3339 lines
157 KiB
TypeScript
3339 lines
157 KiB
TypeScript
/// <reference path="./libxfce4util-1.0.d.ts" />
|
|
/// <reference path="./gio-2.0.d.ts" />
|
|
/// <reference path="./gobject-2.0.d.ts" />
|
|
/// <reference path="./glib-2.0.d.ts" />
|
|
/// <reference path="./gmodule-2.0.d.ts" />
|
|
|
|
/**
|
|
* Type Definitions for Gjs (https://gjs.guide/)
|
|
*
|
|
* These type definitions are automatically generated, do not edit them by hand.
|
|
* If you found a bug fix it in `ts-for-gir` or create a bug report on https://github.com/gjsify/ts-for-gir
|
|
*
|
|
* The based EJS template file is used for the generated .d.ts file of each GIR module like Gtk-4.0, GObject-2.0, ...
|
|
*/
|
|
|
|
declare module 'gi://Garcon?version=1.0' {
|
|
// Module dependencies
|
|
import type Libxfce4util from 'gi://Libxfce4util?version=1.0';
|
|
import type Gio from 'gi://Gio?version=2.0';
|
|
import type GObject from 'gi://GObject?version=2.0';
|
|
import type GLib from 'gi://GLib?version=2.0';
|
|
import type GModule from 'gi://GModule?version=2.0';
|
|
|
|
export namespace Garcon {
|
|
/**
|
|
* Garcon-1.0
|
|
*/
|
|
|
|
export namespace MenuLayoutMergeType {
|
|
export const $gtype: GObject.GType<MenuLayoutMergeType>;
|
|
}
|
|
|
|
enum MenuLayoutMergeType {
|
|
MENUS,
|
|
FILES,
|
|
ALL,
|
|
}
|
|
|
|
export namespace MenuMergeFileType {
|
|
export const $gtype: GObject.GType<MenuMergeFileType>;
|
|
}
|
|
|
|
enum MenuMergeFileType {
|
|
PATH,
|
|
PARENT,
|
|
}
|
|
|
|
export namespace MenuNodeType {
|
|
export const $gtype: GObject.GType<MenuNodeType>;
|
|
}
|
|
|
|
enum MenuNodeType {
|
|
INVALID,
|
|
MENU,
|
|
NAME,
|
|
DIRECTORY,
|
|
DIRECTORYDIR,
|
|
DEFAULTDIRECTORYDIRS,
|
|
APPDIR,
|
|
DEFAULTAPPDIRS,
|
|
ONLYUNALLOCATED,
|
|
NOTONLYUNALLOCATED,
|
|
DELETED,
|
|
NOTDELETED,
|
|
INCLUDE,
|
|
EXCLUDE,
|
|
ALL,
|
|
FILENAME,
|
|
CATEGORY,
|
|
OR,
|
|
AND,
|
|
NOT,
|
|
MOVE,
|
|
OLD,
|
|
NEW,
|
|
DEFAULTLAYOUT,
|
|
LAYOUT,
|
|
MENUNAME,
|
|
SEPARATOR,
|
|
MERGE,
|
|
MERGEFILE,
|
|
MERGEDIR,
|
|
MERGEDIRS,
|
|
}
|
|
/**
|
|
* Macro for garcon_set_environment or garcon_set_environment_xdg
|
|
* to set the Xfce Desktop Environment.
|
|
*/
|
|
const ENVIRONMENT_XFCE: string;
|
|
/**
|
|
* The major version number of the garcon library.
|
|
* Like garcon_major_version, but from the headers used at
|
|
* application compile time, rather than from the library
|
|
* linked against at application run time.
|
|
*/
|
|
const MAJOR_VERSION: number;
|
|
/**
|
|
* The micro version number of the garcon library.
|
|
* Like garcon_micro_version, but from the headers used at
|
|
* application compile time, rather than from the library
|
|
* linked against at application run time.
|
|
*/
|
|
const MICRO_VERSION: number;
|
|
/**
|
|
* The minor version number of the garcon library.
|
|
* Like garcon_minor_version, but from the headers used at
|
|
* application compile time, rather than from the library
|
|
* linked against at application run time.
|
|
*/
|
|
const MINOR_VERSION: number;
|
|
/**
|
|
* Checks that the <systemitem class="library">garcon</systemitem>
|
|
* library in use is compatible with the given version. Generally you
|
|
* would pass in the constants #GARCON_MAJOR_VERSION,
|
|
* #GARCON_MINOR_VERSION and #GARCON_MICRO_VERSION as the three
|
|
* arguments to this function; that produces a check that the library
|
|
* in use is compatible with the version of
|
|
* <systemitem class="library">garcon</systemitem> the application was
|
|
* compiled against.
|
|
*
|
|
* <example>
|
|
* <title>Checking the runtime version of the garcon library</title>
|
|
* <programlisting>
|
|
* const gchar *mismatch;
|
|
* mismatch = garcon_check_version (GARCON_VERSION_MAJOR,
|
|
* GARCON_VERSION_MINOR,
|
|
* GARCON_VERSION_MICRO);
|
|
* if (G_UNLIKELY (mismatch != NULL))
|
|
* g_error ("Version mismatch: %<!---->s", mismatch);
|
|
* </programlisting>
|
|
* </example>
|
|
* @param required_major the required major version.
|
|
* @param required_minor the required minor version.
|
|
* @param required_micro the required micro version.
|
|
* @returns %NULL if the library is compatible with the given version, or a string describing the version mismatch. The returned string is owned by the library and must not be freed or modified by the caller.
|
|
*/
|
|
function check_version(required_major: number, required_minor: number, required_micro: number): string;
|
|
function config_build_paths(filename: string): string[];
|
|
/**
|
|
* Looks for the filename in the users' config directory and then
|
|
* the system config directories.
|
|
* @param filename relative filename of the config resource.
|
|
* @returns the absolute path to the first file in the search path, that matches @filename or %NULL if no such file or directory could be found.
|
|
*/
|
|
function config_lookup(filename: string): string;
|
|
/**
|
|
* Get the environment set with garcon_set_environment().
|
|
* @returns Name of the desktop environment (e.g. XFCE, KDE, GNOME) which is used or %NULL.
|
|
*/
|
|
function get_environment(): string;
|
|
function marshal_VOID__OBJECT_OBJECT(
|
|
closure: GObject.Closure,
|
|
return_value: GObject.Value | any,
|
|
n_param_values: number,
|
|
param_values: GObject.Value | any,
|
|
invocation_hint?: any | null,
|
|
marshal_data?: any | null,
|
|
): void;
|
|
/**
|
|
* Sets (or unsets) the desktop environment for which menus will generated.
|
|
* Menus and menu items belonging to other desktop environments will be
|
|
* ignored. If set to %NULL, all menu items are used.
|
|
* @param env Name of the desktop environment for which menus will be generated (e.g. XFCE, KDE, GNOME or %NULL).
|
|
*/
|
|
function set_environment(env: string): void;
|
|
/**
|
|
* Set the desktop environment to the envvar XDG_CURRENT_DESKTOP.
|
|
* If this variables is not set, it falls back to `default_env`.
|
|
*
|
|
* For `fallback_env` you can use for example #GARCON_ENVIRONMENT_XFCE.
|
|
* @param fallback_env fallback value
|
|
*/
|
|
function set_environment_xdg(fallback_env: string): void;
|
|
namespace Menu {
|
|
// Signal callback interfaces
|
|
|
|
interface DirectoryChanged {
|
|
(object: MenuDirectory, p0: MenuDirectory): void;
|
|
}
|
|
|
|
interface ReloadRequired {
|
|
(): void;
|
|
}
|
|
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps, MenuElement.ConstructorProps {
|
|
directory: MenuDirectory;
|
|
file: Gio.File;
|
|
}
|
|
}
|
|
|
|
class Menu extends GObject.Object implements MenuElement {
|
|
static $gtype: GObject.GType<Menu>;
|
|
|
|
// Properties
|
|
|
|
/**
|
|
* The directory entry associated with this menu.
|
|
*/
|
|
get directory(): MenuDirectory;
|
|
set directory(val: MenuDirectory);
|
|
/**
|
|
* The #GFile from which the %GarconMenu was loaded.
|
|
*/
|
|
get file(): Gio.File;
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<Menu.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static ['new'](file: Gio.File): Menu;
|
|
|
|
static new_applications(): Menu;
|
|
|
|
static new_for_path(filename: string): Menu;
|
|
|
|
// Signals
|
|
|
|
connect(id: string, callback: (...args: any[]) => any): number;
|
|
connect_after(id: string, callback: (...args: any[]) => any): number;
|
|
emit(id: string, ...args: any[]): void;
|
|
connect(
|
|
signal: 'directory-changed',
|
|
callback: (_source: this, object: MenuDirectory, p0: MenuDirectory) => void,
|
|
): number;
|
|
connect_after(
|
|
signal: 'directory-changed',
|
|
callback: (_source: this, object: MenuDirectory, p0: MenuDirectory) => void,
|
|
): number;
|
|
emit(signal: 'directory-changed', object: MenuDirectory, p0: MenuDirectory): void;
|
|
connect(signal: 'reload-required', callback: (_source: this) => void): number;
|
|
connect_after(signal: 'reload-required', callback: (_source: this) => void): number;
|
|
emit(signal: 'reload-required'): void;
|
|
|
|
// Methods
|
|
|
|
/**
|
|
* Adds `submenu` as a sub menu to `menu`.
|
|
* @param submenu a #GarconMenu
|
|
*/
|
|
add_menu(submenu: Menu): void;
|
|
/**
|
|
* Returns the #GarconMenuDirectory of `menu` or %NULL if `menu` has
|
|
* no valid directory element.
|
|
*
|
|
* The menu directory may contain a lot of useful information about
|
|
* the menu like the display and icon name, desktop environments it
|
|
* should show up in etc.
|
|
* @returns a #GarconMenuDirectory
|
|
*/
|
|
get_directory(): MenuDirectory | null;
|
|
/**
|
|
* Get all the menu element in `menu`. This contains sub menus, menu items
|
|
* and separators.
|
|
*
|
|
* Returns a list of #GarconMenuItem or %NULL. Free the list with
|
|
* g_list_free().
|
|
*/
|
|
get_elements(): MenuItem[] | null;
|
|
/**
|
|
* Get the file for `menu`. It refers to the .menu file from which
|
|
* `menu` was or will be loaded.
|
|
*
|
|
* The returned object should be unreffed with g_object_unref()
|
|
* when no longer needed.
|
|
* @returns a #GFile.
|
|
*/
|
|
get_file(): Gio.File;
|
|
/**
|
|
* Get the item pool of the menu. This pool contains all items in this
|
|
* menu (for that of its submenus).
|
|
* @returns a #GarconMenuItemPool.
|
|
*/
|
|
get_item_pool(): MenuItemPool;
|
|
/**
|
|
* Returns all #GarconMenuItem included in `menu`. The items are
|
|
* sorted by their display names in ascending order.
|
|
*
|
|
* The caller is responsible to free the returned list using
|
|
* g_list_free() when no longer needed.
|
|
* @returns list of #GarconMenuItem included in @menu.
|
|
*/
|
|
get_items(): MenuItem[];
|
|
/**
|
|
* Looks in `menu` for a submenu with `name` as name.
|
|
* @param name a sub menu name
|
|
* @returns a #GarconMenu or %NULL.
|
|
*/
|
|
get_menu_with_name(name: string): Menu | null;
|
|
/**
|
|
* Returns a sorted list of #GarconMenu submenus of `menu`. The list
|
|
* should be freed with g_list_free().
|
|
* @returns a sorted list of #GarconMenu.
|
|
*/
|
|
get_menus(): Menu[];
|
|
/**
|
|
* Returns the parent #GarconMenu or `menu`.
|
|
* @returns a #GarconMenu or %NULL if @menu is the root menu.
|
|
*/
|
|
get_parent(): Menu | null;
|
|
/**
|
|
* This function loads the entire menu tree from the file referred to
|
|
* by `menu`. It resolves merges, moves and everything else defined
|
|
* in the menu specification. The resulting tree information is
|
|
* stored within `menu` and can be accessed using the public #GarconMenu
|
|
* API afterwards.
|
|
*
|
|
* `cancellable` can be used to handle blocking I/O when reading data
|
|
* from files during the loading process.
|
|
*
|
|
* `error` should either be NULL or point to a #GError return location
|
|
* where errors should be stored in.
|
|
* @param cancellable a #GCancellable
|
|
* @returns %TRUE if the menu was loaded successfully or %FALSE if there was an error or the process was cancelled.
|
|
*/
|
|
load(cancellable?: Gio.Cancellable | null): boolean;
|
|
|
|
// Inherited methods
|
|
equal(b: MenuElement): boolean;
|
|
get_comment(): string;
|
|
get_icon_name(): string;
|
|
get_name(): string;
|
|
get_no_display(): boolean;
|
|
get_show_in_environment(): boolean;
|
|
get_visible(): boolean;
|
|
vfunc_equal(other: MenuElement): boolean;
|
|
vfunc_get_comment(): string;
|
|
vfunc_get_icon_name(): string;
|
|
vfunc_get_name(): string;
|
|
vfunc_get_no_display(): boolean;
|
|
vfunc_get_show_in_environment(): boolean;
|
|
vfunc_get_visible(): boolean;
|
|
/**
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target`.
|
|
*
|
|
* Whenever the `source_property` is changed the `target_property` is
|
|
* updated using the same value. For instance:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
|
* ```
|
|
*
|
|
*
|
|
* Will result in the "sensitive" property of the widget #GObject instance to be
|
|
* updated with the same value of the "active" property of the action #GObject
|
|
* instance.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well.
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. To remove the binding without affecting the
|
|
* `source` and the `target` you can just call g_object_unref() on the returned
|
|
* #GBinding instance.
|
|
*
|
|
* Removing the binding by calling g_object_unref() on it must only be done if
|
|
* the binding, `source` and `target` are only used from a single thread and it
|
|
* is clear that both `source` and `target` outlive the binding. Especially it
|
|
* is not safe to rely on this if the binding, `source` or `target` can be
|
|
* finalized from different threads. Keep another reference to the binding and
|
|
* use g_binding_unbind() instead to be on the safe side.
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
): GObject.Binding;
|
|
/**
|
|
* Complete version of g_object_bind_property().
|
|
*
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target,` allowing you to set the transformation functions to be used by
|
|
* the binding.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well. The `transform_from` function is only used in case
|
|
* of bidirectional bindings, otherwise it will be ignored
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. This will release the reference that is
|
|
* being held on the #GBinding instance; if you want to hold on to the
|
|
* #GBinding instance, you will need to hold a reference to it.
|
|
*
|
|
* To remove the binding, call g_binding_unbind().
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
*
|
|
* The same `user_data` parameter will be used for both `transform_to`
|
|
* and `transform_from` transformation functions; the `notify` function will
|
|
* be called once, when the binding is removed. If you need different data
|
|
* for each transformation function, please use
|
|
* g_object_bind_property_with_closures() instead.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
|
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
|
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property_full(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
transform_to?: GObject.BindingTransformFunc | null,
|
|
transform_from?: GObject.BindingTransformFunc | null,
|
|
notify?: GLib.DestroyNotify | null,
|
|
): GObject.Binding;
|
|
// Conflicted with GObject.Object.bind_property_full
|
|
bind_property_full(...args: never[]): any;
|
|
/**
|
|
* This function is intended for #GObject implementations to re-enforce
|
|
* a [floating][floating-ref] object reference. Doing this is seldom
|
|
* required: all #GInitiallyUnowneds are created with a floating reference
|
|
* which usually just needs to be sunken by calling g_object_ref_sink().
|
|
*/
|
|
force_floating(): void;
|
|
/**
|
|
* Increases the freeze count on `object`. If the freeze count is
|
|
* non-zero, the emission of "notify" signals on `object` is
|
|
* stopped. The signals are queued until the freeze count is decreased
|
|
* to zero. Duplicate notifications are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property modified while the
|
|
* object is frozen.
|
|
*
|
|
* This is necessary for accessors that modify multiple properties to prevent
|
|
* premature notification while the object is still being modified.
|
|
*/
|
|
freeze_notify(): void;
|
|
/**
|
|
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
|
* @param key name of the key for that association
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
get_data(key: string): any | null;
|
|
/**
|
|
* Gets a property of an object.
|
|
*
|
|
* The value can be:
|
|
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
|
* - a GObject.Value initialized with the expected type of the property
|
|
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
|
*
|
|
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
|
*
|
|
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
|
* @param property_name The name of the property to get
|
|
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
|
*/
|
|
get_property(property_name: string, value: GObject.Value | any): any;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
get_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Gets `n_properties` properties for an `object`.
|
|
* Obtained properties will be set to `values`. All properties must be valid.
|
|
* Warnings will be emitted and undefined behaviour may result if invalid
|
|
* properties are passed in.
|
|
* @param names the names of each property to get
|
|
* @param values the values of each property to get
|
|
*/
|
|
getv(names: string[], values: (GObject.Value | any)[]): void;
|
|
/**
|
|
* Checks whether `object` has a [floating][floating-ref] reference.
|
|
* @returns %TRUE if @object has a floating reference
|
|
*/
|
|
is_floating(): boolean;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param property_name the name of a property installed on the class of @object.
|
|
*/
|
|
notify(property_name: string): void;
|
|
/**
|
|
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
|
*
|
|
* This function omits the property name lookup, hence it is faster than
|
|
* g_object_notify().
|
|
*
|
|
* One way to avoid using g_object_notify() from within the
|
|
* class that registered the properties, and using g_object_notify_by_pspec()
|
|
* instead, is to store the GParamSpec used with
|
|
* g_object_class_install_property() inside a static array, e.g.:
|
|
*
|
|
*
|
|
* ```c
|
|
* typedef enum
|
|
* {
|
|
* PROP_FOO = 1,
|
|
* PROP_LAST
|
|
* } MyObjectProperty;
|
|
*
|
|
* static GParamSpec *properties[PROP_LAST];
|
|
*
|
|
* static void
|
|
* my_object_class_init (MyObjectClass *klass)
|
|
* {
|
|
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
|
* 0, 100,
|
|
* 50,
|
|
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
|
* g_object_class_install_property (gobject_class,
|
|
* PROP_FOO,
|
|
* properties[PROP_FOO]);
|
|
* }
|
|
* ```
|
|
*
|
|
*
|
|
* and then notify a change on the "foo" property with:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
|
* ```
|
|
*
|
|
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
|
*/
|
|
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Increases the reference count of `object`.
|
|
*
|
|
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
|
* of `object` will be propagated to the return type (using the GCC typeof()
|
|
* extension), so any casting the caller needs to do on the return type must be
|
|
* explicit.
|
|
* @returns the same @object
|
|
*/
|
|
ref(): GObject.Object;
|
|
/**
|
|
* Increase the reference count of `object,` and possibly remove the
|
|
* [floating][floating-ref] reference, if `object` has a floating reference.
|
|
*
|
|
* In other words, if the object is floating, then this call "assumes
|
|
* ownership" of the floating reference, converting it to a normal
|
|
* reference by clearing the floating flag while leaving the reference
|
|
* count unchanged. If the object is not floating, then this call
|
|
* adds a new normal reference increasing the reference count by one.
|
|
*
|
|
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
|
* under the same conditions as for g_object_ref().
|
|
* @returns @object
|
|
*/
|
|
ref_sink(): GObject.Object;
|
|
/**
|
|
* Releases all references to other objects. This can be used to break
|
|
* reference cycles.
|
|
*
|
|
* This function should only be called from object system implementations.
|
|
*/
|
|
run_dispose(): void;
|
|
/**
|
|
* Each object carries around a table of associations from
|
|
* strings to pointers. This function lets you set an association.
|
|
*
|
|
* If the object already had an association with that name,
|
|
* the old association will be destroyed.
|
|
*
|
|
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
|
* This means a copy of `key` is kept permanently (even after `object` has been
|
|
* finalized) — so it is recommended to only use a small, bounded set of values
|
|
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
|
* @param key name of the key
|
|
* @param data data to associate with that key
|
|
*/
|
|
set_data(key: string, data?: any | null): void;
|
|
/**
|
|
* Sets a property on an object.
|
|
* @param property_name The name of the property to set
|
|
* @param value The value to set the property to
|
|
*/
|
|
set_property(property_name: string, value: GObject.Value | any): void;
|
|
/**
|
|
* Remove a specified datum from the object's data associations,
|
|
* without invoking the association's destroy handler.
|
|
* @param key name of the key
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
steal_data(key: string): any | null;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata() and removes the `data` from object
|
|
* without invoking its destroy() function (if any was
|
|
* set).
|
|
* Usually, calling this function is only required to update
|
|
* user data pointers with a destroy notifier, for example:
|
|
*
|
|
* ```c
|
|
* void
|
|
* object_add_to_user_list (GObject *object,
|
|
* const gchar *new_string)
|
|
* {
|
|
* // the quark, naming the object data
|
|
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
|
* // retrieve the old string list
|
|
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
|
*
|
|
* // prepend new string
|
|
* list = g_list_prepend (list, g_strdup (new_string));
|
|
* // this changed 'list', so we need to set it again
|
|
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
|
* }
|
|
* static void
|
|
* free_string_list (gpointer data)
|
|
* {
|
|
* GList *node, *list = data;
|
|
*
|
|
* for (node = list; node; node = node->next)
|
|
* g_free (node->data);
|
|
* g_list_free (list);
|
|
* }
|
|
* ```
|
|
*
|
|
* Using g_object_get_qdata() in the above example, instead of
|
|
* g_object_steal_qdata() would have left the destroy function set,
|
|
* and thus the partial string list would have been freed upon
|
|
* g_object_set_qdata_full().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
steal_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Reverts the effect of a previous call to
|
|
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
|
* and when it reaches zero, queued "notify" signals are emitted.
|
|
*
|
|
* Duplicate notifications for each property are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property, in the reverse order
|
|
* in which they have been queued.
|
|
*
|
|
* It is an error to call this function when the freeze count is zero.
|
|
*/
|
|
thaw_notify(): void;
|
|
/**
|
|
* Decreases the reference count of `object`. When its reference count
|
|
* drops to 0, the object is finalized (i.e. its memory is freed).
|
|
*
|
|
* If the pointer to the #GObject may be reused in future (for example, if it is
|
|
* an instance variable of another object), it is recommended to clear the
|
|
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
|
* invalid #GObject instance. Use g_clear_object() for this.
|
|
*/
|
|
unref(): void;
|
|
/**
|
|
* This function essentially limits the life time of the `closure` to
|
|
* the life time of the object. That is, when the object is finalized,
|
|
* the `closure` is invalidated by calling g_closure_invalidate() on
|
|
* it, in order to prevent invocations of the closure with a finalized
|
|
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
|
* added as marshal guards to the `closure,` to ensure that an extra
|
|
* reference count is held on `object` during invocation of the
|
|
* `closure`. Usually, this function will be called on closures that
|
|
* use this `object` as closure data.
|
|
* @param closure #GClosure to watch
|
|
*/
|
|
watch_closure(closure: GObject.Closure): void;
|
|
/**
|
|
* the `constructed` function is called by g_object_new() as the
|
|
* final step of the object creation process. At the point of the call, all
|
|
* construction properties have been set on the object. The purpose of this
|
|
* call is to allow for object initialisation steps that can only be performed
|
|
* after construction properties have been set. `constructed` implementors
|
|
* should chain up to the `constructed` call of their parent class to allow it
|
|
* to complete its initialisation.
|
|
*/
|
|
vfunc_constructed(): void;
|
|
/**
|
|
* emits property change notification for a bunch
|
|
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
|
* needed.
|
|
* @param n_pspecs
|
|
* @param pspecs
|
|
*/
|
|
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
|
/**
|
|
* the `dispose` function is supposed to drop all references to other
|
|
* objects, but keep the instance otherwise intact, so that client method
|
|
* invocations still work. It may be run multiple times (due to reference
|
|
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
|
* of the parent class.
|
|
*/
|
|
vfunc_dispose(): void;
|
|
/**
|
|
* instance finalization function, should finish the finalization of
|
|
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
|
* parent class.
|
|
*/
|
|
vfunc_finalize(): void;
|
|
/**
|
|
* the generic getter for all properties of this type. Should be
|
|
* overridden for every type with properties.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param pspec
|
|
*/
|
|
vfunc_notify(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* the generic setter for all properties of this type. Should be
|
|
* overridden for every type with properties. If implementations of
|
|
* `set_property` don't emit property change notification explicitly, this will
|
|
* be done implicitly by the type system. However, if the notify signal is
|
|
* emitted explicitly, the type system will not emit it a second time.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
|
* @param id Handler ID of the handler to be disconnected
|
|
*/
|
|
disconnect(id: number): void;
|
|
/**
|
|
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
|
* @param properties Object containing the properties to set
|
|
*/
|
|
set(properties: { [key: string]: any }): void;
|
|
/**
|
|
* Blocks a handler of an instance so it will not be called during any signal emissions
|
|
* @param id Handler ID of the handler to be blocked
|
|
*/
|
|
block_signal_handler(id: number): void;
|
|
/**
|
|
* Unblocks a handler so it will be called again during any signal emissions
|
|
* @param id Handler ID of the handler to be unblocked
|
|
*/
|
|
unblock_signal_handler(id: number): void;
|
|
/**
|
|
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
|
* @param detailedName Name of the signal to stop emission of
|
|
*/
|
|
stop_emission_by_name(detailedName: string): void;
|
|
}
|
|
|
|
namespace MenuDirectory {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps {
|
|
comment: string;
|
|
file: Gio.File;
|
|
icon_name: string;
|
|
iconName: string;
|
|
name: string;
|
|
no_display: boolean;
|
|
noDisplay: boolean;
|
|
}
|
|
}
|
|
|
|
class MenuDirectory extends GObject.Object {
|
|
static $gtype: GObject.GType<MenuDirectory>;
|
|
|
|
// Properties
|
|
|
|
/**
|
|
* Directory description (comment).
|
|
*/
|
|
get comment(): string;
|
|
set comment(val: string);
|
|
get file(): Gio.File;
|
|
/**
|
|
* Icon associated with this directory.
|
|
*/
|
|
get icon_name(): string;
|
|
set icon_name(val: string);
|
|
/**
|
|
* Icon associated with this directory.
|
|
*/
|
|
get iconName(): string;
|
|
set iconName(val: string);
|
|
/**
|
|
* Name of the directory.
|
|
*/
|
|
get name(): string;
|
|
set name(val: string);
|
|
/**
|
|
* Whether this menu item is hidden in menus.
|
|
*/
|
|
get no_display(): boolean;
|
|
set no_display(val: boolean);
|
|
/**
|
|
* Whether this menu item is hidden in menus.
|
|
*/
|
|
get noDisplay(): boolean;
|
|
set noDisplay(val: boolean);
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<MenuDirectory.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static ['new'](file: Gio.File): MenuDirectory;
|
|
|
|
// Methods
|
|
|
|
/**
|
|
* Checks if both directories point to the same file.
|
|
* @param other a #GarconMenuDirectory
|
|
* @returns if files are equal %TRUE, else %FALSE.
|
|
*/
|
|
equal(other: MenuDirectory): boolean;
|
|
/**
|
|
* Get the comment of `directory`.
|
|
* @returns a the description for @directory.
|
|
*/
|
|
get_comment(): string;
|
|
/**
|
|
* Get the #GFile for `directory`. The returned object should be
|
|
* unreffed with g_object_unref() when no longer needed.
|
|
* @returns a #GFile
|
|
*/
|
|
get_file(): Gio.File;
|
|
/**
|
|
* Whether `directory` should be hidden.
|
|
* For applications you want to call garcon_menu_directory_get_visible().
|
|
* @returns a the hidden key for @directory.
|
|
*/
|
|
get_hidden(): boolean;
|
|
/**
|
|
* Get the icon name of `directory`.
|
|
* @returns a the icon-name key for @directory.
|
|
*/
|
|
get_icon_name(): string;
|
|
/**
|
|
* Get the name of `directory`.
|
|
* @returns a the name for @directory.
|
|
*/
|
|
get_name(): string;
|
|
/**
|
|
* Whether `directory` should be displayed.
|
|
* For applications you want to call garcon_menu_directory_get_visible().
|
|
* @returns a the no-display key for @directory.
|
|
*/
|
|
get_no_display(): boolean;
|
|
/**
|
|
* Whether `directory` is visible in the current environment
|
|
* which has been set by garcon_set_environment().
|
|
* For applications you want to call garcon_menu_directory_get_visible().
|
|
* @returns %TRUE is visible in environment, else %FALSE.
|
|
*/
|
|
get_show_in_environment(): boolean;
|
|
/**
|
|
* Check which runs the following checks:
|
|
* garcon_menu_directory_get_show_in_environment(),
|
|
* garcon_menu_directory_get_hidden() and
|
|
* garcon_menu_directory_get_no_display().
|
|
* @returns if visible %TRUE, else %FALSE.
|
|
*/
|
|
get_visible(): boolean;
|
|
/**
|
|
* Set the comment of `directory`.
|
|
* @param comment the new description for @directory.
|
|
*/
|
|
set_comment(comment: string): void;
|
|
/**
|
|
* Set the icon name of `directory`.
|
|
* @param icon_name the new icon name for @directory.
|
|
*/
|
|
set_icon_name(icon_name: string): void;
|
|
/**
|
|
* Set the name of `directory`.
|
|
* @param name the new name for @directory.
|
|
*/
|
|
set_name(name: string): void;
|
|
/**
|
|
* Set the NoDisplay key of `directory`.
|
|
* @param no_display whether @directory should be displayed.
|
|
*/
|
|
set_no_display(no_display: boolean): void;
|
|
}
|
|
|
|
namespace MenuItem {
|
|
// Signal callback interfaces
|
|
|
|
interface Changed {
|
|
(): void;
|
|
}
|
|
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps, MenuElement.ConstructorProps {
|
|
command: string;
|
|
comment: string;
|
|
desktop_id: string;
|
|
desktopId: string;
|
|
file: Gio.File;
|
|
generic_name: string;
|
|
genericName: string;
|
|
hidden: boolean;
|
|
icon_name: string;
|
|
iconName: string;
|
|
name: string;
|
|
no_display: boolean;
|
|
noDisplay: boolean;
|
|
path: string;
|
|
prefers_non_default_gpu: boolean;
|
|
prefersNonDefaultGpu: boolean;
|
|
requires_terminal: boolean;
|
|
requiresTerminal: boolean;
|
|
supports_startup_notification: boolean;
|
|
supportsStartupNotification: boolean;
|
|
try_exec: string;
|
|
tryExec: string;
|
|
}
|
|
}
|
|
|
|
class MenuItem extends GObject.Object implements MenuElement {
|
|
static $gtype: GObject.GType<MenuItem>;
|
|
|
|
// Properties
|
|
|
|
/**
|
|
* Command to be executed when the menu item is clicked.
|
|
*/
|
|
get command(): string;
|
|
set command(val: string);
|
|
/**
|
|
* Comment/description for the application. To be displayed e.g. in tooltips of
|
|
* GtkMenuItems.
|
|
*/
|
|
get comment(): string;
|
|
set comment(val: string);
|
|
/**
|
|
* The desktop-file id of this application.
|
|
*/
|
|
get desktop_id(): string;
|
|
set desktop_id(val: string);
|
|
/**
|
|
* The desktop-file id of this application.
|
|
*/
|
|
get desktopId(): string;
|
|
set desktopId(val: string);
|
|
/**
|
|
* The #GFile from which the %GarconMenuItem was loaded.
|
|
*/
|
|
get file(): Gio.File;
|
|
/**
|
|
* GenericName of the application (will be displayed in menus etc.).
|
|
*/
|
|
get generic_name(): string;
|
|
set generic_name(val: string);
|
|
/**
|
|
* GenericName of the application (will be displayed in menus etc.).
|
|
*/
|
|
get genericName(): string;
|
|
set genericName(val: string);
|
|
/**
|
|
* It means the user deleted (at his level) something that was present
|
|
* (at an upper level, e.g. in the system dirs). It's strictly equivalent
|
|
* to the .desktop file not existing at all, as far as that user is concerned.
|
|
*/
|
|
get hidden(): boolean;
|
|
set hidden(val: boolean);
|
|
/**
|
|
* Name of the icon to be displayed for this menu item.
|
|
*/
|
|
get icon_name(): string;
|
|
set icon_name(val: string);
|
|
/**
|
|
* Name of the icon to be displayed for this menu item.
|
|
*/
|
|
get iconName(): string;
|
|
set iconName(val: string);
|
|
/**
|
|
* Name of the application (will be displayed in menus etc.).
|
|
*/
|
|
get name(): string;
|
|
set name(val: string);
|
|
/**
|
|
* Whether this menu item is hidden in menus.
|
|
*/
|
|
get no_display(): boolean;
|
|
set no_display(val: boolean);
|
|
/**
|
|
* Whether this menu item is hidden in menus.
|
|
*/
|
|
get noDisplay(): boolean;
|
|
set noDisplay(val: boolean);
|
|
/**
|
|
* Working directory the application should be started in.
|
|
*/
|
|
get path(): string;
|
|
set path(val: string);
|
|
/**
|
|
* If true, the application prefers to be run on a more powerful discrete GPU
|
|
* if available.
|
|
*/
|
|
get prefers_non_default_gpu(): boolean;
|
|
set prefers_non_default_gpu(val: boolean);
|
|
/**
|
|
* If true, the application prefers to be run on a more powerful discrete GPU
|
|
* if available.
|
|
*/
|
|
get prefersNonDefaultGpu(): boolean;
|
|
set prefersNonDefaultGpu(val: boolean);
|
|
/**
|
|
* Whether this application requires a terinal to be started in.
|
|
*/
|
|
get requires_terminal(): boolean;
|
|
set requires_terminal(val: boolean);
|
|
/**
|
|
* Whether this application requires a terinal to be started in.
|
|
*/
|
|
get requiresTerminal(): boolean;
|
|
set requiresTerminal(val: boolean);
|
|
get supports_startup_notification(): boolean;
|
|
set supports_startup_notification(val: boolean);
|
|
get supportsStartupNotification(): boolean;
|
|
set supportsStartupNotification(val: boolean);
|
|
/**
|
|
* Path to an executable file on disk used to determine if the program
|
|
* is actually installed. If the path is not an absolute path, the file
|
|
* is looked up in the $PATH environment variable. If the file is not
|
|
* present or if it is not executable, the entry may be ignored (not be
|
|
* used in menus, for example).
|
|
*/
|
|
get try_exec(): string;
|
|
set try_exec(val: string);
|
|
/**
|
|
* Path to an executable file on disk used to determine if the program
|
|
* is actually installed. If the path is not an absolute path, the file
|
|
* is looked up in the $PATH environment variable. If the file is not
|
|
* present or if it is not executable, the entry may be ignored (not be
|
|
* used in menus, for example).
|
|
*/
|
|
get tryExec(): string;
|
|
set tryExec(val: string);
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<MenuItem.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static ['new'](file: Gio.File): MenuItem;
|
|
|
|
static new_for_path(filename: string): MenuItem;
|
|
|
|
static new_for_uri(uri: string): MenuItem;
|
|
|
|
// Signals
|
|
|
|
connect(id: string, callback: (...args: any[]) => any): number;
|
|
connect_after(id: string, callback: (...args: any[]) => any): number;
|
|
emit(id: string, ...args: any[]): void;
|
|
connect(signal: 'changed', callback: (_source: this) => void): number;
|
|
connect_after(signal: 'changed', callback: (_source: this) => void): number;
|
|
emit(signal: 'changed'): void;
|
|
|
|
// Virtual methods
|
|
|
|
vfunc_changed(): void;
|
|
|
|
// Methods
|
|
|
|
decrement_allocated(): void;
|
|
get_action(action_name: string): MenuItemAction | null;
|
|
get_actions(): string[];
|
|
get_allocated(): number;
|
|
/**
|
|
* Returns list of categories
|
|
*/
|
|
get_categories(): string[];
|
|
get_command(): string;
|
|
get_comment(): string;
|
|
get_desktop_id(): string;
|
|
/**
|
|
* Get the #GFile for `item`. The returned object should be
|
|
* unreffed with g_object_unref() when no longer needed.
|
|
* @returns a #GFile.
|
|
*/
|
|
get_file(): Gio.File;
|
|
get_generic_name(): string;
|
|
get_hidden(): boolean;
|
|
get_icon_name(): string;
|
|
get_keywords(): string[];
|
|
get_name(): string;
|
|
get_no_display(): boolean;
|
|
get_path(): string;
|
|
get_prefers_non_default_gpu(): boolean;
|
|
get_show_in_environment(): boolean;
|
|
get_try_exec(): string;
|
|
get_uri(): string;
|
|
has_action(action_name: string): boolean;
|
|
has_category(category: string): boolean;
|
|
has_keyword(keyword: string): boolean;
|
|
increment_allocated(): void;
|
|
only_show_in_environment(): boolean;
|
|
ref(): void;
|
|
// Conflicted with GObject.Object.ref
|
|
ref(...args: never[]): any;
|
|
reload(affects_the_outside: boolean): boolean;
|
|
reload_from_file(file: Gio.File, affects_the_outside: boolean): boolean;
|
|
set_action(action_name: string, action: MenuItemAction): void;
|
|
set_categories(categories: string[]): void;
|
|
set_command(command: string): void;
|
|
set_comment(comment: string): void;
|
|
set_desktop_id(desktop_id: string): void;
|
|
set_generic_name(generic_name: string): void;
|
|
set_hidden(hidden: boolean): void;
|
|
set_icon_name(icon_name: string): void;
|
|
set_keywords(keywords: string[]): void;
|
|
set_name(name: string): void;
|
|
set_no_display(no_display: boolean): void;
|
|
set_path(path: string): void;
|
|
set_prefers_non_default_gpu(prefers_non_default_gpu: boolean): void;
|
|
set_requires_terminal(requires_terminal: boolean): void;
|
|
set_supports_startup_notification(supports_startup_notification: boolean): void;
|
|
set_try_exec(try_exec: string): void;
|
|
unref(): void;
|
|
|
|
// Inherited methods
|
|
equal(b: MenuElement): boolean;
|
|
get_visible(): boolean;
|
|
vfunc_equal(other: MenuElement): boolean;
|
|
vfunc_get_comment(): string;
|
|
vfunc_get_icon_name(): string;
|
|
vfunc_get_name(): string;
|
|
vfunc_get_no_display(): boolean;
|
|
vfunc_get_show_in_environment(): boolean;
|
|
vfunc_get_visible(): boolean;
|
|
/**
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target`.
|
|
*
|
|
* Whenever the `source_property` is changed the `target_property` is
|
|
* updated using the same value. For instance:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
|
* ```
|
|
*
|
|
*
|
|
* Will result in the "sensitive" property of the widget #GObject instance to be
|
|
* updated with the same value of the "active" property of the action #GObject
|
|
* instance.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well.
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. To remove the binding without affecting the
|
|
* `source` and the `target` you can just call g_object_unref() on the returned
|
|
* #GBinding instance.
|
|
*
|
|
* Removing the binding by calling g_object_unref() on it must only be done if
|
|
* the binding, `source` and `target` are only used from a single thread and it
|
|
* is clear that both `source` and `target` outlive the binding. Especially it
|
|
* is not safe to rely on this if the binding, `source` or `target` can be
|
|
* finalized from different threads. Keep another reference to the binding and
|
|
* use g_binding_unbind() instead to be on the safe side.
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
): GObject.Binding;
|
|
/**
|
|
* Complete version of g_object_bind_property().
|
|
*
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target,` allowing you to set the transformation functions to be used by
|
|
* the binding.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well. The `transform_from` function is only used in case
|
|
* of bidirectional bindings, otherwise it will be ignored
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. This will release the reference that is
|
|
* being held on the #GBinding instance; if you want to hold on to the
|
|
* #GBinding instance, you will need to hold a reference to it.
|
|
*
|
|
* To remove the binding, call g_binding_unbind().
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
*
|
|
* The same `user_data` parameter will be used for both `transform_to`
|
|
* and `transform_from` transformation functions; the `notify` function will
|
|
* be called once, when the binding is removed. If you need different data
|
|
* for each transformation function, please use
|
|
* g_object_bind_property_with_closures() instead.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
|
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
|
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property_full(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
transform_to?: GObject.BindingTransformFunc | null,
|
|
transform_from?: GObject.BindingTransformFunc | null,
|
|
notify?: GLib.DestroyNotify | null,
|
|
): GObject.Binding;
|
|
// Conflicted with GObject.Object.bind_property_full
|
|
bind_property_full(...args: never[]): any;
|
|
/**
|
|
* This function is intended for #GObject implementations to re-enforce
|
|
* a [floating][floating-ref] object reference. Doing this is seldom
|
|
* required: all #GInitiallyUnowneds are created with a floating reference
|
|
* which usually just needs to be sunken by calling g_object_ref_sink().
|
|
*/
|
|
force_floating(): void;
|
|
/**
|
|
* Increases the freeze count on `object`. If the freeze count is
|
|
* non-zero, the emission of "notify" signals on `object` is
|
|
* stopped. The signals are queued until the freeze count is decreased
|
|
* to zero. Duplicate notifications are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property modified while the
|
|
* object is frozen.
|
|
*
|
|
* This is necessary for accessors that modify multiple properties to prevent
|
|
* premature notification while the object is still being modified.
|
|
*/
|
|
freeze_notify(): void;
|
|
/**
|
|
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
|
* @param key name of the key for that association
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
get_data(key: string): any | null;
|
|
/**
|
|
* Gets a property of an object.
|
|
*
|
|
* The value can be:
|
|
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
|
* - a GObject.Value initialized with the expected type of the property
|
|
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
|
*
|
|
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
|
*
|
|
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
|
* @param property_name The name of the property to get
|
|
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
|
*/
|
|
get_property(property_name: string, value: GObject.Value | any): any;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
get_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Gets `n_properties` properties for an `object`.
|
|
* Obtained properties will be set to `values`. All properties must be valid.
|
|
* Warnings will be emitted and undefined behaviour may result if invalid
|
|
* properties are passed in.
|
|
* @param names the names of each property to get
|
|
* @param values the values of each property to get
|
|
*/
|
|
getv(names: string[], values: (GObject.Value | any)[]): void;
|
|
/**
|
|
* Checks whether `object` has a [floating][floating-ref] reference.
|
|
* @returns %TRUE if @object has a floating reference
|
|
*/
|
|
is_floating(): boolean;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param property_name the name of a property installed on the class of @object.
|
|
*/
|
|
notify(property_name: string): void;
|
|
/**
|
|
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
|
*
|
|
* This function omits the property name lookup, hence it is faster than
|
|
* g_object_notify().
|
|
*
|
|
* One way to avoid using g_object_notify() from within the
|
|
* class that registered the properties, and using g_object_notify_by_pspec()
|
|
* instead, is to store the GParamSpec used with
|
|
* g_object_class_install_property() inside a static array, e.g.:
|
|
*
|
|
*
|
|
* ```c
|
|
* typedef enum
|
|
* {
|
|
* PROP_FOO = 1,
|
|
* PROP_LAST
|
|
* } MyObjectProperty;
|
|
*
|
|
* static GParamSpec *properties[PROP_LAST];
|
|
*
|
|
* static void
|
|
* my_object_class_init (MyObjectClass *klass)
|
|
* {
|
|
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
|
* 0, 100,
|
|
* 50,
|
|
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
|
* g_object_class_install_property (gobject_class,
|
|
* PROP_FOO,
|
|
* properties[PROP_FOO]);
|
|
* }
|
|
* ```
|
|
*
|
|
*
|
|
* and then notify a change on the "foo" property with:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
|
* ```
|
|
*
|
|
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
|
*/
|
|
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Increase the reference count of `object,` and possibly remove the
|
|
* [floating][floating-ref] reference, if `object` has a floating reference.
|
|
*
|
|
* In other words, if the object is floating, then this call "assumes
|
|
* ownership" of the floating reference, converting it to a normal
|
|
* reference by clearing the floating flag while leaving the reference
|
|
* count unchanged. If the object is not floating, then this call
|
|
* adds a new normal reference increasing the reference count by one.
|
|
*
|
|
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
|
* under the same conditions as for g_object_ref().
|
|
* @returns @object
|
|
*/
|
|
ref_sink(): GObject.Object;
|
|
/**
|
|
* Releases all references to other objects. This can be used to break
|
|
* reference cycles.
|
|
*
|
|
* This function should only be called from object system implementations.
|
|
*/
|
|
run_dispose(): void;
|
|
/**
|
|
* Each object carries around a table of associations from
|
|
* strings to pointers. This function lets you set an association.
|
|
*
|
|
* If the object already had an association with that name,
|
|
* the old association will be destroyed.
|
|
*
|
|
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
|
* This means a copy of `key` is kept permanently (even after `object` has been
|
|
* finalized) — so it is recommended to only use a small, bounded set of values
|
|
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
|
* @param key name of the key
|
|
* @param data data to associate with that key
|
|
*/
|
|
set_data(key: string, data?: any | null): void;
|
|
/**
|
|
* Sets a property on an object.
|
|
* @param property_name The name of the property to set
|
|
* @param value The value to set the property to
|
|
*/
|
|
set_property(property_name: string, value: GObject.Value | any): void;
|
|
/**
|
|
* Remove a specified datum from the object's data associations,
|
|
* without invoking the association's destroy handler.
|
|
* @param key name of the key
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
steal_data(key: string): any | null;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata() and removes the `data` from object
|
|
* without invoking its destroy() function (if any was
|
|
* set).
|
|
* Usually, calling this function is only required to update
|
|
* user data pointers with a destroy notifier, for example:
|
|
*
|
|
* ```c
|
|
* void
|
|
* object_add_to_user_list (GObject *object,
|
|
* const gchar *new_string)
|
|
* {
|
|
* // the quark, naming the object data
|
|
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
|
* // retrieve the old string list
|
|
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
|
*
|
|
* // prepend new string
|
|
* list = g_list_prepend (list, g_strdup (new_string));
|
|
* // this changed 'list', so we need to set it again
|
|
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
|
* }
|
|
* static void
|
|
* free_string_list (gpointer data)
|
|
* {
|
|
* GList *node, *list = data;
|
|
*
|
|
* for (node = list; node; node = node->next)
|
|
* g_free (node->data);
|
|
* g_list_free (list);
|
|
* }
|
|
* ```
|
|
*
|
|
* Using g_object_get_qdata() in the above example, instead of
|
|
* g_object_steal_qdata() would have left the destroy function set,
|
|
* and thus the partial string list would have been freed upon
|
|
* g_object_set_qdata_full().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
steal_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Reverts the effect of a previous call to
|
|
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
|
* and when it reaches zero, queued "notify" signals are emitted.
|
|
*
|
|
* Duplicate notifications for each property are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property, in the reverse order
|
|
* in which they have been queued.
|
|
*
|
|
* It is an error to call this function when the freeze count is zero.
|
|
*/
|
|
thaw_notify(): void;
|
|
/**
|
|
* This function essentially limits the life time of the `closure` to
|
|
* the life time of the object. That is, when the object is finalized,
|
|
* the `closure` is invalidated by calling g_closure_invalidate() on
|
|
* it, in order to prevent invocations of the closure with a finalized
|
|
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
|
* added as marshal guards to the `closure,` to ensure that an extra
|
|
* reference count is held on `object` during invocation of the
|
|
* `closure`. Usually, this function will be called on closures that
|
|
* use this `object` as closure data.
|
|
* @param closure #GClosure to watch
|
|
*/
|
|
watch_closure(closure: GObject.Closure): void;
|
|
/**
|
|
* the `constructed` function is called by g_object_new() as the
|
|
* final step of the object creation process. At the point of the call, all
|
|
* construction properties have been set on the object. The purpose of this
|
|
* call is to allow for object initialisation steps that can only be performed
|
|
* after construction properties have been set. `constructed` implementors
|
|
* should chain up to the `constructed` call of their parent class to allow it
|
|
* to complete its initialisation.
|
|
*/
|
|
vfunc_constructed(): void;
|
|
/**
|
|
* emits property change notification for a bunch
|
|
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
|
* needed.
|
|
* @param n_pspecs
|
|
* @param pspecs
|
|
*/
|
|
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
|
/**
|
|
* the `dispose` function is supposed to drop all references to other
|
|
* objects, but keep the instance otherwise intact, so that client method
|
|
* invocations still work. It may be run multiple times (due to reference
|
|
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
|
* of the parent class.
|
|
*/
|
|
vfunc_dispose(): void;
|
|
/**
|
|
* instance finalization function, should finish the finalization of
|
|
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
|
* parent class.
|
|
*/
|
|
vfunc_finalize(): void;
|
|
/**
|
|
* the generic getter for all properties of this type. Should be
|
|
* overridden for every type with properties.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param pspec
|
|
*/
|
|
vfunc_notify(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* the generic setter for all properties of this type. Should be
|
|
* overridden for every type with properties. If implementations of
|
|
* `set_property` don't emit property change notification explicitly, this will
|
|
* be done implicitly by the type system. However, if the notify signal is
|
|
* emitted explicitly, the type system will not emit it a second time.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
|
* @param id Handler ID of the handler to be disconnected
|
|
*/
|
|
disconnect(id: number): void;
|
|
/**
|
|
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
|
* @param properties Object containing the properties to set
|
|
*/
|
|
set(properties: { [key: string]: any }): void;
|
|
/**
|
|
* Blocks a handler of an instance so it will not be called during any signal emissions
|
|
* @param id Handler ID of the handler to be blocked
|
|
*/
|
|
block_signal_handler(id: number): void;
|
|
/**
|
|
* Unblocks a handler so it will be called again during any signal emissions
|
|
* @param id Handler ID of the handler to be unblocked
|
|
*/
|
|
unblock_signal_handler(id: number): void;
|
|
/**
|
|
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
|
* @param detailedName Name of the signal to stop emission of
|
|
*/
|
|
stop_emission_by_name(detailedName: string): void;
|
|
}
|
|
|
|
namespace MenuItemAction {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps {
|
|
command: string;
|
|
icon_name: string;
|
|
iconName: string;
|
|
name: string;
|
|
}
|
|
}
|
|
|
|
class MenuItemAction extends GObject.Object {
|
|
static $gtype: GObject.GType<MenuItemAction>;
|
|
|
|
// Properties
|
|
|
|
/**
|
|
* Command to be executed when the application action is clicked.
|
|
*/
|
|
get command(): string;
|
|
set command(val: string);
|
|
/**
|
|
* Name of the custom icon associated with this action.
|
|
*/
|
|
get icon_name(): string;
|
|
set icon_name(val: string);
|
|
/**
|
|
* Name of the custom icon associated with this action.
|
|
*/
|
|
get iconName(): string;
|
|
set iconName(val: string);
|
|
/**
|
|
* Name of the application action (will be displayed in menus etc.).
|
|
*/
|
|
get name(): string;
|
|
set name(val: string);
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<MenuItemAction.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static ['new'](): MenuItemAction;
|
|
|
|
// Virtual methods
|
|
|
|
vfunc_changed(): void;
|
|
|
|
// Methods
|
|
|
|
get_command(): string;
|
|
get_icon_name(): string;
|
|
get_name(): string;
|
|
ref(): void;
|
|
// Conflicted with GObject.Object.ref
|
|
ref(...args: never[]): any;
|
|
set_command(command: string): void;
|
|
set_icon_name(icon_name: string): void;
|
|
set_name(name: string): void;
|
|
unref(): void;
|
|
}
|
|
|
|
namespace MenuItemCache {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps {}
|
|
}
|
|
|
|
class MenuItemCache extends GObject.Object {
|
|
static $gtype: GObject.GType<MenuItemCache>;
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<MenuItemCache.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static get_default(): MenuItemCache;
|
|
|
|
// Methods
|
|
|
|
foreach(func: GLib.HFunc): void;
|
|
invalidate(): void;
|
|
invalidate_file(file: Gio.File): void;
|
|
lookup(uri: string, desktop_id: string): MenuItem | null;
|
|
}
|
|
|
|
namespace MenuItemPool {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps {}
|
|
}
|
|
|
|
class MenuItemPool extends GObject.Object {
|
|
static $gtype: GObject.GType<MenuItemPool>;
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<MenuItemPool.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static ['new'](): MenuItemPool;
|
|
|
|
// Methods
|
|
|
|
apply_exclude_rule(node: GLib.Node): void;
|
|
clear(): void;
|
|
foreach(func: GLib.HFunc): void;
|
|
get_empty(): boolean;
|
|
insert(item: MenuItem): void;
|
|
lookup(desktop_id: string): MenuItem;
|
|
lookup_file(file: Gio.File): MenuItem;
|
|
}
|
|
|
|
namespace MenuMerger {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps, MenuTreeProvider.ConstructorProps {
|
|
tree_provider: MenuTreeProvider;
|
|
treeProvider: MenuTreeProvider;
|
|
}
|
|
}
|
|
|
|
class MenuMerger extends GObject.Object implements MenuTreeProvider {
|
|
static $gtype: GObject.GType<MenuMerger>;
|
|
|
|
// Properties
|
|
|
|
get tree_provider(): MenuTreeProvider;
|
|
get treeProvider(): MenuTreeProvider;
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<MenuMerger.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static ['new'](provider: MenuTreeProvider): MenuMerger;
|
|
|
|
// Methods
|
|
|
|
run(merge_files: string[], merge_dirs: string[], cancellable?: Gio.Cancellable | null): boolean;
|
|
|
|
// Inherited methods
|
|
get_file(): Gio.File;
|
|
vfunc_get_file(): Gio.File;
|
|
/**
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target`.
|
|
*
|
|
* Whenever the `source_property` is changed the `target_property` is
|
|
* updated using the same value. For instance:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
|
* ```
|
|
*
|
|
*
|
|
* Will result in the "sensitive" property of the widget #GObject instance to be
|
|
* updated with the same value of the "active" property of the action #GObject
|
|
* instance.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well.
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. To remove the binding without affecting the
|
|
* `source` and the `target` you can just call g_object_unref() on the returned
|
|
* #GBinding instance.
|
|
*
|
|
* Removing the binding by calling g_object_unref() on it must only be done if
|
|
* the binding, `source` and `target` are only used from a single thread and it
|
|
* is clear that both `source` and `target` outlive the binding. Especially it
|
|
* is not safe to rely on this if the binding, `source` or `target` can be
|
|
* finalized from different threads. Keep another reference to the binding and
|
|
* use g_binding_unbind() instead to be on the safe side.
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
): GObject.Binding;
|
|
/**
|
|
* Complete version of g_object_bind_property().
|
|
*
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target,` allowing you to set the transformation functions to be used by
|
|
* the binding.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well. The `transform_from` function is only used in case
|
|
* of bidirectional bindings, otherwise it will be ignored
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. This will release the reference that is
|
|
* being held on the #GBinding instance; if you want to hold on to the
|
|
* #GBinding instance, you will need to hold a reference to it.
|
|
*
|
|
* To remove the binding, call g_binding_unbind().
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
*
|
|
* The same `user_data` parameter will be used for both `transform_to`
|
|
* and `transform_from` transformation functions; the `notify` function will
|
|
* be called once, when the binding is removed. If you need different data
|
|
* for each transformation function, please use
|
|
* g_object_bind_property_with_closures() instead.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
|
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
|
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property_full(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
transform_to?: GObject.BindingTransformFunc | null,
|
|
transform_from?: GObject.BindingTransformFunc | null,
|
|
notify?: GLib.DestroyNotify | null,
|
|
): GObject.Binding;
|
|
// Conflicted with GObject.Object.bind_property_full
|
|
bind_property_full(...args: never[]): any;
|
|
/**
|
|
* This function is intended for #GObject implementations to re-enforce
|
|
* a [floating][floating-ref] object reference. Doing this is seldom
|
|
* required: all #GInitiallyUnowneds are created with a floating reference
|
|
* which usually just needs to be sunken by calling g_object_ref_sink().
|
|
*/
|
|
force_floating(): void;
|
|
/**
|
|
* Increases the freeze count on `object`. If the freeze count is
|
|
* non-zero, the emission of "notify" signals on `object` is
|
|
* stopped. The signals are queued until the freeze count is decreased
|
|
* to zero. Duplicate notifications are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property modified while the
|
|
* object is frozen.
|
|
*
|
|
* This is necessary for accessors that modify multiple properties to prevent
|
|
* premature notification while the object is still being modified.
|
|
*/
|
|
freeze_notify(): void;
|
|
/**
|
|
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
|
* @param key name of the key for that association
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
get_data(key: string): any | null;
|
|
/**
|
|
* Gets a property of an object.
|
|
*
|
|
* The value can be:
|
|
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
|
* - a GObject.Value initialized with the expected type of the property
|
|
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
|
*
|
|
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
|
*
|
|
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
|
* @param property_name The name of the property to get
|
|
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
|
*/
|
|
get_property(property_name: string, value: GObject.Value | any): any;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
get_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Gets `n_properties` properties for an `object`.
|
|
* Obtained properties will be set to `values`. All properties must be valid.
|
|
* Warnings will be emitted and undefined behaviour may result if invalid
|
|
* properties are passed in.
|
|
* @param names the names of each property to get
|
|
* @param values the values of each property to get
|
|
*/
|
|
getv(names: string[], values: (GObject.Value | any)[]): void;
|
|
/**
|
|
* Checks whether `object` has a [floating][floating-ref] reference.
|
|
* @returns %TRUE if @object has a floating reference
|
|
*/
|
|
is_floating(): boolean;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param property_name the name of a property installed on the class of @object.
|
|
*/
|
|
notify(property_name: string): void;
|
|
/**
|
|
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
|
*
|
|
* This function omits the property name lookup, hence it is faster than
|
|
* g_object_notify().
|
|
*
|
|
* One way to avoid using g_object_notify() from within the
|
|
* class that registered the properties, and using g_object_notify_by_pspec()
|
|
* instead, is to store the GParamSpec used with
|
|
* g_object_class_install_property() inside a static array, e.g.:
|
|
*
|
|
*
|
|
* ```c
|
|
* typedef enum
|
|
* {
|
|
* PROP_FOO = 1,
|
|
* PROP_LAST
|
|
* } MyObjectProperty;
|
|
*
|
|
* static GParamSpec *properties[PROP_LAST];
|
|
*
|
|
* static void
|
|
* my_object_class_init (MyObjectClass *klass)
|
|
* {
|
|
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
|
* 0, 100,
|
|
* 50,
|
|
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
|
* g_object_class_install_property (gobject_class,
|
|
* PROP_FOO,
|
|
* properties[PROP_FOO]);
|
|
* }
|
|
* ```
|
|
*
|
|
*
|
|
* and then notify a change on the "foo" property with:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
|
* ```
|
|
*
|
|
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
|
*/
|
|
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Increases the reference count of `object`.
|
|
*
|
|
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
|
* of `object` will be propagated to the return type (using the GCC typeof()
|
|
* extension), so any casting the caller needs to do on the return type must be
|
|
* explicit.
|
|
* @returns the same @object
|
|
*/
|
|
ref(): GObject.Object;
|
|
/**
|
|
* Increase the reference count of `object,` and possibly remove the
|
|
* [floating][floating-ref] reference, if `object` has a floating reference.
|
|
*
|
|
* In other words, if the object is floating, then this call "assumes
|
|
* ownership" of the floating reference, converting it to a normal
|
|
* reference by clearing the floating flag while leaving the reference
|
|
* count unchanged. If the object is not floating, then this call
|
|
* adds a new normal reference increasing the reference count by one.
|
|
*
|
|
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
|
* under the same conditions as for g_object_ref().
|
|
* @returns @object
|
|
*/
|
|
ref_sink(): GObject.Object;
|
|
/**
|
|
* Releases all references to other objects. This can be used to break
|
|
* reference cycles.
|
|
*
|
|
* This function should only be called from object system implementations.
|
|
*/
|
|
run_dispose(): void;
|
|
/**
|
|
* Each object carries around a table of associations from
|
|
* strings to pointers. This function lets you set an association.
|
|
*
|
|
* If the object already had an association with that name,
|
|
* the old association will be destroyed.
|
|
*
|
|
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
|
* This means a copy of `key` is kept permanently (even after `object` has been
|
|
* finalized) — so it is recommended to only use a small, bounded set of values
|
|
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
|
* @param key name of the key
|
|
* @param data data to associate with that key
|
|
*/
|
|
set_data(key: string, data?: any | null): void;
|
|
/**
|
|
* Sets a property on an object.
|
|
* @param property_name The name of the property to set
|
|
* @param value The value to set the property to
|
|
*/
|
|
set_property(property_name: string, value: GObject.Value | any): void;
|
|
/**
|
|
* Remove a specified datum from the object's data associations,
|
|
* without invoking the association's destroy handler.
|
|
* @param key name of the key
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
steal_data(key: string): any | null;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata() and removes the `data` from object
|
|
* without invoking its destroy() function (if any was
|
|
* set).
|
|
* Usually, calling this function is only required to update
|
|
* user data pointers with a destroy notifier, for example:
|
|
*
|
|
* ```c
|
|
* void
|
|
* object_add_to_user_list (GObject *object,
|
|
* const gchar *new_string)
|
|
* {
|
|
* // the quark, naming the object data
|
|
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
|
* // retrieve the old string list
|
|
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
|
*
|
|
* // prepend new string
|
|
* list = g_list_prepend (list, g_strdup (new_string));
|
|
* // this changed 'list', so we need to set it again
|
|
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
|
* }
|
|
* static void
|
|
* free_string_list (gpointer data)
|
|
* {
|
|
* GList *node, *list = data;
|
|
*
|
|
* for (node = list; node; node = node->next)
|
|
* g_free (node->data);
|
|
* g_list_free (list);
|
|
* }
|
|
* ```
|
|
*
|
|
* Using g_object_get_qdata() in the above example, instead of
|
|
* g_object_steal_qdata() would have left the destroy function set,
|
|
* and thus the partial string list would have been freed upon
|
|
* g_object_set_qdata_full().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
steal_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Reverts the effect of a previous call to
|
|
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
|
* and when it reaches zero, queued "notify" signals are emitted.
|
|
*
|
|
* Duplicate notifications for each property are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property, in the reverse order
|
|
* in which they have been queued.
|
|
*
|
|
* It is an error to call this function when the freeze count is zero.
|
|
*/
|
|
thaw_notify(): void;
|
|
/**
|
|
* Decreases the reference count of `object`. When its reference count
|
|
* drops to 0, the object is finalized (i.e. its memory is freed).
|
|
*
|
|
* If the pointer to the #GObject may be reused in future (for example, if it is
|
|
* an instance variable of another object), it is recommended to clear the
|
|
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
|
* invalid #GObject instance. Use g_clear_object() for this.
|
|
*/
|
|
unref(): void;
|
|
/**
|
|
* This function essentially limits the life time of the `closure` to
|
|
* the life time of the object. That is, when the object is finalized,
|
|
* the `closure` is invalidated by calling g_closure_invalidate() on
|
|
* it, in order to prevent invocations of the closure with a finalized
|
|
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
|
* added as marshal guards to the `closure,` to ensure that an extra
|
|
* reference count is held on `object` during invocation of the
|
|
* `closure`. Usually, this function will be called on closures that
|
|
* use this `object` as closure data.
|
|
* @param closure #GClosure to watch
|
|
*/
|
|
watch_closure(closure: GObject.Closure): void;
|
|
/**
|
|
* the `constructed` function is called by g_object_new() as the
|
|
* final step of the object creation process. At the point of the call, all
|
|
* construction properties have been set on the object. The purpose of this
|
|
* call is to allow for object initialisation steps that can only be performed
|
|
* after construction properties have been set. `constructed` implementors
|
|
* should chain up to the `constructed` call of their parent class to allow it
|
|
* to complete its initialisation.
|
|
*/
|
|
vfunc_constructed(): void;
|
|
/**
|
|
* emits property change notification for a bunch
|
|
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
|
* needed.
|
|
* @param n_pspecs
|
|
* @param pspecs
|
|
*/
|
|
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
|
/**
|
|
* the `dispose` function is supposed to drop all references to other
|
|
* objects, but keep the instance otherwise intact, so that client method
|
|
* invocations still work. It may be run multiple times (due to reference
|
|
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
|
* of the parent class.
|
|
*/
|
|
vfunc_dispose(): void;
|
|
/**
|
|
* instance finalization function, should finish the finalization of
|
|
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
|
* parent class.
|
|
*/
|
|
vfunc_finalize(): void;
|
|
/**
|
|
* the generic getter for all properties of this type. Should be
|
|
* overridden for every type with properties.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param pspec
|
|
*/
|
|
vfunc_notify(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* the generic setter for all properties of this type. Should be
|
|
* overridden for every type with properties. If implementations of
|
|
* `set_property` don't emit property change notification explicitly, this will
|
|
* be done implicitly by the type system. However, if the notify signal is
|
|
* emitted explicitly, the type system will not emit it a second time.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
|
* @param id Handler ID of the handler to be disconnected
|
|
*/
|
|
disconnect(id: number): void;
|
|
/**
|
|
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
|
* @param properties Object containing the properties to set
|
|
*/
|
|
set(properties: { [key: string]: any }): void;
|
|
/**
|
|
* Blocks a handler of an instance so it will not be called during any signal emissions
|
|
* @param id Handler ID of the handler to be blocked
|
|
*/
|
|
block_signal_handler(id: number): void;
|
|
/**
|
|
* Unblocks a handler so it will be called again during any signal emissions
|
|
* @param id Handler ID of the handler to be unblocked
|
|
*/
|
|
unblock_signal_handler(id: number): void;
|
|
/**
|
|
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
|
* @param detailedName Name of the signal to stop emission of
|
|
*/
|
|
stop_emission_by_name(detailedName: string): void;
|
|
}
|
|
|
|
namespace MenuNode {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps {
|
|
node_type: MenuNodeType;
|
|
nodeType: MenuNodeType;
|
|
}
|
|
}
|
|
|
|
class MenuNode extends GObject.Object {
|
|
static $gtype: GObject.GType<MenuNode>;
|
|
|
|
// Properties
|
|
|
|
get node_type(): MenuNodeType;
|
|
set node_type(val: MenuNodeType);
|
|
get nodeType(): MenuNodeType;
|
|
set nodeType(val: MenuNodeType);
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<MenuNode.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static ['new'](node_type: MenuNodeType): MenuNode;
|
|
|
|
// Static methods
|
|
|
|
static tree_compare(tree: GLib.Node, other_tree: GLib.Node): number;
|
|
static tree_free(tree: GLib.Node): void;
|
|
static tree_free_data(tree: GLib.Node): void;
|
|
static tree_get_boolean_child(tree: GLib.Node, type: MenuNodeType): boolean;
|
|
static tree_get_child_nodes(tree: GLib.Node, type: MenuNodeType, reverse: boolean): GLib.Node[];
|
|
static tree_get_layout_merge_type(tree: GLib.Node): MenuLayoutMergeType;
|
|
static tree_get_merge_file_filename(tree: GLib.Node): string;
|
|
static tree_get_merge_file_type(tree: GLib.Node): MenuMergeFileType;
|
|
static tree_get_node_type(tree: GLib.Node): MenuNodeType;
|
|
static tree_get_string(tree: GLib.Node): string;
|
|
static tree_get_string_child(tree: GLib.Node, type: MenuNodeType): string;
|
|
static tree_get_string_children(tree: GLib.Node, type: MenuNodeType, reverse: boolean): GLib.Node[];
|
|
static tree_rule_matches(tree: GLib.Node, item: MenuItem): boolean;
|
|
static tree_set_merge_file_filename(tree: GLib.Node, filename: string): void;
|
|
static tree_set_string(tree: GLib.Node, value: string): void;
|
|
|
|
// Methods
|
|
|
|
copy(data?: any | null): MenuNode;
|
|
get_merge_file_filename(): string;
|
|
get_merge_file_type(): MenuMergeFileType;
|
|
get_node_type(): MenuNodeType;
|
|
get_string(): string;
|
|
set_merge_file_filename(filename: string): void;
|
|
set_merge_file_type(type: MenuMergeFileType | null): void;
|
|
set_string(value: string): void;
|
|
}
|
|
|
|
namespace MenuParser {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps, MenuTreeProvider.ConstructorProps {
|
|
file: Gio.File;
|
|
}
|
|
}
|
|
|
|
class MenuParser extends GObject.Object implements MenuTreeProvider {
|
|
static $gtype: GObject.GType<MenuParser>;
|
|
|
|
// Properties
|
|
|
|
get file(): Gio.File;
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<MenuParser.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static ['new'](file: Gio.File): MenuParser;
|
|
|
|
// Methods
|
|
|
|
run(cancellable?: Gio.Cancellable | null): boolean;
|
|
|
|
// Inherited methods
|
|
get_file(): Gio.File;
|
|
vfunc_get_file(): Gio.File;
|
|
/**
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target`.
|
|
*
|
|
* Whenever the `source_property` is changed the `target_property` is
|
|
* updated using the same value. For instance:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
|
* ```
|
|
*
|
|
*
|
|
* Will result in the "sensitive" property of the widget #GObject instance to be
|
|
* updated with the same value of the "active" property of the action #GObject
|
|
* instance.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well.
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. To remove the binding without affecting the
|
|
* `source` and the `target` you can just call g_object_unref() on the returned
|
|
* #GBinding instance.
|
|
*
|
|
* Removing the binding by calling g_object_unref() on it must only be done if
|
|
* the binding, `source` and `target` are only used from a single thread and it
|
|
* is clear that both `source` and `target` outlive the binding. Especially it
|
|
* is not safe to rely on this if the binding, `source` or `target` can be
|
|
* finalized from different threads. Keep another reference to the binding and
|
|
* use g_binding_unbind() instead to be on the safe side.
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
): GObject.Binding;
|
|
/**
|
|
* Complete version of g_object_bind_property().
|
|
*
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target,` allowing you to set the transformation functions to be used by
|
|
* the binding.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well. The `transform_from` function is only used in case
|
|
* of bidirectional bindings, otherwise it will be ignored
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. This will release the reference that is
|
|
* being held on the #GBinding instance; if you want to hold on to the
|
|
* #GBinding instance, you will need to hold a reference to it.
|
|
*
|
|
* To remove the binding, call g_binding_unbind().
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
*
|
|
* The same `user_data` parameter will be used for both `transform_to`
|
|
* and `transform_from` transformation functions; the `notify` function will
|
|
* be called once, when the binding is removed. If you need different data
|
|
* for each transformation function, please use
|
|
* g_object_bind_property_with_closures() instead.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
|
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
|
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property_full(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
transform_to?: GObject.BindingTransformFunc | null,
|
|
transform_from?: GObject.BindingTransformFunc | null,
|
|
notify?: GLib.DestroyNotify | null,
|
|
): GObject.Binding;
|
|
// Conflicted with GObject.Object.bind_property_full
|
|
bind_property_full(...args: never[]): any;
|
|
/**
|
|
* This function is intended for #GObject implementations to re-enforce
|
|
* a [floating][floating-ref] object reference. Doing this is seldom
|
|
* required: all #GInitiallyUnowneds are created with a floating reference
|
|
* which usually just needs to be sunken by calling g_object_ref_sink().
|
|
*/
|
|
force_floating(): void;
|
|
/**
|
|
* Increases the freeze count on `object`. If the freeze count is
|
|
* non-zero, the emission of "notify" signals on `object` is
|
|
* stopped. The signals are queued until the freeze count is decreased
|
|
* to zero. Duplicate notifications are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property modified while the
|
|
* object is frozen.
|
|
*
|
|
* This is necessary for accessors that modify multiple properties to prevent
|
|
* premature notification while the object is still being modified.
|
|
*/
|
|
freeze_notify(): void;
|
|
/**
|
|
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
|
* @param key name of the key for that association
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
get_data(key: string): any | null;
|
|
/**
|
|
* Gets a property of an object.
|
|
*
|
|
* The value can be:
|
|
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
|
* - a GObject.Value initialized with the expected type of the property
|
|
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
|
*
|
|
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
|
*
|
|
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
|
* @param property_name The name of the property to get
|
|
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
|
*/
|
|
get_property(property_name: string, value: GObject.Value | any): any;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
get_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Gets `n_properties` properties for an `object`.
|
|
* Obtained properties will be set to `values`. All properties must be valid.
|
|
* Warnings will be emitted and undefined behaviour may result if invalid
|
|
* properties are passed in.
|
|
* @param names the names of each property to get
|
|
* @param values the values of each property to get
|
|
*/
|
|
getv(names: string[], values: (GObject.Value | any)[]): void;
|
|
/**
|
|
* Checks whether `object` has a [floating][floating-ref] reference.
|
|
* @returns %TRUE if @object has a floating reference
|
|
*/
|
|
is_floating(): boolean;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param property_name the name of a property installed on the class of @object.
|
|
*/
|
|
notify(property_name: string): void;
|
|
/**
|
|
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
|
*
|
|
* This function omits the property name lookup, hence it is faster than
|
|
* g_object_notify().
|
|
*
|
|
* One way to avoid using g_object_notify() from within the
|
|
* class that registered the properties, and using g_object_notify_by_pspec()
|
|
* instead, is to store the GParamSpec used with
|
|
* g_object_class_install_property() inside a static array, e.g.:
|
|
*
|
|
*
|
|
* ```c
|
|
* typedef enum
|
|
* {
|
|
* PROP_FOO = 1,
|
|
* PROP_LAST
|
|
* } MyObjectProperty;
|
|
*
|
|
* static GParamSpec *properties[PROP_LAST];
|
|
*
|
|
* static void
|
|
* my_object_class_init (MyObjectClass *klass)
|
|
* {
|
|
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
|
* 0, 100,
|
|
* 50,
|
|
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
|
* g_object_class_install_property (gobject_class,
|
|
* PROP_FOO,
|
|
* properties[PROP_FOO]);
|
|
* }
|
|
* ```
|
|
*
|
|
*
|
|
* and then notify a change on the "foo" property with:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
|
* ```
|
|
*
|
|
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
|
*/
|
|
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Increases the reference count of `object`.
|
|
*
|
|
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
|
* of `object` will be propagated to the return type (using the GCC typeof()
|
|
* extension), so any casting the caller needs to do on the return type must be
|
|
* explicit.
|
|
* @returns the same @object
|
|
*/
|
|
ref(): GObject.Object;
|
|
/**
|
|
* Increase the reference count of `object,` and possibly remove the
|
|
* [floating][floating-ref] reference, if `object` has a floating reference.
|
|
*
|
|
* In other words, if the object is floating, then this call "assumes
|
|
* ownership" of the floating reference, converting it to a normal
|
|
* reference by clearing the floating flag while leaving the reference
|
|
* count unchanged. If the object is not floating, then this call
|
|
* adds a new normal reference increasing the reference count by one.
|
|
*
|
|
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
|
* under the same conditions as for g_object_ref().
|
|
* @returns @object
|
|
*/
|
|
ref_sink(): GObject.Object;
|
|
/**
|
|
* Releases all references to other objects. This can be used to break
|
|
* reference cycles.
|
|
*
|
|
* This function should only be called from object system implementations.
|
|
*/
|
|
run_dispose(): void;
|
|
/**
|
|
* Each object carries around a table of associations from
|
|
* strings to pointers. This function lets you set an association.
|
|
*
|
|
* If the object already had an association with that name,
|
|
* the old association will be destroyed.
|
|
*
|
|
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
|
* This means a copy of `key` is kept permanently (even after `object` has been
|
|
* finalized) — so it is recommended to only use a small, bounded set of values
|
|
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
|
* @param key name of the key
|
|
* @param data data to associate with that key
|
|
*/
|
|
set_data(key: string, data?: any | null): void;
|
|
/**
|
|
* Sets a property on an object.
|
|
* @param property_name The name of the property to set
|
|
* @param value The value to set the property to
|
|
*/
|
|
set_property(property_name: string, value: GObject.Value | any): void;
|
|
/**
|
|
* Remove a specified datum from the object's data associations,
|
|
* without invoking the association's destroy handler.
|
|
* @param key name of the key
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
steal_data(key: string): any | null;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata() and removes the `data` from object
|
|
* without invoking its destroy() function (if any was
|
|
* set).
|
|
* Usually, calling this function is only required to update
|
|
* user data pointers with a destroy notifier, for example:
|
|
*
|
|
* ```c
|
|
* void
|
|
* object_add_to_user_list (GObject *object,
|
|
* const gchar *new_string)
|
|
* {
|
|
* // the quark, naming the object data
|
|
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
|
* // retrieve the old string list
|
|
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
|
*
|
|
* // prepend new string
|
|
* list = g_list_prepend (list, g_strdup (new_string));
|
|
* // this changed 'list', so we need to set it again
|
|
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
|
* }
|
|
* static void
|
|
* free_string_list (gpointer data)
|
|
* {
|
|
* GList *node, *list = data;
|
|
*
|
|
* for (node = list; node; node = node->next)
|
|
* g_free (node->data);
|
|
* g_list_free (list);
|
|
* }
|
|
* ```
|
|
*
|
|
* Using g_object_get_qdata() in the above example, instead of
|
|
* g_object_steal_qdata() would have left the destroy function set,
|
|
* and thus the partial string list would have been freed upon
|
|
* g_object_set_qdata_full().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
steal_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Reverts the effect of a previous call to
|
|
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
|
* and when it reaches zero, queued "notify" signals are emitted.
|
|
*
|
|
* Duplicate notifications for each property are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property, in the reverse order
|
|
* in which they have been queued.
|
|
*
|
|
* It is an error to call this function when the freeze count is zero.
|
|
*/
|
|
thaw_notify(): void;
|
|
/**
|
|
* Decreases the reference count of `object`. When its reference count
|
|
* drops to 0, the object is finalized (i.e. its memory is freed).
|
|
*
|
|
* If the pointer to the #GObject may be reused in future (for example, if it is
|
|
* an instance variable of another object), it is recommended to clear the
|
|
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
|
* invalid #GObject instance. Use g_clear_object() for this.
|
|
*/
|
|
unref(): void;
|
|
/**
|
|
* This function essentially limits the life time of the `closure` to
|
|
* the life time of the object. That is, when the object is finalized,
|
|
* the `closure` is invalidated by calling g_closure_invalidate() on
|
|
* it, in order to prevent invocations of the closure with a finalized
|
|
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
|
* added as marshal guards to the `closure,` to ensure that an extra
|
|
* reference count is held on `object` during invocation of the
|
|
* `closure`. Usually, this function will be called on closures that
|
|
* use this `object` as closure data.
|
|
* @param closure #GClosure to watch
|
|
*/
|
|
watch_closure(closure: GObject.Closure): void;
|
|
/**
|
|
* the `constructed` function is called by g_object_new() as the
|
|
* final step of the object creation process. At the point of the call, all
|
|
* construction properties have been set on the object. The purpose of this
|
|
* call is to allow for object initialisation steps that can only be performed
|
|
* after construction properties have been set. `constructed` implementors
|
|
* should chain up to the `constructed` call of their parent class to allow it
|
|
* to complete its initialisation.
|
|
*/
|
|
vfunc_constructed(): void;
|
|
/**
|
|
* emits property change notification for a bunch
|
|
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
|
* needed.
|
|
* @param n_pspecs
|
|
* @param pspecs
|
|
*/
|
|
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
|
/**
|
|
* the `dispose` function is supposed to drop all references to other
|
|
* objects, but keep the instance otherwise intact, so that client method
|
|
* invocations still work. It may be run multiple times (due to reference
|
|
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
|
* of the parent class.
|
|
*/
|
|
vfunc_dispose(): void;
|
|
/**
|
|
* instance finalization function, should finish the finalization of
|
|
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
|
* parent class.
|
|
*/
|
|
vfunc_finalize(): void;
|
|
/**
|
|
* the generic getter for all properties of this type. Should be
|
|
* overridden for every type with properties.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param pspec
|
|
*/
|
|
vfunc_notify(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* the generic setter for all properties of this type. Should be
|
|
* overridden for every type with properties. If implementations of
|
|
* `set_property` don't emit property change notification explicitly, this will
|
|
* be done implicitly by the type system. However, if the notify signal is
|
|
* emitted explicitly, the type system will not emit it a second time.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
|
* @param id Handler ID of the handler to be disconnected
|
|
*/
|
|
disconnect(id: number): void;
|
|
/**
|
|
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
|
* @param properties Object containing the properties to set
|
|
*/
|
|
set(properties: { [key: string]: any }): void;
|
|
/**
|
|
* Blocks a handler of an instance so it will not be called during any signal emissions
|
|
* @param id Handler ID of the handler to be blocked
|
|
*/
|
|
block_signal_handler(id: number): void;
|
|
/**
|
|
* Unblocks a handler so it will be called again during any signal emissions
|
|
* @param id Handler ID of the handler to be unblocked
|
|
*/
|
|
unblock_signal_handler(id: number): void;
|
|
/**
|
|
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
|
* @param detailedName Name of the signal to stop emission of
|
|
*/
|
|
stop_emission_by_name(detailedName: string): void;
|
|
}
|
|
|
|
namespace MenuSeparator {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps, MenuElement.ConstructorProps {}
|
|
}
|
|
|
|
class MenuSeparator extends GObject.Object implements MenuElement {
|
|
static $gtype: GObject.GType<MenuSeparator>;
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<MenuSeparator.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static get_default(): MenuSeparator;
|
|
|
|
// Inherited methods
|
|
equal(b: MenuElement): boolean;
|
|
get_comment(): string;
|
|
get_icon_name(): string;
|
|
get_name(): string;
|
|
get_no_display(): boolean;
|
|
get_show_in_environment(): boolean;
|
|
get_visible(): boolean;
|
|
vfunc_equal(other: MenuElement): boolean;
|
|
vfunc_get_comment(): string;
|
|
vfunc_get_icon_name(): string;
|
|
vfunc_get_name(): string;
|
|
vfunc_get_no_display(): boolean;
|
|
vfunc_get_show_in_environment(): boolean;
|
|
vfunc_get_visible(): boolean;
|
|
/**
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target`.
|
|
*
|
|
* Whenever the `source_property` is changed the `target_property` is
|
|
* updated using the same value. For instance:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
|
* ```
|
|
*
|
|
*
|
|
* Will result in the "sensitive" property of the widget #GObject instance to be
|
|
* updated with the same value of the "active" property of the action #GObject
|
|
* instance.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well.
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. To remove the binding without affecting the
|
|
* `source` and the `target` you can just call g_object_unref() on the returned
|
|
* #GBinding instance.
|
|
*
|
|
* Removing the binding by calling g_object_unref() on it must only be done if
|
|
* the binding, `source` and `target` are only used from a single thread and it
|
|
* is clear that both `source` and `target` outlive the binding. Especially it
|
|
* is not safe to rely on this if the binding, `source` or `target` can be
|
|
* finalized from different threads. Keep another reference to the binding and
|
|
* use g_binding_unbind() instead to be on the safe side.
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
): GObject.Binding;
|
|
/**
|
|
* Complete version of g_object_bind_property().
|
|
*
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target,` allowing you to set the transformation functions to be used by
|
|
* the binding.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well. The `transform_from` function is only used in case
|
|
* of bidirectional bindings, otherwise it will be ignored
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. This will release the reference that is
|
|
* being held on the #GBinding instance; if you want to hold on to the
|
|
* #GBinding instance, you will need to hold a reference to it.
|
|
*
|
|
* To remove the binding, call g_binding_unbind().
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
*
|
|
* The same `user_data` parameter will be used for both `transform_to`
|
|
* and `transform_from` transformation functions; the `notify` function will
|
|
* be called once, when the binding is removed. If you need different data
|
|
* for each transformation function, please use
|
|
* g_object_bind_property_with_closures() instead.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
|
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
|
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property_full(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
transform_to?: GObject.BindingTransformFunc | null,
|
|
transform_from?: GObject.BindingTransformFunc | null,
|
|
notify?: GLib.DestroyNotify | null,
|
|
): GObject.Binding;
|
|
// Conflicted with GObject.Object.bind_property_full
|
|
bind_property_full(...args: never[]): any;
|
|
/**
|
|
* This function is intended for #GObject implementations to re-enforce
|
|
* a [floating][floating-ref] object reference. Doing this is seldom
|
|
* required: all #GInitiallyUnowneds are created with a floating reference
|
|
* which usually just needs to be sunken by calling g_object_ref_sink().
|
|
*/
|
|
force_floating(): void;
|
|
/**
|
|
* Increases the freeze count on `object`. If the freeze count is
|
|
* non-zero, the emission of "notify" signals on `object` is
|
|
* stopped. The signals are queued until the freeze count is decreased
|
|
* to zero. Duplicate notifications are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property modified while the
|
|
* object is frozen.
|
|
*
|
|
* This is necessary for accessors that modify multiple properties to prevent
|
|
* premature notification while the object is still being modified.
|
|
*/
|
|
freeze_notify(): void;
|
|
/**
|
|
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
|
* @param key name of the key for that association
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
get_data(key: string): any | null;
|
|
/**
|
|
* Gets a property of an object.
|
|
*
|
|
* The value can be:
|
|
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
|
* - a GObject.Value initialized with the expected type of the property
|
|
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
|
*
|
|
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
|
*
|
|
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
|
* @param property_name The name of the property to get
|
|
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
|
*/
|
|
get_property(property_name: string, value: GObject.Value | any): any;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
get_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Gets `n_properties` properties for an `object`.
|
|
* Obtained properties will be set to `values`. All properties must be valid.
|
|
* Warnings will be emitted and undefined behaviour may result if invalid
|
|
* properties are passed in.
|
|
* @param names the names of each property to get
|
|
* @param values the values of each property to get
|
|
*/
|
|
getv(names: string[], values: (GObject.Value | any)[]): void;
|
|
/**
|
|
* Checks whether `object` has a [floating][floating-ref] reference.
|
|
* @returns %TRUE if @object has a floating reference
|
|
*/
|
|
is_floating(): boolean;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param property_name the name of a property installed on the class of @object.
|
|
*/
|
|
notify(property_name: string): void;
|
|
/**
|
|
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
|
*
|
|
* This function omits the property name lookup, hence it is faster than
|
|
* g_object_notify().
|
|
*
|
|
* One way to avoid using g_object_notify() from within the
|
|
* class that registered the properties, and using g_object_notify_by_pspec()
|
|
* instead, is to store the GParamSpec used with
|
|
* g_object_class_install_property() inside a static array, e.g.:
|
|
*
|
|
*
|
|
* ```c
|
|
* typedef enum
|
|
* {
|
|
* PROP_FOO = 1,
|
|
* PROP_LAST
|
|
* } MyObjectProperty;
|
|
*
|
|
* static GParamSpec *properties[PROP_LAST];
|
|
*
|
|
* static void
|
|
* my_object_class_init (MyObjectClass *klass)
|
|
* {
|
|
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
|
* 0, 100,
|
|
* 50,
|
|
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
|
* g_object_class_install_property (gobject_class,
|
|
* PROP_FOO,
|
|
* properties[PROP_FOO]);
|
|
* }
|
|
* ```
|
|
*
|
|
*
|
|
* and then notify a change on the "foo" property with:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
|
* ```
|
|
*
|
|
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
|
*/
|
|
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Increases the reference count of `object`.
|
|
*
|
|
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
|
* of `object` will be propagated to the return type (using the GCC typeof()
|
|
* extension), so any casting the caller needs to do on the return type must be
|
|
* explicit.
|
|
* @returns the same @object
|
|
*/
|
|
ref(): GObject.Object;
|
|
/**
|
|
* Increase the reference count of `object,` and possibly remove the
|
|
* [floating][floating-ref] reference, if `object` has a floating reference.
|
|
*
|
|
* In other words, if the object is floating, then this call "assumes
|
|
* ownership" of the floating reference, converting it to a normal
|
|
* reference by clearing the floating flag while leaving the reference
|
|
* count unchanged. If the object is not floating, then this call
|
|
* adds a new normal reference increasing the reference count by one.
|
|
*
|
|
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
|
* under the same conditions as for g_object_ref().
|
|
* @returns @object
|
|
*/
|
|
ref_sink(): GObject.Object;
|
|
/**
|
|
* Releases all references to other objects. This can be used to break
|
|
* reference cycles.
|
|
*
|
|
* This function should only be called from object system implementations.
|
|
*/
|
|
run_dispose(): void;
|
|
/**
|
|
* Each object carries around a table of associations from
|
|
* strings to pointers. This function lets you set an association.
|
|
*
|
|
* If the object already had an association with that name,
|
|
* the old association will be destroyed.
|
|
*
|
|
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
|
* This means a copy of `key` is kept permanently (even after `object` has been
|
|
* finalized) — so it is recommended to only use a small, bounded set of values
|
|
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
|
* @param key name of the key
|
|
* @param data data to associate with that key
|
|
*/
|
|
set_data(key: string, data?: any | null): void;
|
|
/**
|
|
* Sets a property on an object.
|
|
* @param property_name The name of the property to set
|
|
* @param value The value to set the property to
|
|
*/
|
|
set_property(property_name: string, value: GObject.Value | any): void;
|
|
/**
|
|
* Remove a specified datum from the object's data associations,
|
|
* without invoking the association's destroy handler.
|
|
* @param key name of the key
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
steal_data(key: string): any | null;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata() and removes the `data` from object
|
|
* without invoking its destroy() function (if any was
|
|
* set).
|
|
* Usually, calling this function is only required to update
|
|
* user data pointers with a destroy notifier, for example:
|
|
*
|
|
* ```c
|
|
* void
|
|
* object_add_to_user_list (GObject *object,
|
|
* const gchar *new_string)
|
|
* {
|
|
* // the quark, naming the object data
|
|
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
|
* // retrieve the old string list
|
|
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
|
*
|
|
* // prepend new string
|
|
* list = g_list_prepend (list, g_strdup (new_string));
|
|
* // this changed 'list', so we need to set it again
|
|
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
|
* }
|
|
* static void
|
|
* free_string_list (gpointer data)
|
|
* {
|
|
* GList *node, *list = data;
|
|
*
|
|
* for (node = list; node; node = node->next)
|
|
* g_free (node->data);
|
|
* g_list_free (list);
|
|
* }
|
|
* ```
|
|
*
|
|
* Using g_object_get_qdata() in the above example, instead of
|
|
* g_object_steal_qdata() would have left the destroy function set,
|
|
* and thus the partial string list would have been freed upon
|
|
* g_object_set_qdata_full().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
steal_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Reverts the effect of a previous call to
|
|
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
|
* and when it reaches zero, queued "notify" signals are emitted.
|
|
*
|
|
* Duplicate notifications for each property are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property, in the reverse order
|
|
* in which they have been queued.
|
|
*
|
|
* It is an error to call this function when the freeze count is zero.
|
|
*/
|
|
thaw_notify(): void;
|
|
/**
|
|
* Decreases the reference count of `object`. When its reference count
|
|
* drops to 0, the object is finalized (i.e. its memory is freed).
|
|
*
|
|
* If the pointer to the #GObject may be reused in future (for example, if it is
|
|
* an instance variable of another object), it is recommended to clear the
|
|
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
|
* invalid #GObject instance. Use g_clear_object() for this.
|
|
*/
|
|
unref(): void;
|
|
/**
|
|
* This function essentially limits the life time of the `closure` to
|
|
* the life time of the object. That is, when the object is finalized,
|
|
* the `closure` is invalidated by calling g_closure_invalidate() on
|
|
* it, in order to prevent invocations of the closure with a finalized
|
|
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
|
* added as marshal guards to the `closure,` to ensure that an extra
|
|
* reference count is held on `object` during invocation of the
|
|
* `closure`. Usually, this function will be called on closures that
|
|
* use this `object` as closure data.
|
|
* @param closure #GClosure to watch
|
|
*/
|
|
watch_closure(closure: GObject.Closure): void;
|
|
/**
|
|
* the `constructed` function is called by g_object_new() as the
|
|
* final step of the object creation process. At the point of the call, all
|
|
* construction properties have been set on the object. The purpose of this
|
|
* call is to allow for object initialisation steps that can only be performed
|
|
* after construction properties have been set. `constructed` implementors
|
|
* should chain up to the `constructed` call of their parent class to allow it
|
|
* to complete its initialisation.
|
|
*/
|
|
vfunc_constructed(): void;
|
|
/**
|
|
* emits property change notification for a bunch
|
|
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
|
* needed.
|
|
* @param n_pspecs
|
|
* @param pspecs
|
|
*/
|
|
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
|
/**
|
|
* the `dispose` function is supposed to drop all references to other
|
|
* objects, but keep the instance otherwise intact, so that client method
|
|
* invocations still work. It may be run multiple times (due to reference
|
|
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
|
* of the parent class.
|
|
*/
|
|
vfunc_dispose(): void;
|
|
/**
|
|
* instance finalization function, should finish the finalization of
|
|
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
|
* parent class.
|
|
*/
|
|
vfunc_finalize(): void;
|
|
/**
|
|
* the generic getter for all properties of this type. Should be
|
|
* overridden for every type with properties.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param pspec
|
|
*/
|
|
vfunc_notify(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* the generic setter for all properties of this type. Should be
|
|
* overridden for every type with properties. If implementations of
|
|
* `set_property` don't emit property change notification explicitly, this will
|
|
* be done implicitly by the type system. However, if the notify signal is
|
|
* emitted explicitly, the type system will not emit it a second time.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
|
* @param id Handler ID of the handler to be disconnected
|
|
*/
|
|
disconnect(id: number): void;
|
|
/**
|
|
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
|
* @param properties Object containing the properties to set
|
|
*/
|
|
set(properties: { [key: string]: any }): void;
|
|
/**
|
|
* Blocks a handler of an instance so it will not be called during any signal emissions
|
|
* @param id Handler ID of the handler to be blocked
|
|
*/
|
|
block_signal_handler(id: number): void;
|
|
/**
|
|
* Unblocks a handler so it will be called again during any signal emissions
|
|
* @param id Handler ID of the handler to be unblocked
|
|
*/
|
|
unblock_signal_handler(id: number): void;
|
|
/**
|
|
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
|
* @param detailedName Name of the signal to stop emission of
|
|
*/
|
|
stop_emission_by_name(detailedName: string): void;
|
|
}
|
|
|
|
type MenuClass = typeof Menu;
|
|
type MenuDirectoryClass = typeof MenuDirectory;
|
|
abstract class MenuDirectoryPrivate {
|
|
static $gtype: GObject.GType<MenuDirectoryPrivate>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
type MenuElementIface = typeof MenuElement;
|
|
type MenuItemActionClass = typeof MenuItemAction;
|
|
abstract class MenuItemActionPrivate {
|
|
static $gtype: GObject.GType<MenuItemActionPrivate>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
type MenuItemCacheClass = typeof MenuItemCache;
|
|
abstract class MenuItemCachePrivate {
|
|
static $gtype: GObject.GType<MenuItemCachePrivate>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
type MenuItemClass = typeof MenuItem;
|
|
type MenuItemPoolClass = typeof MenuItemPool;
|
|
abstract class MenuItemPoolPrivate {
|
|
static $gtype: GObject.GType<MenuItemPoolPrivate>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
abstract class MenuItemPrivate {
|
|
static $gtype: GObject.GType<MenuItemPrivate>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
type MenuMergerClass = typeof MenuMerger;
|
|
abstract class MenuMergerPrivate {
|
|
static $gtype: GObject.GType<MenuMergerPrivate>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
type MenuNodeClass = typeof MenuNode;
|
|
type MenuParserClass = typeof MenuParser;
|
|
abstract class MenuParserPrivate {
|
|
static $gtype: GObject.GType<MenuParserPrivate>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
abstract class MenuPrivate {
|
|
static $gtype: GObject.GType<MenuPrivate>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
type MenuSeparatorClass = typeof MenuSeparator;
|
|
type MenuTreeProviderIface = typeof MenuTreeProvider;
|
|
class MenuNodeData {
|
|
static $gtype: GObject.GType<MenuNodeData>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
namespace MenuElement {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps {}
|
|
}
|
|
|
|
export interface MenuElementNamespace {
|
|
$gtype: GObject.GType<MenuElement>;
|
|
prototype: MenuElement;
|
|
}
|
|
interface MenuElement extends GObject.Object {
|
|
// Methods
|
|
|
|
equal(b: MenuElement): boolean;
|
|
get_comment(): string;
|
|
get_icon_name(): string;
|
|
get_name(): string;
|
|
get_no_display(): boolean;
|
|
get_show_in_environment(): boolean;
|
|
get_visible(): boolean;
|
|
|
|
// Virtual methods
|
|
|
|
vfunc_equal(other: MenuElement): boolean;
|
|
vfunc_get_comment(): string;
|
|
vfunc_get_icon_name(): string;
|
|
vfunc_get_name(): string;
|
|
vfunc_get_no_display(): boolean;
|
|
vfunc_get_show_in_environment(): boolean;
|
|
vfunc_get_visible(): boolean;
|
|
}
|
|
|
|
export const MenuElement: MenuElementNamespace & {
|
|
new (): MenuElement; // This allows `obj instanceof MenuElement`
|
|
};
|
|
|
|
namespace MenuTreeProvider {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps extends GObject.Object.ConstructorProps {}
|
|
}
|
|
|
|
export interface MenuTreeProviderNamespace {
|
|
$gtype: GObject.GType<MenuTreeProvider>;
|
|
prototype: MenuTreeProvider;
|
|
}
|
|
interface MenuTreeProvider extends GObject.Object {
|
|
// Methods
|
|
|
|
get_file(): Gio.File;
|
|
|
|
// Virtual methods
|
|
|
|
vfunc_get_file(): Gio.File;
|
|
}
|
|
|
|
export const MenuTreeProvider: MenuTreeProviderNamespace & {
|
|
new (): MenuTreeProvider; // This allows `obj instanceof MenuTreeProvider`
|
|
};
|
|
|
|
/**
|
|
* Name of the imported GIR library
|
|
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L188
|
|
*/
|
|
const __name__: string;
|
|
/**
|
|
* Version of the imported GIR library
|
|
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L189
|
|
*/
|
|
const __version__: string;
|
|
}
|
|
|
|
export default Garcon;
|
|
}
|
|
|
|
declare module 'gi://Garcon' {
|
|
import Garcon10 from 'gi://Garcon?version=1.0';
|
|
export default Garcon10;
|
|
}
|
|
// END
|