *properties[PROP_LAST];
|
||
*
|
||
* static void
|
||
* my_object_class_init (MyObjectClass *klass)
|
||
* {
|
||
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
||
* 0, 100,
|
||
* 50,
|
||
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
||
* g_object_class_install_property (gobject_class,
|
||
* PROP_FOO,
|
||
* properties[PROP_FOO]);
|
||
* }
|
||
* ```
|
||
*
|
||
*
|
||
* and then notify a change on the "foo" property with:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
||
* ```
|
||
*
|
||
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
||
*/
|
||
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Increases the reference count of `object`.
|
||
*
|
||
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
||
* of `object` will be propagated to the return type (using the GCC typeof()
|
||
* extension), so any casting the caller needs to do on the return type must be
|
||
* explicit.
|
||
* @returns the same @object
|
||
*/
|
||
ref(): GObject.Object;
|
||
/**
|
||
* Increase the reference count of `object,` and possibly remove the
|
||
* [floating][floating-ref] reference, if `object` has a floating reference.
|
||
*
|
||
* In other words, if the object is floating, then this call "assumes
|
||
* ownership" of the floating reference, converting it to a normal
|
||
* reference by clearing the floating flag while leaving the reference
|
||
* count unchanged. If the object is not floating, then this call
|
||
* adds a new normal reference increasing the reference count by one.
|
||
*
|
||
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
||
* under the same conditions as for g_object_ref().
|
||
* @returns @object
|
||
*/
|
||
ref_sink(): GObject.Object;
|
||
/**
|
||
* Releases all references to other objects. This can be used to break
|
||
* reference cycles.
|
||
*
|
||
* This function should only be called from object system implementations.
|
||
*/
|
||
run_dispose(): void;
|
||
/**
|
||
* Each object carries around a table of associations from
|
||
* strings to pointers. This function lets you set an association.
|
||
*
|
||
* If the object already had an association with that name,
|
||
* the old association will be destroyed.
|
||
*
|
||
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
||
* This means a copy of `key` is kept permanently (even after `object` has been
|
||
* finalized) — so it is recommended to only use a small, bounded set of values
|
||
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
||
* @param key name of the key
|
||
* @param data data to associate with that key
|
||
*/
|
||
set_data(key: string, data?: any | null): void;
|
||
/**
|
||
* Sets a property on an object.
|
||
* @param property_name The name of the property to set
|
||
* @param value The value to set the property to
|
||
*/
|
||
set_property(property_name: string, value: GObject.Value | any): void;
|
||
/**
|
||
* Remove a specified datum from the object's data associations,
|
||
* without invoking the association's destroy handler.
|
||
* @param key name of the key
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
steal_data(key: string): any | null;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata() and removes the `data` from object
|
||
* without invoking its destroy() function (if any was
|
||
* set).
|
||
* Usually, calling this function is only required to update
|
||
* user data pointers with a destroy notifier, for example:
|
||
*
|
||
* ```c
|
||
* void
|
||
* object_add_to_user_list (GObject *object,
|
||
* const gchar *new_string)
|
||
* {
|
||
* // the quark, naming the object data
|
||
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
||
* // retrieve the old string list
|
||
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
||
*
|
||
* // prepend new string
|
||
* list = g_list_prepend (list, g_strdup (new_string));
|
||
* // this changed 'list', so we need to set it again
|
||
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
||
* }
|
||
* static void
|
||
* free_string_list (gpointer data)
|
||
* {
|
||
* GList *node, *list = data;
|
||
*
|
||
* for (node = list; node; node = node->next)
|
||
* g_free (node->data);
|
||
* g_list_free (list);
|
||
* }
|
||
* ```
|
||
*
|
||
* Using g_object_get_qdata() in the above example, instead of
|
||
* g_object_steal_qdata() would have left the destroy function set,
|
||
* and thus the partial string list would have been freed upon
|
||
* g_object_set_qdata_full().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
steal_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Reverts the effect of a previous call to
|
||
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
||
* and when it reaches zero, queued "notify" signals are emitted.
|
||
*
|
||
* Duplicate notifications for each property are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property, in the reverse order
|
||
* in which they have been queued.
|
||
*
|
||
* It is an error to call this function when the freeze count is zero.
|
||
*/
|
||
thaw_notify(): void;
|
||
/**
|
||
* Decreases the reference count of `object`. When its reference count
|
||
* drops to 0, the object is finalized (i.e. its memory is freed).
|
||
*
|
||
* If the pointer to the #GObject may be reused in future (for example, if it is
|
||
* an instance variable of another object), it is recommended to clear the
|
||
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
||
* invalid #GObject instance. Use g_clear_object() for this.
|
||
*/
|
||
unref(): void;
|
||
/**
|
||
* This function essentially limits the life time of the `closure` to
|
||
* the life time of the object. That is, when the object is finalized,
|
||
* the `closure` is invalidated by calling g_closure_invalidate() on
|
||
* it, in order to prevent invocations of the closure with a finalized
|
||
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
||
* added as marshal guards to the `closure,` to ensure that an extra
|
||
* reference count is held on `object` during invocation of the
|
||
* `closure`. Usually, this function will be called on closures that
|
||
* use this `object` as closure data.
|
||
* @param closure #GClosure to watch
|
||
*/
|
||
watch_closure(closure: GObject.Closure): void;
|
||
/**
|
||
* the `constructed` function is called by g_object_new() as the
|
||
* final step of the object creation process. At the point of the call, all
|
||
* construction properties have been set on the object. The purpose of this
|
||
* call is to allow for object initialisation steps that can only be performed
|
||
* after construction properties have been set. `constructed` implementors
|
||
* should chain up to the `constructed` call of their parent class to allow it
|
||
* to complete its initialisation.
|
||
*/
|
||
vfunc_constructed(): void;
|
||
/**
|
||
* emits property change notification for a bunch
|
||
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
||
* needed.
|
||
* @param n_pspecs
|
||
* @param pspecs
|
||
*/
|
||
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
||
/**
|
||
* the `dispose` function is supposed to drop all references to other
|
||
* objects, but keep the instance otherwise intact, so that client method
|
||
* invocations still work. It may be run multiple times (due to reference
|
||
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
||
* of the parent class.
|
||
*/
|
||
vfunc_dispose(): void;
|
||
/**
|
||
* instance finalization function, should finish the finalization of
|
||
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
||
* parent class.
|
||
*/
|
||
vfunc_finalize(): void;
|
||
/**
|
||
* the generic getter for all properties of this type. Should be
|
||
* overridden for every type with properties.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param pspec
|
||
*/
|
||
vfunc_notify(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* the generic setter for all properties of this type. Should be
|
||
* overridden for every type with properties. If implementations of
|
||
* `set_property` don't emit property change notification explicitly, this will
|
||
* be done implicitly by the type system. However, if the notify signal is
|
||
* emitted explicitly, the type system will not emit it a second time.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
||
* @param id Handler ID of the handler to be disconnected
|
||
*/
|
||
disconnect(id: number): void;
|
||
/**
|
||
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
||
* @param properties Object containing the properties to set
|
||
*/
|
||
set(properties: { [key: string]: any }): void;
|
||
/**
|
||
* Blocks a handler of an instance so it will not be called during any signal emissions
|
||
* @param id Handler ID of the handler to be blocked
|
||
*/
|
||
block_signal_handler(id: number): void;
|
||
/**
|
||
* Unblocks a handler so it will be called again during any signal emissions
|
||
* @param id Handler ID of the handler to be unblocked
|
||
*/
|
||
unblock_signal_handler(id: number): void;
|
||
/**
|
||
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
||
* @param detailedName Name of the signal to stop emission of
|
||
*/
|
||
stop_emission_by_name(detailedName: string): void;
|
||
}
|
||
|
||
namespace MobileProvidersDatabase {
|
||
// Constructor properties interface
|
||
|
||
interface ConstructorProps
|
||
extends GObject.Object.ConstructorProps,
|
||
Gio.AsyncInitable.ConstructorProps,
|
||
Gio.Initable.ConstructorProps {
|
||
country_codes: string;
|
||
countryCodes: string;
|
||
service_providers: string;
|
||
serviceProviders: string;
|
||
}
|
||
}
|
||
|
||
class MobileProvidersDatabase
|
||
extends GObject.Object
|
||
implements Gio.AsyncInitable<MobileProvidersDatabase>, Gio.Initable
|
||
{
|
||
static $gtype: GObject.GType<MobileProvidersDatabase>;
|
||
|
||
// Properties
|
||
|
||
get country_codes(): string;
|
||
get countryCodes(): string;
|
||
get service_providers(): string;
|
||
get serviceProviders(): string;
|
||
|
||
// Constructors
|
||
|
||
constructor(properties?: Partial<MobileProvidersDatabase.ConstructorProps>, ...args: any[]);
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
static new_finish(res: Gio.AsyncResult): MobileProvidersDatabase;
|
||
// Conflicted with Gio.AsyncInitable.new_finish
|
||
|
||
static new_finish(...args: never[]): any;
|
||
|
||
static new_sync(
|
||
country_codes?: string | null,
|
||
service_providers?: string | null,
|
||
cancellable?: Gio.Cancellable | null,
|
||
): MobileProvidersDatabase;
|
||
|
||
// Static methods
|
||
|
||
static ['new'](
|
||
country_codes?: string | null,
|
||
service_providers?: string | null,
|
||
cancellable?: Gio.Cancellable | null,
|
||
callback?: Gio.AsyncReadyCallback<MobileProvidersDatabase> | null,
|
||
): void;
|
||
|
||
// Methods
|
||
|
||
dump(): void;
|
||
get_countries(): GLib.HashTable<string, CountryInfo>;
|
||
lookup_3gpp_mcc_mnc(mccmnc: string): MobileProvider;
|
||
lookup_cdma_sid(sid: number): MobileProvider;
|
||
lookup_country(country_code: string): CountryInfo;
|
||
|
||
// Inherited methods
|
||
/**
|
||
* Starts asynchronous initialization of the object implementing the
|
||
* interface. This must be done before any real use of the object after
|
||
* initial construction. If the object also implements #GInitable you can
|
||
* optionally call g_initable_init() instead.
|
||
*
|
||
* This method is intended for language bindings. If writing in C,
|
||
* g_async_initable_new_async() should typically be used instead.
|
||
*
|
||
* When the initialization is finished, `callback` will be called. You can
|
||
* then call g_async_initable_init_finish() to get the result of the
|
||
* initialization.
|
||
*
|
||
* Implementations may also support cancellation. If `cancellable` is not
|
||
* %NULL, then initialization can be cancelled by triggering the cancellable
|
||
* object from another thread. If the operation was cancelled, the error
|
||
* %G_IO_ERROR_CANCELLED will be returned. If `cancellable` is not %NULL, and
|
||
* the object doesn't support cancellable initialization, the error
|
||
* %G_IO_ERROR_NOT_SUPPORTED will be returned.
|
||
*
|
||
* As with #GInitable, if the object is not initialized, or initialization
|
||
* returns with an error, then all operations on the object except
|
||
* g_object_ref() and g_object_unref() are considered to be invalid, and
|
||
* have undefined behaviour. They will often fail with g_critical() or
|
||
* g_warning(), but this must not be relied on.
|
||
*
|
||
* Callers should not assume that a class which implements #GAsyncInitable can
|
||
* be initialized multiple times; for more information, see g_initable_init().
|
||
* If a class explicitly supports being initialized multiple times,
|
||
* implementation requires yielding all subsequent calls to init_async() on the
|
||
* results of the first call.
|
||
*
|
||
* For classes that also support the #GInitable interface, the default
|
||
* implementation of this method will run the g_initable_init() function
|
||
* in a thread, so if you want to support asynchronous initialization via
|
||
* threads, just implement the #GAsyncInitable interface without overriding
|
||
* any interface methods.
|
||
* @param io_priority the [I/O priority](iface.AsyncResult.html#io-priority) of the operation
|
||
* @param cancellable optional #GCancellable object, %NULL to ignore.
|
||
*/
|
||
init_async(io_priority: number, cancellable?: Gio.Cancellable | null): Promise<boolean>;
|
||
/**
|
||
* Starts asynchronous initialization of the object implementing the
|
||
* interface. This must be done before any real use of the object after
|
||
* initial construction. If the object also implements #GInitable you can
|
||
* optionally call g_initable_init() instead.
|
||
*
|
||
* This method is intended for language bindings. If writing in C,
|
||
* g_async_initable_new_async() should typically be used instead.
|
||
*
|
||
* When the initialization is finished, `callback` will be called. You can
|
||
* then call g_async_initable_init_finish() to get the result of the
|
||
* initialization.
|
||
*
|
||
* Implementations may also support cancellation. If `cancellable` is not
|
||
* %NULL, then initialization can be cancelled by triggering the cancellable
|
||
* object from another thread. If the operation was cancelled, the error
|
||
* %G_IO_ERROR_CANCELLED will be returned. If `cancellable` is not %NULL, and
|
||
* the object doesn't support cancellable initialization, the error
|
||
* %G_IO_ERROR_NOT_SUPPORTED will be returned.
|
||
*
|
||
* As with #GInitable, if the object is not initialized, or initialization
|
||
* returns with an error, then all operations on the object except
|
||
* g_object_ref() and g_object_unref() are considered to be invalid, and
|
||
* have undefined behaviour. They will often fail with g_critical() or
|
||
* g_warning(), but this must not be relied on.
|
||
*
|
||
* Callers should not assume that a class which implements #GAsyncInitable can
|
||
* be initialized multiple times; for more information, see g_initable_init().
|
||
* If a class explicitly supports being initialized multiple times,
|
||
* implementation requires yielding all subsequent calls to init_async() on the
|
||
* results of the first call.
|
||
*
|
||
* For classes that also support the #GInitable interface, the default
|
||
* implementation of this method will run the g_initable_init() function
|
||
* in a thread, so if you want to support asynchronous initialization via
|
||
* threads, just implement the #GAsyncInitable interface without overriding
|
||
* any interface methods.
|
||
* @param io_priority the [I/O priority](iface.AsyncResult.html#io-priority) of the operation
|
||
* @param cancellable optional #GCancellable object, %NULL to ignore.
|
||
* @param callback a #GAsyncReadyCallback to call when the request is satisfied
|
||
*/
|
||
init_async(
|
||
io_priority: number,
|
||
cancellable: Gio.Cancellable | null,
|
||
callback: Gio.AsyncReadyCallback<this> | null,
|
||
): void;
|
||
/**
|
||
* Starts asynchronous initialization of the object implementing the
|
||
* interface. This must be done before any real use of the object after
|
||
* initial construction. If the object also implements #GInitable you can
|
||
* optionally call g_initable_init() instead.
|
||
*
|
||
* This method is intended for language bindings. If writing in C,
|
||
* g_async_initable_new_async() should typically be used instead.
|
||
*
|
||
* When the initialization is finished, `callback` will be called. You can
|
||
* then call g_async_initable_init_finish() to get the result of the
|
||
* initialization.
|
||
*
|
||
* Implementations may also support cancellation. If `cancellable` is not
|
||
* %NULL, then initialization can be cancelled by triggering the cancellable
|
||
* object from another thread. If the operation was cancelled, the error
|
||
* %G_IO_ERROR_CANCELLED will be returned. If `cancellable` is not %NULL, and
|
||
* the object doesn't support cancellable initialization, the error
|
||
* %G_IO_ERROR_NOT_SUPPORTED will be returned.
|
||
*
|
||
* As with #GInitable, if the object is not initialized, or initialization
|
||
* returns with an error, then all operations on the object except
|
||
* g_object_ref() and g_object_unref() are considered to be invalid, and
|
||
* have undefined behaviour. They will often fail with g_critical() or
|
||
* g_warning(), but this must not be relied on.
|
||
*
|
||
* Callers should not assume that a class which implements #GAsyncInitable can
|
||
* be initialized multiple times; for more information, see g_initable_init().
|
||
* If a class explicitly supports being initialized multiple times,
|
||
* implementation requires yielding all subsequent calls to init_async() on the
|
||
* results of the first call.
|
||
*
|
||
* For classes that also support the #GInitable interface, the default
|
||
* implementation of this method will run the g_initable_init() function
|
||
* in a thread, so if you want to support asynchronous initialization via
|
||
* threads, just implement the #GAsyncInitable interface without overriding
|
||
* any interface methods.
|
||
* @param io_priority the [I/O priority](iface.AsyncResult.html#io-priority) of the operation
|
||
* @param cancellable optional #GCancellable object, %NULL to ignore.
|
||
* @param callback a #GAsyncReadyCallback to call when the request is satisfied
|
||
*/
|
||
init_async(
|
||
io_priority: number,
|
||
cancellable?: Gio.Cancellable | null,
|
||
callback?: Gio.AsyncReadyCallback<this> | null,
|
||
): Promise<boolean> | void;
|
||
/**
|
||
* Finishes asynchronous initialization and returns the result.
|
||
* See g_async_initable_init_async().
|
||
* @param res a #GAsyncResult.
|
||
* @returns %TRUE if successful. If an error has occurred, this function will return %FALSE and set @error appropriately if present.
|
||
*/
|
||
init_finish(res: Gio.AsyncResult): boolean;
|
||
/**
|
||
* Finishes the async construction for the various g_async_initable_new
|
||
* calls, returning the created object or %NULL on error.
|
||
* @param res the #GAsyncResult from the callback
|
||
* @returns a newly created #GObject, or %NULL on error. Free with g_object_unref().
|
||
*/
|
||
new_finish(res: Gio.AsyncResult): MobileProvidersDatabase;
|
||
/**
|
||
* Starts asynchronous initialization of the object implementing the
|
||
* interface. This must be done before any real use of the object after
|
||
* initial construction. If the object also implements #GInitable you can
|
||
* optionally call g_initable_init() instead.
|
||
*
|
||
* This method is intended for language bindings. If writing in C,
|
||
* g_async_initable_new_async() should typically be used instead.
|
||
*
|
||
* When the initialization is finished, `callback` will be called. You can
|
||
* then call g_async_initable_init_finish() to get the result of the
|
||
* initialization.
|
||
*
|
||
* Implementations may also support cancellation. If `cancellable` is not
|
||
* %NULL, then initialization can be cancelled by triggering the cancellable
|
||
* object from another thread. If the operation was cancelled, the error
|
||
* %G_IO_ERROR_CANCELLED will be returned. If `cancellable` is not %NULL, and
|
||
* the object doesn't support cancellable initialization, the error
|
||
* %G_IO_ERROR_NOT_SUPPORTED will be returned.
|
||
*
|
||
* As with #GInitable, if the object is not initialized, or initialization
|
||
* returns with an error, then all operations on the object except
|
||
* g_object_ref() and g_object_unref() are considered to be invalid, and
|
||
* have undefined behaviour. They will often fail with g_critical() or
|
||
* g_warning(), but this must not be relied on.
|
||
*
|
||
* Callers should not assume that a class which implements #GAsyncInitable can
|
||
* be initialized multiple times; for more information, see g_initable_init().
|
||
* If a class explicitly supports being initialized multiple times,
|
||
* implementation requires yielding all subsequent calls to init_async() on the
|
||
* results of the first call.
|
||
*
|
||
* For classes that also support the #GInitable interface, the default
|
||
* implementation of this method will run the g_initable_init() function
|
||
* in a thread, so if you want to support asynchronous initialization via
|
||
* threads, just implement the #GAsyncInitable interface without overriding
|
||
* any interface methods.
|
||
* @param io_priority the [I/O priority](iface.AsyncResult.html#io-priority) of the operation
|
||
* @param cancellable optional #GCancellable object, %NULL to ignore.
|
||
* @param callback a #GAsyncReadyCallback to call when the request is satisfied
|
||
*/
|
||
vfunc_init_async(
|
||
io_priority: number,
|
||
cancellable?: Gio.Cancellable | null,
|
||
callback?: Gio.AsyncReadyCallback<this> | null,
|
||
): void;
|
||
/**
|
||
* Finishes asynchronous initialization and returns the result.
|
||
* See g_async_initable_init_async().
|
||
* @param res a #GAsyncResult.
|
||
*/
|
||
vfunc_init_finish(res: Gio.AsyncResult): boolean;
|
||
/**
|
||
* Initializes the object implementing the interface.
|
||
*
|
||
* This method is intended for language bindings. If writing in C,
|
||
* g_initable_new() should typically be used instead.
|
||
*
|
||
* The object must be initialized before any real use after initial
|
||
* construction, either with this function or g_async_initable_init_async().
|
||
*
|
||
* Implementations may also support cancellation. If `cancellable` is not %NULL,
|
||
* then initialization can be cancelled by triggering the cancellable object
|
||
* from another thread. If the operation was cancelled, the error
|
||
* %G_IO_ERROR_CANCELLED will be returned. If `cancellable` is not %NULL and
|
||
* the object doesn't support cancellable initialization the error
|
||
* %G_IO_ERROR_NOT_SUPPORTED will be returned.
|
||
*
|
||
* If the object is not initialized, or initialization returns with an
|
||
* error, then all operations on the object except g_object_ref() and
|
||
* g_object_unref() are considered to be invalid, and have undefined
|
||
* behaviour. See the [description][iface`Gio`.Initable#description] for more details.
|
||
*
|
||
* Callers should not assume that a class which implements #GInitable can be
|
||
* initialized multiple times, unless the class explicitly documents itself as
|
||
* supporting this. Generally, a class’ implementation of init() can assume
|
||
* (and assert) that it will only be called once. Previously, this documentation
|
||
* recommended all #GInitable implementations should be idempotent; that
|
||
* recommendation was relaxed in GLib 2.54.
|
||
*
|
||
* If a class explicitly supports being initialized multiple times, it is
|
||
* recommended that the method is idempotent: multiple calls with the same
|
||
* arguments should return the same results. Only the first call initializes
|
||
* the object; further calls return the result of the first call.
|
||
*
|
||
* One reason why a class might need to support idempotent initialization is if
|
||
* it is designed to be used via the singleton pattern, with a
|
||
* #GObjectClass.constructor that sometimes returns an existing instance.
|
||
* In this pattern, a caller would expect to be able to call g_initable_init()
|
||
* on the result of g_object_new(), regardless of whether it is in fact a new
|
||
* instance.
|
||
* @param cancellable optional #GCancellable object, %NULL to ignore.
|
||
* @returns %TRUE if successful. If an error has occurred, this function will return %FALSE and set @error appropriately if present.
|
||
*/
|
||
init(cancellable?: Gio.Cancellable | null): boolean;
|
||
/**
|
||
* Initializes the object implementing the interface.
|
||
*
|
||
* This method is intended for language bindings. If writing in C,
|
||
* g_initable_new() should typically be used instead.
|
||
*
|
||
* The object must be initialized before any real use after initial
|
||
* construction, either with this function or g_async_initable_init_async().
|
||
*
|
||
* Implementations may also support cancellation. If `cancellable` is not %NULL,
|
||
* then initialization can be cancelled by triggering the cancellable object
|
||
* from another thread. If the operation was cancelled, the error
|
||
* %G_IO_ERROR_CANCELLED will be returned. If `cancellable` is not %NULL and
|
||
* the object doesn't support cancellable initialization the error
|
||
* %G_IO_ERROR_NOT_SUPPORTED will be returned.
|
||
*
|
||
* If the object is not initialized, or initialization returns with an
|
||
* error, then all operations on the object except g_object_ref() and
|
||
* g_object_unref() are considered to be invalid, and have undefined
|
||
* behaviour. See the [description][iface`Gio`.Initable#description] for more details.
|
||
*
|
||
* Callers should not assume that a class which implements #GInitable can be
|
||
* initialized multiple times, unless the class explicitly documents itself as
|
||
* supporting this. Generally, a class’ implementation of init() can assume
|
||
* (and assert) that it will only be called once. Previously, this documentation
|
||
* recommended all #GInitable implementations should be idempotent; that
|
||
* recommendation was relaxed in GLib 2.54.
|
||
*
|
||
* If a class explicitly supports being initialized multiple times, it is
|
||
* recommended that the method is idempotent: multiple calls with the same
|
||
* arguments should return the same results. Only the first call initializes
|
||
* the object; further calls return the result of the first call.
|
||
*
|
||
* One reason why a class might need to support idempotent initialization is if
|
||
* it is designed to be used via the singleton pattern, with a
|
||
* #GObjectClass.constructor that sometimes returns an existing instance.
|
||
* In this pattern, a caller would expect to be able to call g_initable_init()
|
||
* on the result of g_object_new(), regardless of whether it is in fact a new
|
||
* instance.
|
||
* @param cancellable optional #GCancellable object, %NULL to ignore.
|
||
*/
|
||
vfunc_init(cancellable?: Gio.Cancellable | null): boolean;
|
||
/**
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target`.
|
||
*
|
||
* Whenever the `source_property` is changed the `target_property` is
|
||
* updated using the same value. For instance:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
||
* ```
|
||
*
|
||
*
|
||
* Will result in the "sensitive" property of the widget #GObject instance to be
|
||
* updated with the same value of the "active" property of the action #GObject
|
||
* instance.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well.
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. To remove the binding without affecting the
|
||
* `source` and the `target` you can just call g_object_unref() on the returned
|
||
* #GBinding instance.
|
||
*
|
||
* Removing the binding by calling g_object_unref() on it must only be done if
|
||
* the binding, `source` and `target` are only used from a single thread and it
|
||
* is clear that both `source` and `target` outlive the binding. Especially it
|
||
* is not safe to rely on this if the binding, `source` or `target` can be
|
||
* finalized from different threads. Keep another reference to the binding and
|
||
* use g_binding_unbind() instead to be on the safe side.
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
): GObject.Binding;
|
||
/**
|
||
* Complete version of g_object_bind_property().
|
||
*
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target,` allowing you to set the transformation functions to be used by
|
||
* the binding.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well. The `transform_from` function is only used in case
|
||
* of bidirectional bindings, otherwise it will be ignored
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. This will release the reference that is
|
||
* being held on the #GBinding instance; if you want to hold on to the
|
||
* #GBinding instance, you will need to hold a reference to it.
|
||
*
|
||
* To remove the binding, call g_binding_unbind().
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
*
|
||
* The same `user_data` parameter will be used for both `transform_to`
|
||
* and `transform_from` transformation functions; the `notify` function will
|
||
* be called once, when the binding is removed. If you need different data
|
||
* for each transformation function, please use
|
||
* g_object_bind_property_with_closures() instead.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
||
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
||
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property_full(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
transform_to?: GObject.BindingTransformFunc | null,
|
||
transform_from?: GObject.BindingTransformFunc | null,
|
||
notify?: GLib.DestroyNotify | null,
|
||
): GObject.Binding;
|
||
// Conflicted with GObject.Object.bind_property_full
|
||
bind_property_full(...args: never[]): any;
|
||
/**
|
||
* This function is intended for #GObject implementations to re-enforce
|
||
* a [floating][floating-ref] object reference. Doing this is seldom
|
||
* required: all #GInitiallyUnowneds are created with a floating reference
|
||
* which usually just needs to be sunken by calling g_object_ref_sink().
|
||
*/
|
||
force_floating(): void;
|
||
/**
|
||
* Increases the freeze count on `object`. If the freeze count is
|
||
* non-zero, the emission of "notify" signals on `object` is
|
||
* stopped. The signals are queued until the freeze count is decreased
|
||
* to zero. Duplicate notifications are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property modified while the
|
||
* object is frozen.
|
||
*
|
||
* This is necessary for accessors that modify multiple properties to prevent
|
||
* premature notification while the object is still being modified.
|
||
*/
|
||
freeze_notify(): void;
|
||
/**
|
||
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
||
* @param key name of the key for that association
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
get_data(key: string): any | null;
|
||
/**
|
||
* Gets a property of an object.
|
||
*
|
||
* The value can be:
|
||
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
||
* - a GObject.Value initialized with the expected type of the property
|
||
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
||
*
|
||
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
||
*
|
||
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
||
* @param property_name The name of the property to get
|
||
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
||
*/
|
||
get_property(property_name: string, value: GObject.Value | any): any;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
get_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Gets `n_properties` properties for an `object`.
|
||
* Obtained properties will be set to `values`. All properties must be valid.
|
||
* Warnings will be emitted and undefined behaviour may result if invalid
|
||
* properties are passed in.
|
||
* @param names the names of each property to get
|
||
* @param values the values of each property to get
|
||
*/
|
||
getv(names: string[], values: (GObject.Value | any)[]): void;
|
||
/**
|
||
* Checks whether `object` has a [floating][floating-ref] reference.
|
||
* @returns %TRUE if @object has a floating reference
|
||
*/
|
||
is_floating(): boolean;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param property_name the name of a property installed on the class of @object.
|
||
*/
|
||
notify(property_name: string): void;
|
||
/**
|
||
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
||
*
|
||
* This function omits the property name lookup, hence it is faster than
|
||
* g_object_notify().
|
||
*
|
||
* One way to avoid using g_object_notify() from within the
|
||
* class that registered the properties, and using g_object_notify_by_pspec()
|
||
* instead, is to store the GParamSpec used with
|
||
* g_object_class_install_property() inside a static array, e.g.:
|
||
*
|
||
*
|
||
* ```c
|
||
* typedef enum
|
||
* {
|
||
* PROP_FOO = 1,
|
||
* PROP_LAST
|
||
* } MyObjectProperty;
|
||
*
|
||
* static GParamSpec *properties[PROP_LAST];
|
||
*
|
||
* static void
|
||
* my_object_class_init (MyObjectClass *klass)
|
||
* {
|
||
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
||
* 0, 100,
|
||
* 50,
|
||
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
||
* g_object_class_install_property (gobject_class,
|
||
* PROP_FOO,
|
||
* properties[PROP_FOO]);
|
||
* }
|
||
* ```
|
||
*
|
||
*
|
||
* and then notify a change on the "foo" property with:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
||
* ```
|
||
*
|
||
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
||
*/
|
||
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Increases the reference count of `object`.
|
||
*
|
||
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
||
* of `object` will be propagated to the return type (using the GCC typeof()
|
||
* extension), so any casting the caller needs to do on the return type must be
|
||
* explicit.
|
||
* @returns the same @object
|
||
*/
|
||
ref(): GObject.Object;
|
||
/**
|
||
* Increase the reference count of `object,` and possibly remove the
|
||
* [floating][floating-ref] reference, if `object` has a floating reference.
|
||
*
|
||
* In other words, if the object is floating, then this call "assumes
|
||
* ownership" of the floating reference, converting it to a normal
|
||
* reference by clearing the floating flag while leaving the reference
|
||
* count unchanged. If the object is not floating, then this call
|
||
* adds a new normal reference increasing the reference count by one.
|
||
*
|
||
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
||
* under the same conditions as for g_object_ref().
|
||
* @returns @object
|
||
*/
|
||
ref_sink(): GObject.Object;
|
||
/**
|
||
* Releases all references to other objects. This can be used to break
|
||
* reference cycles.
|
||
*
|
||
* This function should only be called from object system implementations.
|
||
*/
|
||
run_dispose(): void;
|
||
/**
|
||
* Each object carries around a table of associations from
|
||
* strings to pointers. This function lets you set an association.
|
||
*
|
||
* If the object already had an association with that name,
|
||
* the old association will be destroyed.
|
||
*
|
||
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
||
* This means a copy of `key` is kept permanently (even after `object` has been
|
||
* finalized) — so it is recommended to only use a small, bounded set of values
|
||
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
||
* @param key name of the key
|
||
* @param data data to associate with that key
|
||
*/
|
||
set_data(key: string, data?: any | null): void;
|
||
/**
|
||
* Sets a property on an object.
|
||
* @param property_name The name of the property to set
|
||
* @param value The value to set the property to
|
||
*/
|
||
set_property(property_name: string, value: GObject.Value | any): void;
|
||
/**
|
||
* Remove a specified datum from the object's data associations,
|
||
* without invoking the association's destroy handler.
|
||
* @param key name of the key
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
steal_data(key: string): any | null;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata() and removes the `data` from object
|
||
* without invoking its destroy() function (if any was
|
||
* set).
|
||
* Usually, calling this function is only required to update
|
||
* user data pointers with a destroy notifier, for example:
|
||
*
|
||
* ```c
|
||
* void
|
||
* object_add_to_user_list (GObject *object,
|
||
* const gchar *new_string)
|
||
* {
|
||
* // the quark, naming the object data
|
||
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
||
* // retrieve the old string list
|
||
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
||
*
|
||
* // prepend new string
|
||
* list = g_list_prepend (list, g_strdup (new_string));
|
||
* // this changed 'list', so we need to set it again
|
||
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
||
* }
|
||
* static void
|
||
* free_string_list (gpointer data)
|
||
* {
|
||
* GList *node, *list = data;
|
||
*
|
||
* for (node = list; node; node = node->next)
|
||
* g_free (node->data);
|
||
* g_list_free (list);
|
||
* }
|
||
* ```
|
||
*
|
||
* Using g_object_get_qdata() in the above example, instead of
|
||
* g_object_steal_qdata() would have left the destroy function set,
|
||
* and thus the partial string list would have been freed upon
|
||
* g_object_set_qdata_full().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
steal_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Reverts the effect of a previous call to
|
||
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
||
* and when it reaches zero, queued "notify" signals are emitted.
|
||
*
|
||
* Duplicate notifications for each property are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property, in the reverse order
|
||
* in which they have been queued.
|
||
*
|
||
* It is an error to call this function when the freeze count is zero.
|
||
*/
|
||
thaw_notify(): void;
|
||
/**
|
||
* Decreases the reference count of `object`. When its reference count
|
||
* drops to 0, the object is finalized (i.e. its memory is freed).
|
||
*
|
||
* If the pointer to the #GObject may be reused in future (for example, if it is
|
||
* an instance variable of another object), it is recommended to clear the
|
||
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
||
* invalid #GObject instance. Use g_clear_object() for this.
|
||
*/
|
||
unref(): void;
|
||
/**
|
||
* This function essentially limits the life time of the `closure` to
|
||
* the life time of the object. That is, when the object is finalized,
|
||
* the `closure` is invalidated by calling g_closure_invalidate() on
|
||
* it, in order to prevent invocations of the closure with a finalized
|
||
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
||
* added as marshal guards to the `closure,` to ensure that an extra
|
||
* reference count is held on `object` during invocation of the
|
||
* `closure`. Usually, this function will be called on closures that
|
||
* use this `object` as closure data.
|
||
* @param closure #GClosure to watch
|
||
*/
|
||
watch_closure(closure: GObject.Closure): void;
|
||
/**
|
||
* the `constructed` function is called by g_object_new() as the
|
||
* final step of the object creation process. At the point of the call, all
|
||
* construction properties have been set on the object. The purpose of this
|
||
* call is to allow for object initialisation steps that can only be performed
|
||
* after construction properties have been set. `constructed` implementors
|
||
* should chain up to the `constructed` call of their parent class to allow it
|
||
* to complete its initialisation.
|
||
*/
|
||
vfunc_constructed(): void;
|
||
/**
|
||
* emits property change notification for a bunch
|
||
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
||
* needed.
|
||
* @param n_pspecs
|
||
* @param pspecs
|
||
*/
|
||
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
||
/**
|
||
* the `dispose` function is supposed to drop all references to other
|
||
* objects, but keep the instance otherwise intact, so that client method
|
||
* invocations still work. It may be run multiple times (due to reference
|
||
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
||
* of the parent class.
|
||
*/
|
||
vfunc_dispose(): void;
|
||
/**
|
||
* instance finalization function, should finish the finalization of
|
||
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
||
* parent class.
|
||
*/
|
||
vfunc_finalize(): void;
|
||
/**
|
||
* the generic getter for all properties of this type. Should be
|
||
* overridden for every type with properties.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param pspec
|
||
*/
|
||
vfunc_notify(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* the generic setter for all properties of this type. Should be
|
||
* overridden for every type with properties. If implementations of
|
||
* `set_property` don't emit property change notification explicitly, this will
|
||
* be done implicitly by the type system. However, if the notify signal is
|
||
* emitted explicitly, the type system will not emit it a second time.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
||
* @param id Handler ID of the handler to be disconnected
|
||
*/
|
||
disconnect(id: number): void;
|
||
/**
|
||
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
||
* @param properties Object containing the properties to set
|
||
*/
|
||
set(properties: { [key: string]: any }): void;
|
||
/**
|
||
* Blocks a handler of an instance so it will not be called during any signal emissions
|
||
* @param id Handler ID of the handler to be blocked
|
||
*/
|
||
block_signal_handler(id: number): void;
|
||
/**
|
||
* Unblocks a handler so it will be called again during any signal emissions
|
||
* @param id Handler ID of the handler to be unblocked
|
||
*/
|
||
unblock_signal_handler(id: number): void;
|
||
/**
|
||
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
||
* @param detailedName Name of the signal to stop emission of
|
||
*/
|
||
stop_emission_by_name(detailedName: string): void;
|
||
}
|
||
|
||
namespace MobileWizard {
|
||
// Constructor properties interface
|
||
|
||
interface ConstructorProps extends GObject.Object.ConstructorProps {}
|
||
}
|
||
|
||
class MobileWizard extends GObject.Object {
|
||
static $gtype: GObject.GType<MobileWizard>;
|
||
|
||
// Constructors
|
||
|
||
constructor(properties?: Partial<MobileWizard.ConstructorProps>, ...args: any[]);
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
// Methods
|
||
|
||
destroy(): void;
|
||
present(): void;
|
||
}
|
||
|
||
namespace VpnPasswordDialog {
|
||
// Constructor properties interface
|
||
|
||
interface ConstructorProps
|
||
extends Gtk.Dialog.ConstructorProps,
|
||
Atk.ImplementorIface.ConstructorProps,
|
||
Gtk.Buildable.ConstructorProps {}
|
||
}
|
||
|
||
class VpnPasswordDialog extends Gtk.Dialog implements Atk.ImplementorIface, Gtk.Buildable {
|
||
static $gtype: GObject.GType<VpnPasswordDialog>;
|
||
|
||
// Constructors
|
||
|
||
constructor(properties?: Partial<VpnPasswordDialog.ConstructorProps>, ...args: any[]);
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
static ['new'](title: string, message: string, password: string): VpnPasswordDialog;
|
||
// Conflicted with Gtk.Dialog.new
|
||
|
||
static ['new'](...args: never[]): any;
|
||
|
||
// Methods
|
||
|
||
focus_password(): void;
|
||
focus_password_secondary(): void;
|
||
focus_password_ternary(): void;
|
||
get_password(): string;
|
||
get_password_secondary(): string;
|
||
get_password_ternary(): string;
|
||
run_and_block(): boolean;
|
||
set_password(password: string): void;
|
||
set_password_label(label: string): void;
|
||
set_password_secondary(password_secondary: string): void;
|
||
set_password_secondary_label(label: string): void;
|
||
set_password_ternary(password_ternary: string): void;
|
||
set_password_ternary_label(label: string): void;
|
||
set_show_password(show: boolean): void;
|
||
set_show_password_secondary(show: boolean): void;
|
||
set_show_password_ternary(show: boolean): void;
|
||
|
||
// Inherited methods
|
||
/**
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target`.
|
||
*
|
||
* Whenever the `source_property` is changed the `target_property` is
|
||
* updated using the same value. For instance:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
||
* ```
|
||
*
|
||
*
|
||
* Will result in the "sensitive" property of the widget #GObject instance to be
|
||
* updated with the same value of the "active" property of the action #GObject
|
||
* instance.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well.
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. To remove the binding without affecting the
|
||
* `source` and the `target` you can just call g_object_unref() on the returned
|
||
* #GBinding instance.
|
||
*
|
||
* Removing the binding by calling g_object_unref() on it must only be done if
|
||
* the binding, `source` and `target` are only used from a single thread and it
|
||
* is clear that both `source` and `target` outlive the binding. Especially it
|
||
* is not safe to rely on this if the binding, `source` or `target` can be
|
||
* finalized from different threads. Keep another reference to the binding and
|
||
* use g_binding_unbind() instead to be on the safe side.
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
): GObject.Binding;
|
||
/**
|
||
* Complete version of g_object_bind_property().
|
||
*
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target,` allowing you to set the transformation functions to be used by
|
||
* the binding.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well. The `transform_from` function is only used in case
|
||
* of bidirectional bindings, otherwise it will be ignored
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. This will release the reference that is
|
||
* being held on the #GBinding instance; if you want to hold on to the
|
||
* #GBinding instance, you will need to hold a reference to it.
|
||
*
|
||
* To remove the binding, call g_binding_unbind().
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
*
|
||
* The same `user_data` parameter will be used for both `transform_to`
|
||
* and `transform_from` transformation functions; the `notify` function will
|
||
* be called once, when the binding is removed. If you need different data
|
||
* for each transformation function, please use
|
||
* g_object_bind_property_with_closures() instead.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
||
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
||
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property_full(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
transform_to?: GObject.BindingTransformFunc | null,
|
||
transform_from?: GObject.BindingTransformFunc | null,
|
||
notify?: GLib.DestroyNotify | null,
|
||
): GObject.Binding;
|
||
// Conflicted with GObject.Object.bind_property_full
|
||
bind_property_full(...args: never[]): any;
|
||
/**
|
||
* This function is intended for #GObject implementations to re-enforce
|
||
* a [floating][floating-ref] object reference. Doing this is seldom
|
||
* required: all #GInitiallyUnowneds are created with a floating reference
|
||
* which usually just needs to be sunken by calling g_object_ref_sink().
|
||
*/
|
||
force_floating(): void;
|
||
/**
|
||
* Increases the freeze count on `object`. If the freeze count is
|
||
* non-zero, the emission of "notify" signals on `object` is
|
||
* stopped. The signals are queued until the freeze count is decreased
|
||
* to zero. Duplicate notifications are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property modified while the
|
||
* object is frozen.
|
||
*
|
||
* This is necessary for accessors that modify multiple properties to prevent
|
||
* premature notification while the object is still being modified.
|
||
*/
|
||
freeze_notify(): void;
|
||
/**
|
||
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
||
* @param key name of the key for that association
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
get_data(key: string): any | null;
|
||
/**
|
||
* Gets a property of an object.
|
||
*
|
||
* The value can be:
|
||
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
||
* - a GObject.Value initialized with the expected type of the property
|
||
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
||
*
|
||
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
||
*
|
||
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
||
* @param property_name The name of the property to get
|
||
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
||
*/
|
||
get_property(property_name: string, value: GObject.Value | any): any;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
get_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Gets `n_properties` properties for an `object`.
|
||
* Obtained properties will be set to `values`. All properties must be valid.
|
||
* Warnings will be emitted and undefined behaviour may result if invalid
|
||
* properties are passed in.
|
||
* @param names the names of each property to get
|
||
* @param values the values of each property to get
|
||
*/
|
||
getv(names: string[], values: (GObject.Value | any)[]): void;
|
||
/**
|
||
* Checks whether `object` has a [floating][floating-ref] reference.
|
||
* @returns %TRUE if @object has a floating reference
|
||
*/
|
||
is_floating(): boolean;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param property_name the name of a property installed on the class of @object.
|
||
*/
|
||
notify(property_name: string): void;
|
||
/**
|
||
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
||
*
|
||
* This function omits the property name lookup, hence it is faster than
|
||
* g_object_notify().
|
||
*
|
||
* One way to avoid using g_object_notify() from within the
|
||
* class that registered the properties, and using g_object_notify_by_pspec()
|
||
* instead, is to store the GParamSpec used with
|
||
* g_object_class_install_property() inside a static array, e.g.:
|
||
*
|
||
*
|
||
* ```c
|
||
* typedef enum
|
||
* {
|
||
* PROP_FOO = 1,
|
||
* PROP_LAST
|
||
* } MyObjectProperty;
|
||
*
|
||
* static GParamSpec *properties[PROP_LAST];
|
||
*
|
||
* static void
|
||
* my_object_class_init (MyObjectClass *klass)
|
||
* {
|
||
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
||
* 0, 100,
|
||
* 50,
|
||
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
||
* g_object_class_install_property (gobject_class,
|
||
* PROP_FOO,
|
||
* properties[PROP_FOO]);
|
||
* }
|
||
* ```
|
||
*
|
||
*
|
||
* and then notify a change on the "foo" property with:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
||
* ```
|
||
*
|
||
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
||
*/
|
||
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Increases the reference count of `object`.
|
||
*
|
||
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
||
* of `object` will be propagated to the return type (using the GCC typeof()
|
||
* extension), so any casting the caller needs to do on the return type must be
|
||
* explicit.
|
||
* @returns the same @object
|
||
*/
|
||
ref(): GObject.Object;
|
||
/**
|
||
* Increase the reference count of `object,` and possibly remove the
|
||
* [floating][floating-ref] reference, if `object` has a floating reference.
|
||
*
|
||
* In other words, if the object is floating, then this call "assumes
|
||
* ownership" of the floating reference, converting it to a normal
|
||
* reference by clearing the floating flag while leaving the reference
|
||
* count unchanged. If the object is not floating, then this call
|
||
* adds a new normal reference increasing the reference count by one.
|
||
*
|
||
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
||
* under the same conditions as for g_object_ref().
|
||
* @returns @object
|
||
*/
|
||
ref_sink(): GObject.Object;
|
||
/**
|
||
* Releases all references to other objects. This can be used to break
|
||
* reference cycles.
|
||
*
|
||
* This function should only be called from object system implementations.
|
||
*/
|
||
run_dispose(): void;
|
||
/**
|
||
* Each object carries around a table of associations from
|
||
* strings to pointers. This function lets you set an association.
|
||
*
|
||
* If the object already had an association with that name,
|
||
* the old association will be destroyed.
|
||
*
|
||
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
||
* This means a copy of `key` is kept permanently (even after `object` has been
|
||
* finalized) — so it is recommended to only use a small, bounded set of values
|
||
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
||
* @param key name of the key
|
||
* @param data data to associate with that key
|
||
*/
|
||
set_data(key: string, data?: any | null): void;
|
||
/**
|
||
* Sets a property on an object.
|
||
* @param property_name The name of the property to set
|
||
* @param value The value to set the property to
|
||
*/
|
||
set_property(property_name: string, value: GObject.Value | any): void;
|
||
/**
|
||
* Remove a specified datum from the object's data associations,
|
||
* without invoking the association's destroy handler.
|
||
* @param key name of the key
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
steal_data(key: string): any | null;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata() and removes the `data` from object
|
||
* without invoking its destroy() function (if any was
|
||
* set).
|
||
* Usually, calling this function is only required to update
|
||
* user data pointers with a destroy notifier, for example:
|
||
*
|
||
* ```c
|
||
* void
|
||
* object_add_to_user_list (GObject *object,
|
||
* const gchar *new_string)
|
||
* {
|
||
* // the quark, naming the object data
|
||
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
||
* // retrieve the old string list
|
||
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
||
*
|
||
* // prepend new string
|
||
* list = g_list_prepend (list, g_strdup (new_string));
|
||
* // this changed 'list', so we need to set it again
|
||
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
||
* }
|
||
* static void
|
||
* free_string_list (gpointer data)
|
||
* {
|
||
* GList *node, *list = data;
|
||
*
|
||
* for (node = list; node; node = node->next)
|
||
* g_free (node->data);
|
||
* g_list_free (list);
|
||
* }
|
||
* ```
|
||
*
|
||
* Using g_object_get_qdata() in the above example, instead of
|
||
* g_object_steal_qdata() would have left the destroy function set,
|
||
* and thus the partial string list would have been freed upon
|
||
* g_object_set_qdata_full().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
steal_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Reverts the effect of a previous call to
|
||
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
||
* and when it reaches zero, queued "notify" signals are emitted.
|
||
*
|
||
* Duplicate notifications for each property are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property, in the reverse order
|
||
* in which they have been queued.
|
||
*
|
||
* It is an error to call this function when the freeze count is zero.
|
||
*/
|
||
thaw_notify(): void;
|
||
/**
|
||
* Decreases the reference count of `object`. When its reference count
|
||
* drops to 0, the object is finalized (i.e. its memory is freed).
|
||
*
|
||
* If the pointer to the #GObject may be reused in future (for example, if it is
|
||
* an instance variable of another object), it is recommended to clear the
|
||
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
||
* invalid #GObject instance. Use g_clear_object() for this.
|
||
*/
|
||
unref(): void;
|
||
/**
|
||
* This function essentially limits the life time of the `closure` to
|
||
* the life time of the object. That is, when the object is finalized,
|
||
* the `closure` is invalidated by calling g_closure_invalidate() on
|
||
* it, in order to prevent invocations of the closure with a finalized
|
||
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
||
* added as marshal guards to the `closure,` to ensure that an extra
|
||
* reference count is held on `object` during invocation of the
|
||
* `closure`. Usually, this function will be called on closures that
|
||
* use this `object` as closure data.
|
||
* @param closure #GClosure to watch
|
||
*/
|
||
watch_closure(closure: GObject.Closure): void;
|
||
/**
|
||
* the `constructed` function is called by g_object_new() as the
|
||
* final step of the object creation process. At the point of the call, all
|
||
* construction properties have been set on the object. The purpose of this
|
||
* call is to allow for object initialisation steps that can only be performed
|
||
* after construction properties have been set. `constructed` implementors
|
||
* should chain up to the `constructed` call of their parent class to allow it
|
||
* to complete its initialisation.
|
||
*/
|
||
vfunc_constructed(): void;
|
||
/**
|
||
* emits property change notification for a bunch
|
||
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
||
* needed.
|
||
* @param n_pspecs
|
||
* @param pspecs
|
||
*/
|
||
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
||
/**
|
||
* the `dispose` function is supposed to drop all references to other
|
||
* objects, but keep the instance otherwise intact, so that client method
|
||
* invocations still work. It may be run multiple times (due to reference
|
||
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
||
* of the parent class.
|
||
*/
|
||
vfunc_dispose(): void;
|
||
/**
|
||
* instance finalization function, should finish the finalization of
|
||
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
||
* parent class.
|
||
*/
|
||
vfunc_finalize(): void;
|
||
/**
|
||
* the generic getter for all properties of this type. Should be
|
||
* overridden for every type with properties.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param pspec
|
||
*/
|
||
vfunc_notify(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* the generic setter for all properties of this type. Should be
|
||
* overridden for every type with properties. If implementations of
|
||
* `set_property` don't emit property change notification explicitly, this will
|
||
* be done implicitly by the type system. However, if the notify signal is
|
||
* emitted explicitly, the type system will not emit it a second time.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
||
* @param id Handler ID of the handler to be disconnected
|
||
*/
|
||
disconnect(id: number): void;
|
||
/**
|
||
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
||
* @param properties Object containing the properties to set
|
||
*/
|
||
set(properties: { [key: string]: any }): void;
|
||
/**
|
||
* Blocks a handler of an instance so it will not be called during any signal emissions
|
||
* @param id Handler ID of the handler to be blocked
|
||
*/
|
||
block_signal_handler(id: number): void;
|
||
/**
|
||
* Unblocks a handler so it will be called again during any signal emissions
|
||
* @param id Handler ID of the handler to be unblocked
|
||
*/
|
||
unblock_signal_handler(id: number): void;
|
||
/**
|
||
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
||
* @param detailedName Name of the signal to stop emission of
|
||
*/
|
||
stop_emission_by_name(detailedName: string): void;
|
||
}
|
||
|
||
namespace WifiDialog {
|
||
// Constructor properties interface
|
||
|
||
interface ConstructorProps
|
||
extends Gtk.Dialog.ConstructorProps,
|
||
Atk.ImplementorIface.ConstructorProps,
|
||
Gtk.Buildable.ConstructorProps {}
|
||
}
|
||
|
||
class WifiDialog extends Gtk.Dialog implements Atk.ImplementorIface, Gtk.Buildable {
|
||
static $gtype: GObject.GType<WifiDialog>;
|
||
|
||
// Constructors
|
||
|
||
constructor(properties?: Partial<WifiDialog.ConstructorProps>, ...args: any[]);
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
static ['new'](
|
||
client: NM.Client,
|
||
connection: NM.Connection,
|
||
device: NM.Device,
|
||
ap: NM.AccessPoint,
|
||
secrets_only: boolean,
|
||
): WifiDialog;
|
||
// Conflicted with Gtk.Dialog.new
|
||
|
||
static ['new'](...args: never[]): any;
|
||
|
||
static new_for_create(client: NM.Client): WifiDialog;
|
||
|
||
static new_for_hidden(client: NM.Client): WifiDialog;
|
||
|
||
static new_for_other(client: NM.Client): WifiDialog;
|
||
|
||
static new_for_secrets(
|
||
client: NM.Client,
|
||
connection: NM.Connection,
|
||
secrets_setting_name: string,
|
||
secrets_hints: string,
|
||
): WifiDialog;
|
||
|
||
// Methods
|
||
|
||
get_connection(): [NM.Connection, NM.Device, NM.AccessPoint];
|
||
get_nag_ignored(): boolean;
|
||
nag_user(): Gtk.Widget;
|
||
set_nag_ignored(ignored: boolean): void;
|
||
|
||
// Inherited methods
|
||
/**
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target`.
|
||
*
|
||
* Whenever the `source_property` is changed the `target_property` is
|
||
* updated using the same value. For instance:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
||
* ```
|
||
*
|
||
*
|
||
* Will result in the "sensitive" property of the widget #GObject instance to be
|
||
* updated with the same value of the "active" property of the action #GObject
|
||
* instance.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well.
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. To remove the binding without affecting the
|
||
* `source` and the `target` you can just call g_object_unref() on the returned
|
||
* #GBinding instance.
|
||
*
|
||
* Removing the binding by calling g_object_unref() on it must only be done if
|
||
* the binding, `source` and `target` are only used from a single thread and it
|
||
* is clear that both `source` and `target` outlive the binding. Especially it
|
||
* is not safe to rely on this if the binding, `source` or `target` can be
|
||
* finalized from different threads. Keep another reference to the binding and
|
||
* use g_binding_unbind() instead to be on the safe side.
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
): GObject.Binding;
|
||
/**
|
||
* Complete version of g_object_bind_property().
|
||
*
|
||
* Creates a binding between `source_property` on `source` and `target_property`
|
||
* on `target,` allowing you to set the transformation functions to be used by
|
||
* the binding.
|
||
*
|
||
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
||
* if `target_property` on `target` changes then the `source_property` on `source`
|
||
* will be updated as well. The `transform_from` function is only used in case
|
||
* of bidirectional bindings, otherwise it will be ignored
|
||
*
|
||
* The binding will automatically be removed when either the `source` or the
|
||
* `target` instances are finalized. This will release the reference that is
|
||
* being held on the #GBinding instance; if you want to hold on to the
|
||
* #GBinding instance, you will need to hold a reference to it.
|
||
*
|
||
* To remove the binding, call g_binding_unbind().
|
||
*
|
||
* A #GObject can have multiple bindings.
|
||
*
|
||
* The same `user_data` parameter will be used for both `transform_to`
|
||
* and `transform_from` transformation functions; the `notify` function will
|
||
* be called once, when the binding is removed. If you need different data
|
||
* for each transformation function, please use
|
||
* g_object_bind_property_with_closures() instead.
|
||
* @param source_property the property on @source to bind
|
||
* @param target the target #GObject
|
||
* @param target_property the property on @target to bind
|
||
* @param flags flags to pass to #GBinding
|
||
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
||
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
||
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
||
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
||
*/
|
||
bind_property_full(
|
||
source_property: string,
|
||
target: GObject.Object,
|
||
target_property: string,
|
||
flags: GObject.BindingFlags | null,
|
||
transform_to?: GObject.BindingTransformFunc | null,
|
||
transform_from?: GObject.BindingTransformFunc | null,
|
||
notify?: GLib.DestroyNotify | null,
|
||
): GObject.Binding;
|
||
// Conflicted with GObject.Object.bind_property_full
|
||
bind_property_full(...args: never[]): any;
|
||
/**
|
||
* This function is intended for #GObject implementations to re-enforce
|
||
* a [floating][floating-ref] object reference. Doing this is seldom
|
||
* required: all #GInitiallyUnowneds are created with a floating reference
|
||
* which usually just needs to be sunken by calling g_object_ref_sink().
|
||
*/
|
||
force_floating(): void;
|
||
/**
|
||
* Increases the freeze count on `object`. If the freeze count is
|
||
* non-zero, the emission of "notify" signals on `object` is
|
||
* stopped. The signals are queued until the freeze count is decreased
|
||
* to zero. Duplicate notifications are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property modified while the
|
||
* object is frozen.
|
||
*
|
||
* This is necessary for accessors that modify multiple properties to prevent
|
||
* premature notification while the object is still being modified.
|
||
*/
|
||
freeze_notify(): void;
|
||
/**
|
||
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
||
* @param key name of the key for that association
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
get_data(key: string): any | null;
|
||
/**
|
||
* Gets a property of an object.
|
||
*
|
||
* The value can be:
|
||
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
||
* - a GObject.Value initialized with the expected type of the property
|
||
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
||
*
|
||
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
||
*
|
||
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
||
* @param property_name The name of the property to get
|
||
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
||
*/
|
||
get_property(property_name: string, value: GObject.Value | any): any;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
get_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Gets `n_properties` properties for an `object`.
|
||
* Obtained properties will be set to `values`. All properties must be valid.
|
||
* Warnings will be emitted and undefined behaviour may result if invalid
|
||
* properties are passed in.
|
||
* @param names the names of each property to get
|
||
* @param values the values of each property to get
|
||
*/
|
||
getv(names: string[], values: (GObject.Value | any)[]): void;
|
||
/**
|
||
* Checks whether `object` has a [floating][floating-ref] reference.
|
||
* @returns %TRUE if @object has a floating reference
|
||
*/
|
||
is_floating(): boolean;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param property_name the name of a property installed on the class of @object.
|
||
*/
|
||
notify(property_name: string): void;
|
||
/**
|
||
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
||
*
|
||
* This function omits the property name lookup, hence it is faster than
|
||
* g_object_notify().
|
||
*
|
||
* One way to avoid using g_object_notify() from within the
|
||
* class that registered the properties, and using g_object_notify_by_pspec()
|
||
* instead, is to store the GParamSpec used with
|
||
* g_object_class_install_property() inside a static array, e.g.:
|
||
*
|
||
*
|
||
* ```c
|
||
* typedef enum
|
||
* {
|
||
* PROP_FOO = 1,
|
||
* PROP_LAST
|
||
* } MyObjectProperty;
|
||
*
|
||
* static GParamSpec *properties[PROP_LAST];
|
||
*
|
||
* static void
|
||
* my_object_class_init (MyObjectClass *klass)
|
||
* {
|
||
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
||
* 0, 100,
|
||
* 50,
|
||
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
||
* g_object_class_install_property (gobject_class,
|
||
* PROP_FOO,
|
||
* properties[PROP_FOO]);
|
||
* }
|
||
* ```
|
||
*
|
||
*
|
||
* and then notify a change on the "foo" property with:
|
||
*
|
||
*
|
||
* ```c
|
||
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
||
* ```
|
||
*
|
||
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
||
*/
|
||
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Increases the reference count of `object`.
|
||
*
|
||
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
||
* of `object` will be propagated to the return type (using the GCC typeof()
|
||
* extension), so any casting the caller needs to do on the return type must be
|
||
* explicit.
|
||
* @returns the same @object
|
||
*/
|
||
ref(): GObject.Object;
|
||
/**
|
||
* Increase the reference count of `object,` and possibly remove the
|
||
* [floating][floating-ref] reference, if `object` has a floating reference.
|
||
*
|
||
* In other words, if the object is floating, then this call "assumes
|
||
* ownership" of the floating reference, converting it to a normal
|
||
* reference by clearing the floating flag while leaving the reference
|
||
* count unchanged. If the object is not floating, then this call
|
||
* adds a new normal reference increasing the reference count by one.
|
||
*
|
||
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
||
* under the same conditions as for g_object_ref().
|
||
* @returns @object
|
||
*/
|
||
ref_sink(): GObject.Object;
|
||
/**
|
||
* Releases all references to other objects. This can be used to break
|
||
* reference cycles.
|
||
*
|
||
* This function should only be called from object system implementations.
|
||
*/
|
||
run_dispose(): void;
|
||
/**
|
||
* Each object carries around a table of associations from
|
||
* strings to pointers. This function lets you set an association.
|
||
*
|
||
* If the object already had an association with that name,
|
||
* the old association will be destroyed.
|
||
*
|
||
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
||
* This means a copy of `key` is kept permanently (even after `object` has been
|
||
* finalized) — so it is recommended to only use a small, bounded set of values
|
||
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
||
* @param key name of the key
|
||
* @param data data to associate with that key
|
||
*/
|
||
set_data(key: string, data?: any | null): void;
|
||
/**
|
||
* Sets a property on an object.
|
||
* @param property_name The name of the property to set
|
||
* @param value The value to set the property to
|
||
*/
|
||
set_property(property_name: string, value: GObject.Value | any): void;
|
||
/**
|
||
* Remove a specified datum from the object's data associations,
|
||
* without invoking the association's destroy handler.
|
||
* @param key name of the key
|
||
* @returns the data if found, or %NULL if no such data exists.
|
||
*/
|
||
steal_data(key: string): any | null;
|
||
/**
|
||
* This function gets back user data pointers stored via
|
||
* g_object_set_qdata() and removes the `data` from object
|
||
* without invoking its destroy() function (if any was
|
||
* set).
|
||
* Usually, calling this function is only required to update
|
||
* user data pointers with a destroy notifier, for example:
|
||
*
|
||
* ```c
|
||
* void
|
||
* object_add_to_user_list (GObject *object,
|
||
* const gchar *new_string)
|
||
* {
|
||
* // the quark, naming the object data
|
||
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
||
* // retrieve the old string list
|
||
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
||
*
|
||
* // prepend new string
|
||
* list = g_list_prepend (list, g_strdup (new_string));
|
||
* // this changed 'list', so we need to set it again
|
||
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
||
* }
|
||
* static void
|
||
* free_string_list (gpointer data)
|
||
* {
|
||
* GList *node, *list = data;
|
||
*
|
||
* for (node = list; node; node = node->next)
|
||
* g_free (node->data);
|
||
* g_list_free (list);
|
||
* }
|
||
* ```
|
||
*
|
||
* Using g_object_get_qdata() in the above example, instead of
|
||
* g_object_steal_qdata() would have left the destroy function set,
|
||
* and thus the partial string list would have been freed upon
|
||
* g_object_set_qdata_full().
|
||
* @param quark A #GQuark, naming the user data pointer
|
||
* @returns The user data pointer set, or %NULL
|
||
*/
|
||
steal_qdata(quark: GLib.Quark): any | null;
|
||
/**
|
||
* Reverts the effect of a previous call to
|
||
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
||
* and when it reaches zero, queued "notify" signals are emitted.
|
||
*
|
||
* Duplicate notifications for each property are squashed so that at most one
|
||
* #GObject::notify signal is emitted for each property, in the reverse order
|
||
* in which they have been queued.
|
||
*
|
||
* It is an error to call this function when the freeze count is zero.
|
||
*/
|
||
thaw_notify(): void;
|
||
/**
|
||
* Decreases the reference count of `object`. When its reference count
|
||
* drops to 0, the object is finalized (i.e. its memory is freed).
|
||
*
|
||
* If the pointer to the #GObject may be reused in future (for example, if it is
|
||
* an instance variable of another object), it is recommended to clear the
|
||
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
||
* invalid #GObject instance. Use g_clear_object() for this.
|
||
*/
|
||
unref(): void;
|
||
/**
|
||
* This function essentially limits the life time of the `closure` to
|
||
* the life time of the object. That is, when the object is finalized,
|
||
* the `closure` is invalidated by calling g_closure_invalidate() on
|
||
* it, in order to prevent invocations of the closure with a finalized
|
||
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
||
* added as marshal guards to the `closure,` to ensure that an extra
|
||
* reference count is held on `object` during invocation of the
|
||
* `closure`. Usually, this function will be called on closures that
|
||
* use this `object` as closure data.
|
||
* @param closure #GClosure to watch
|
||
*/
|
||
watch_closure(closure: GObject.Closure): void;
|
||
/**
|
||
* the `constructed` function is called by g_object_new() as the
|
||
* final step of the object creation process. At the point of the call, all
|
||
* construction properties have been set on the object. The purpose of this
|
||
* call is to allow for object initialisation steps that can only be performed
|
||
* after construction properties have been set. `constructed` implementors
|
||
* should chain up to the `constructed` call of their parent class to allow it
|
||
* to complete its initialisation.
|
||
*/
|
||
vfunc_constructed(): void;
|
||
/**
|
||
* emits property change notification for a bunch
|
||
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
||
* needed.
|
||
* @param n_pspecs
|
||
* @param pspecs
|
||
*/
|
||
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
||
/**
|
||
* the `dispose` function is supposed to drop all references to other
|
||
* objects, but keep the instance otherwise intact, so that client method
|
||
* invocations still work. It may be run multiple times (due to reference
|
||
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
||
* of the parent class.
|
||
*/
|
||
vfunc_dispose(): void;
|
||
/**
|
||
* instance finalization function, should finish the finalization of
|
||
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
||
* parent class.
|
||
*/
|
||
vfunc_finalize(): void;
|
||
/**
|
||
* the generic getter for all properties of this type. Should be
|
||
* overridden for every type with properties.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Emits a "notify" signal for the property `property_name` on `object`.
|
||
*
|
||
* When possible, eg. when signaling a property change from within the class
|
||
* that registered the property, you should use g_object_notify_by_pspec()
|
||
* instead.
|
||
*
|
||
* Note that emission of the notify signal may be blocked with
|
||
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
||
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
||
* called.
|
||
* @param pspec
|
||
*/
|
||
vfunc_notify(pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* the generic setter for all properties of this type. Should be
|
||
* overridden for every type with properties. If implementations of
|
||
* `set_property` don't emit property change notification explicitly, this will
|
||
* be done implicitly by the type system. However, if the notify signal is
|
||
* emitted explicitly, the type system will not emit it a second time.
|
||
* @param property_id
|
||
* @param value
|
||
* @param pspec
|
||
*/
|
||
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
||
/**
|
||
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
||
* @param id Handler ID of the handler to be disconnected
|
||
*/
|
||
disconnect(id: number): void;
|
||
/**
|
||
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
||
* @param properties Object containing the properties to set
|
||
*/
|
||
set(properties: { [key: string]: any }): void;
|
||
/**
|
||
* Blocks a handler of an instance so it will not be called during any signal emissions
|
||
* @param id Handler ID of the handler to be blocked
|
||
*/
|
||
block_signal_handler(id: number): void;
|
||
/**
|
||
* Unblocks a handler so it will be called again during any signal emissions
|
||
* @param id Handler ID of the handler to be unblocked
|
||
*/
|
||
unblock_signal_handler(id: number): void;
|
||
/**
|
||
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
||
* @param detailedName Name of the signal to stop emission of
|
||
*/
|
||
stop_emission_by_name(detailedName: string): void;
|
||
}
|
||
|
||
type BarCodeClass = typeof BarCode;
|
||
type BarCodeWidgetClass = typeof BarCodeWidget;
|
||
type CertChooserClass = typeof CertChooser;
|
||
abstract class CountryInfo {
|
||
static $gtype: GObject.GType<CountryInfo>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
// Methods
|
||
|
||
get_country_code(): string;
|
||
get_country_name(): string;
|
||
get_providers(): MobileProvider[];
|
||
ref(): CountryInfo;
|
||
unref(): void;
|
||
}
|
||
|
||
abstract class MobileAccessMethod {
|
||
static $gtype: GObject.GType<MobileAccessMethod>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
// Methods
|
||
|
||
get_3gpp_apn(): string;
|
||
get_dns(): string[];
|
||
get_family(): MobileFamily;
|
||
get_gateway(): string;
|
||
get_name(): string;
|
||
get_password(): string;
|
||
get_username(): string;
|
||
ref(): MobileAccessMethod;
|
||
unref(): void;
|
||
}
|
||
|
||
abstract class MobileProvider {
|
||
static $gtype: GObject.GType<MobileProvider>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
// Methods
|
||
|
||
get_3gpp_mcc_mnc(): string[];
|
||
get_cdma_sid(): number[];
|
||
get_methods(): MobileAccessMethod[];
|
||
get_name(): string;
|
||
ref(): MobileProvider;
|
||
unref(): void;
|
||
}
|
||
|
||
type MobileProvidersDatabaseClass = typeof MobileProvidersDatabase;
|
||
abstract class MobileProvidersDatabasePrivate {
|
||
static $gtype: GObject.GType<MobileProvidersDatabasePrivate>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
/**
|
||
* Network access method details.
|
||
*/
|
||
class MobileWizardAccessMethod {
|
||
static $gtype: GObject.GType<MobileWizardAccessMethod>;
|
||
|
||
// Fields
|
||
|
||
provider_name: string;
|
||
plan_name: string;
|
||
devtype: NM.DeviceModemCapabilities;
|
||
username: string;
|
||
password: string;
|
||
gsm_apn: string;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
type MobileWizardClass = typeof MobileWizard;
|
||
type VpnPasswordDialogClass = typeof VpnPasswordDialog;
|
||
type WifiDialogClass = typeof WifiDialog;
|
||
abstract class Ws {
|
||
static $gtype: GObject.GType<Ws>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
|
||
// Methods
|
||
|
||
adhoc_compatible(): boolean;
|
||
hotspot_compatible(): boolean;
|
||
validate(): boolean;
|
||
}
|
||
|
||
abstract class Ws8021x {
|
||
static $gtype: GObject.GType<Ws8021x>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class Ws8021xClass {
|
||
static $gtype: GObject.GType<Ws8021xClass>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsDynamicWep {
|
||
static $gtype: GObject.GType<WsDynamicWep>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsDynamicWepClass {
|
||
static $gtype: GObject.GType<WsDynamicWepClass>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsInterface {
|
||
static $gtype: GObject.GType<WsInterface>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsLeap {
|
||
static $gtype: GObject.GType<WsLeap>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsLeapClass {
|
||
static $gtype: GObject.GType<WsLeapClass>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsOwe {
|
||
static $gtype: GObject.GType<WsOwe>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsOweClass {
|
||
static $gtype: GObject.GType<WsOweClass>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsSae {
|
||
static $gtype: GObject.GType<WsSae>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsSaeClass {
|
||
static $gtype: GObject.GType<WsSaeClass>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsWepKey {
|
||
static $gtype: GObject.GType<WsWepKey>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsWepKeyClass {
|
||
static $gtype: GObject.GType<WsWepKeyClass>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsWpaEap {
|
||
static $gtype: GObject.GType<WsWpaEap>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsWpaEapClass {
|
||
static $gtype: GObject.GType<WsWpaEapClass>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsWpaPsk {
|
||
static $gtype: GObject.GType<WsWpaPsk>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
abstract class WsWpaPskClass {
|
||
static $gtype: GObject.GType<WsWpaPskClass>;
|
||
|
||
// Constructors
|
||
|
||
_init(...args: any[]): void;
|
||
}
|
||
|
||
/**
|
||
* Name of the imported GIR library
|
||
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L188
|
||
*/
|
||
const __name__: string;
|
||
/**
|
||
* Version of the imported GIR library
|
||
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L189
|
||
*/
|
||
const __version__: string;
|
||
}
|
||
|
||
export default NMA;
|
||
}
|
||
|
||
declare module 'gi://NMA' {
|
||
import NMA10 from 'gi://NMA?version=1.0';
|
||
export default NMA10;
|
||
}
|
||
// END
|