613 lines
30 KiB
TypeScript
613 lines
30 KiB
TypeScript
/// <reference path="./libxfce4util-1.0.d.ts" />
|
|
/// <reference path="./gio-2.0.d.ts" />
|
|
/// <reference path="./gobject-2.0.d.ts" />
|
|
/// <reference path="./glib-2.0.d.ts" />
|
|
/// <reference path="./gmodule-2.0.d.ts" />
|
|
/// <reference path="./libxfce4ui-2.0.d.ts" />
|
|
/// <reference path="./gtk-3.0.d.ts" />
|
|
/// <reference path="./xlib-2.0.d.ts" />
|
|
/// <reference path="./gdk-3.0.d.ts" />
|
|
/// <reference path="./cairo-1.0.d.ts" />
|
|
/// <reference path="./cairo.d.ts" />
|
|
/// <reference path="./pango-1.0.d.ts" />
|
|
/// <reference path="./harfbuzz-0.0.d.ts" />
|
|
/// <reference path="./freetype2-2.0.d.ts" />
|
|
/// <reference path="./gdkpixbuf-2.0.d.ts" />
|
|
/// <reference path="./atk-1.0.d.ts" />
|
|
/// <reference path="./garcon-1.0.d.ts" />
|
|
|
|
/**
|
|
* Type Definitions for Gjs (https://gjs.guide/)
|
|
*
|
|
* These type definitions are automatically generated, do not edit them by hand.
|
|
* If you found a bug fix it in `ts-for-gir` or create a bug report on https://github.com/gjsify/ts-for-gir
|
|
*
|
|
* The based EJS template file is used for the generated .d.ts file of each GIR module like Gtk-4.0, GObject-2.0, ...
|
|
*/
|
|
|
|
declare module 'gi://GarconGtk?version=1.0' {
|
|
// Module dependencies
|
|
import type Libxfce4util from 'gi://Libxfce4util?version=1.0';
|
|
import type Gio from 'gi://Gio?version=2.0';
|
|
import type GObject from 'gi://GObject?version=2.0';
|
|
import type GLib from 'gi://GLib?version=2.0';
|
|
import type GModule from 'gi://GModule?version=2.0';
|
|
import type Libxfce4ui from 'gi://Libxfce4ui?version=2.0';
|
|
import type Gtk from 'gi://Gtk?version=3.0';
|
|
import type xlib from 'gi://xlib?version=2.0';
|
|
import type Gdk from 'gi://Gdk?version=3.0';
|
|
import type cairo from 'cairo';
|
|
import type Pango from 'gi://Pango?version=1.0';
|
|
import type HarfBuzz from 'gi://HarfBuzz?version=0.0';
|
|
import type freetype2 from 'gi://freetype2?version=2.0';
|
|
import type GdkPixbuf from 'gi://GdkPixbuf?version=2.0';
|
|
import type Atk from 'gi://Atk?version=1.0';
|
|
import type Garcon from 'gi://Garcon?version=1.0';
|
|
|
|
export namespace GarconGtk {
|
|
/**
|
|
* GarconGtk-1.0
|
|
*/
|
|
|
|
namespace Menu {
|
|
// Constructor properties interface
|
|
|
|
interface ConstructorProps
|
|
extends Gtk.Menu.ConstructorProps,
|
|
Atk.ImplementorIface.ConstructorProps,
|
|
Gtk.Buildable.ConstructorProps {
|
|
menu: Garcon.Menu;
|
|
right_click_edits: boolean;
|
|
rightClickEdits: boolean;
|
|
show_desktop_actions: boolean;
|
|
showDesktopActions: boolean;
|
|
show_generic_names: boolean;
|
|
showGenericNames: boolean;
|
|
show_menu_icons: boolean;
|
|
showMenuIcons: boolean;
|
|
show_tooltips: boolean;
|
|
showTooltips: boolean;
|
|
}
|
|
}
|
|
|
|
class Menu extends Gtk.Menu implements Atk.ImplementorIface, Gtk.Buildable {
|
|
static $gtype: GObject.GType<Menu>;
|
|
|
|
// Properties
|
|
|
|
get menu(): Garcon.Menu;
|
|
set menu(val: Garcon.Menu);
|
|
get right_click_edits(): boolean;
|
|
set right_click_edits(val: boolean);
|
|
get rightClickEdits(): boolean;
|
|
set rightClickEdits(val: boolean);
|
|
get show_desktop_actions(): boolean;
|
|
set show_desktop_actions(val: boolean);
|
|
get showDesktopActions(): boolean;
|
|
set showDesktopActions(val: boolean);
|
|
get show_generic_names(): boolean;
|
|
set show_generic_names(val: boolean);
|
|
get showGenericNames(): boolean;
|
|
set showGenericNames(val: boolean);
|
|
get show_menu_icons(): boolean;
|
|
set show_menu_icons(val: boolean);
|
|
get showMenuIcons(): boolean;
|
|
set showMenuIcons(val: boolean);
|
|
get show_tooltips(): boolean;
|
|
set show_tooltips(val: boolean);
|
|
get showTooltips(): boolean;
|
|
set showTooltips(val: boolean);
|
|
|
|
// Constructors
|
|
|
|
constructor(properties?: Partial<Menu.ConstructorProps>, ...args: any[]);
|
|
|
|
_init(...args: any[]): void;
|
|
|
|
static ['new'](garcon_menu?: Garcon.Menu | null): Menu;
|
|
// Conflicted with Gtk.Menu.new
|
|
|
|
static ['new'](...args: never[]): any;
|
|
|
|
// Static methods
|
|
|
|
/**
|
|
* Application icons are never shown on the action menu items.
|
|
* @param item A #GarconMenuItem
|
|
*/
|
|
static get_desktop_actions_menu(item: Garcon.MenuItem): Gtk.Menu;
|
|
|
|
// Methods
|
|
|
|
/**
|
|
* The #GarconMenu used to create the #GtkMenu.
|
|
*
|
|
* The caller is responsible to releasing the returned #GarconMenu
|
|
* using g_object_unref().
|
|
* @returns the #GarconMenu for @menu.
|
|
*/
|
|
get_menu(): Garcon.Menu;
|
|
get_right_click_edits(): boolean;
|
|
get_show_desktop_actions(): boolean;
|
|
get_show_generic_names(): boolean;
|
|
get_show_menu_icons(): boolean;
|
|
get_show_tooltips(): boolean;
|
|
set_menu(garcon_menu: Garcon.Menu): void;
|
|
set_right_click_edits(enable_right_click_edits: boolean): void;
|
|
set_show_desktop_actions(show_desktop_actions: boolean): void;
|
|
set_show_generic_names(show_generic_names: boolean): void;
|
|
set_show_menu_icons(show_menu_icons: boolean): void;
|
|
set_show_tooltips(show_tooltips: boolean): void;
|
|
|
|
// Inherited methods
|
|
/**
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target`.
|
|
*
|
|
* Whenever the `source_property` is changed the `target_property` is
|
|
* updated using the same value. For instance:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_bind_property (action, "active", widget, "sensitive", 0);
|
|
* ```
|
|
*
|
|
*
|
|
* Will result in the "sensitive" property of the widget #GObject instance to be
|
|
* updated with the same value of the "active" property of the action #GObject
|
|
* instance.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well.
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. To remove the binding without affecting the
|
|
* `source` and the `target` you can just call g_object_unref() on the returned
|
|
* #GBinding instance.
|
|
*
|
|
* Removing the binding by calling g_object_unref() on it must only be done if
|
|
* the binding, `source` and `target` are only used from a single thread and it
|
|
* is clear that both `source` and `target` outlive the binding. Especially it
|
|
* is not safe to rely on this if the binding, `source` or `target` can be
|
|
* finalized from different threads. Keep another reference to the binding and
|
|
* use g_binding_unbind() instead to be on the safe side.
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
): GObject.Binding;
|
|
/**
|
|
* Complete version of g_object_bind_property().
|
|
*
|
|
* Creates a binding between `source_property` on `source` and `target_property`
|
|
* on `target,` allowing you to set the transformation functions to be used by
|
|
* the binding.
|
|
*
|
|
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
|
|
* if `target_property` on `target` changes then the `source_property` on `source`
|
|
* will be updated as well. The `transform_from` function is only used in case
|
|
* of bidirectional bindings, otherwise it will be ignored
|
|
*
|
|
* The binding will automatically be removed when either the `source` or the
|
|
* `target` instances are finalized. This will release the reference that is
|
|
* being held on the #GBinding instance; if you want to hold on to the
|
|
* #GBinding instance, you will need to hold a reference to it.
|
|
*
|
|
* To remove the binding, call g_binding_unbind().
|
|
*
|
|
* A #GObject can have multiple bindings.
|
|
*
|
|
* The same `user_data` parameter will be used for both `transform_to`
|
|
* and `transform_from` transformation functions; the `notify` function will
|
|
* be called once, when the binding is removed. If you need different data
|
|
* for each transformation function, please use
|
|
* g_object_bind_property_with_closures() instead.
|
|
* @param source_property the property on @source to bind
|
|
* @param target the target #GObject
|
|
* @param target_property the property on @target to bind
|
|
* @param flags flags to pass to #GBinding
|
|
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
|
|
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
|
|
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
|
|
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
|
|
*/
|
|
bind_property_full(
|
|
source_property: string,
|
|
target: GObject.Object,
|
|
target_property: string,
|
|
flags: GObject.BindingFlags | null,
|
|
transform_to?: GObject.BindingTransformFunc | null,
|
|
transform_from?: GObject.BindingTransformFunc | null,
|
|
notify?: GLib.DestroyNotify | null,
|
|
): GObject.Binding;
|
|
// Conflicted with GObject.Object.bind_property_full
|
|
bind_property_full(...args: never[]): any;
|
|
/**
|
|
* This function is intended for #GObject implementations to re-enforce
|
|
* a [floating][floating-ref] object reference. Doing this is seldom
|
|
* required: all #GInitiallyUnowneds are created with a floating reference
|
|
* which usually just needs to be sunken by calling g_object_ref_sink().
|
|
*/
|
|
force_floating(): void;
|
|
/**
|
|
* Increases the freeze count on `object`. If the freeze count is
|
|
* non-zero, the emission of "notify" signals on `object` is
|
|
* stopped. The signals are queued until the freeze count is decreased
|
|
* to zero. Duplicate notifications are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property modified while the
|
|
* object is frozen.
|
|
*
|
|
* This is necessary for accessors that modify multiple properties to prevent
|
|
* premature notification while the object is still being modified.
|
|
*/
|
|
freeze_notify(): void;
|
|
/**
|
|
* Gets a named field from the objects table of associations (see g_object_set_data()).
|
|
* @param key name of the key for that association
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
get_data(key: string): any | null;
|
|
/**
|
|
* Gets a property of an object.
|
|
*
|
|
* The value can be:
|
|
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
|
|
* - a GObject.Value initialized with the expected type of the property
|
|
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
|
|
*
|
|
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
|
|
*
|
|
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
|
|
* @param property_name The name of the property to get
|
|
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
|
|
*/
|
|
get_property(property_name: string, value: GObject.Value | any): any;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
get_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Gets `n_properties` properties for an `object`.
|
|
* Obtained properties will be set to `values`. All properties must be valid.
|
|
* Warnings will be emitted and undefined behaviour may result if invalid
|
|
* properties are passed in.
|
|
* @param names the names of each property to get
|
|
* @param values the values of each property to get
|
|
*/
|
|
getv(names: string[], values: (GObject.Value | any)[]): void;
|
|
/**
|
|
* Checks whether `object` has a [floating][floating-ref] reference.
|
|
* @returns %TRUE if @object has a floating reference
|
|
*/
|
|
is_floating(): boolean;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param property_name the name of a property installed on the class of @object.
|
|
*/
|
|
notify(property_name: string): void;
|
|
/**
|
|
* Emits a "notify" signal for the property specified by `pspec` on `object`.
|
|
*
|
|
* This function omits the property name lookup, hence it is faster than
|
|
* g_object_notify().
|
|
*
|
|
* One way to avoid using g_object_notify() from within the
|
|
* class that registered the properties, and using g_object_notify_by_pspec()
|
|
* instead, is to store the GParamSpec used with
|
|
* g_object_class_install_property() inside a static array, e.g.:
|
|
*
|
|
*
|
|
* ```c
|
|
* typedef enum
|
|
* {
|
|
* PROP_FOO = 1,
|
|
* PROP_LAST
|
|
* } MyObjectProperty;
|
|
*
|
|
* static GParamSpec *properties[PROP_LAST];
|
|
*
|
|
* static void
|
|
* my_object_class_init (MyObjectClass *klass)
|
|
* {
|
|
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
|
|
* 0, 100,
|
|
* 50,
|
|
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
|
|
* g_object_class_install_property (gobject_class,
|
|
* PROP_FOO,
|
|
* properties[PROP_FOO]);
|
|
* }
|
|
* ```
|
|
*
|
|
*
|
|
* and then notify a change on the "foo" property with:
|
|
*
|
|
*
|
|
* ```c
|
|
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
|
|
* ```
|
|
*
|
|
* @param pspec the #GParamSpec of a property installed on the class of @object.
|
|
*/
|
|
notify_by_pspec(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Increases the reference count of `object`.
|
|
*
|
|
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
|
|
* of `object` will be propagated to the return type (using the GCC typeof()
|
|
* extension), so any casting the caller needs to do on the return type must be
|
|
* explicit.
|
|
* @returns the same @object
|
|
*/
|
|
ref(): GObject.Object;
|
|
/**
|
|
* Increase the reference count of `object,` and possibly remove the
|
|
* [floating][floating-ref] reference, if `object` has a floating reference.
|
|
*
|
|
* In other words, if the object is floating, then this call "assumes
|
|
* ownership" of the floating reference, converting it to a normal
|
|
* reference by clearing the floating flag while leaving the reference
|
|
* count unchanged. If the object is not floating, then this call
|
|
* adds a new normal reference increasing the reference count by one.
|
|
*
|
|
* Since GLib 2.56, the type of `object` will be propagated to the return type
|
|
* under the same conditions as for g_object_ref().
|
|
* @returns @object
|
|
*/
|
|
ref_sink(): GObject.Object;
|
|
/**
|
|
* Releases all references to other objects. This can be used to break
|
|
* reference cycles.
|
|
*
|
|
* This function should only be called from object system implementations.
|
|
*/
|
|
run_dispose(): void;
|
|
/**
|
|
* Each object carries around a table of associations from
|
|
* strings to pointers. This function lets you set an association.
|
|
*
|
|
* If the object already had an association with that name,
|
|
* the old association will be destroyed.
|
|
*
|
|
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
|
|
* This means a copy of `key` is kept permanently (even after `object` has been
|
|
* finalized) — so it is recommended to only use a small, bounded set of values
|
|
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
|
|
* @param key name of the key
|
|
* @param data data to associate with that key
|
|
*/
|
|
set_data(key: string, data?: any | null): void;
|
|
/**
|
|
* Sets a property on an object.
|
|
* @param property_name The name of the property to set
|
|
* @param value The value to set the property to
|
|
*/
|
|
set_property(property_name: string, value: GObject.Value | any): void;
|
|
/**
|
|
* Remove a specified datum from the object's data associations,
|
|
* without invoking the association's destroy handler.
|
|
* @param key name of the key
|
|
* @returns the data if found, or %NULL if no such data exists.
|
|
*/
|
|
steal_data(key: string): any | null;
|
|
/**
|
|
* This function gets back user data pointers stored via
|
|
* g_object_set_qdata() and removes the `data` from object
|
|
* without invoking its destroy() function (if any was
|
|
* set).
|
|
* Usually, calling this function is only required to update
|
|
* user data pointers with a destroy notifier, for example:
|
|
*
|
|
* ```c
|
|
* void
|
|
* object_add_to_user_list (GObject *object,
|
|
* const gchar *new_string)
|
|
* {
|
|
* // the quark, naming the object data
|
|
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
|
|
* // retrieve the old string list
|
|
* GList *list = g_object_steal_qdata (object, quark_string_list);
|
|
*
|
|
* // prepend new string
|
|
* list = g_list_prepend (list, g_strdup (new_string));
|
|
* // this changed 'list', so we need to set it again
|
|
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
|
|
* }
|
|
* static void
|
|
* free_string_list (gpointer data)
|
|
* {
|
|
* GList *node, *list = data;
|
|
*
|
|
* for (node = list; node; node = node->next)
|
|
* g_free (node->data);
|
|
* g_list_free (list);
|
|
* }
|
|
* ```
|
|
*
|
|
* Using g_object_get_qdata() in the above example, instead of
|
|
* g_object_steal_qdata() would have left the destroy function set,
|
|
* and thus the partial string list would have been freed upon
|
|
* g_object_set_qdata_full().
|
|
* @param quark A #GQuark, naming the user data pointer
|
|
* @returns The user data pointer set, or %NULL
|
|
*/
|
|
steal_qdata(quark: GLib.Quark): any | null;
|
|
/**
|
|
* Reverts the effect of a previous call to
|
|
* g_object_freeze_notify(). The freeze count is decreased on `object`
|
|
* and when it reaches zero, queued "notify" signals are emitted.
|
|
*
|
|
* Duplicate notifications for each property are squashed so that at most one
|
|
* #GObject::notify signal is emitted for each property, in the reverse order
|
|
* in which they have been queued.
|
|
*
|
|
* It is an error to call this function when the freeze count is zero.
|
|
*/
|
|
thaw_notify(): void;
|
|
/**
|
|
* Decreases the reference count of `object`. When its reference count
|
|
* drops to 0, the object is finalized (i.e. its memory is freed).
|
|
*
|
|
* If the pointer to the #GObject may be reused in future (for example, if it is
|
|
* an instance variable of another object), it is recommended to clear the
|
|
* pointer to %NULL rather than retain a dangling pointer to a potentially
|
|
* invalid #GObject instance. Use g_clear_object() for this.
|
|
*/
|
|
unref(): void;
|
|
/**
|
|
* This function essentially limits the life time of the `closure` to
|
|
* the life time of the object. That is, when the object is finalized,
|
|
* the `closure` is invalidated by calling g_closure_invalidate() on
|
|
* it, in order to prevent invocations of the closure with a finalized
|
|
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
|
|
* added as marshal guards to the `closure,` to ensure that an extra
|
|
* reference count is held on `object` during invocation of the
|
|
* `closure`. Usually, this function will be called on closures that
|
|
* use this `object` as closure data.
|
|
* @param closure #GClosure to watch
|
|
*/
|
|
watch_closure(closure: GObject.Closure): void;
|
|
/**
|
|
* the `constructed` function is called by g_object_new() as the
|
|
* final step of the object creation process. At the point of the call, all
|
|
* construction properties have been set on the object. The purpose of this
|
|
* call is to allow for object initialisation steps that can only be performed
|
|
* after construction properties have been set. `constructed` implementors
|
|
* should chain up to the `constructed` call of their parent class to allow it
|
|
* to complete its initialisation.
|
|
*/
|
|
vfunc_constructed(): void;
|
|
/**
|
|
* emits property change notification for a bunch
|
|
* of properties. Overriding `dispatch_properties_changed` should be rarely
|
|
* needed.
|
|
* @param n_pspecs
|
|
* @param pspecs
|
|
*/
|
|
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
|
|
/**
|
|
* the `dispose` function is supposed to drop all references to other
|
|
* objects, but keep the instance otherwise intact, so that client method
|
|
* invocations still work. It may be run multiple times (due to reference
|
|
* loops). Before returning, `dispose` should chain up to the `dispose` method
|
|
* of the parent class.
|
|
*/
|
|
vfunc_dispose(): void;
|
|
/**
|
|
* instance finalization function, should finish the finalization of
|
|
* the instance begun in `dispose` and chain up to the `finalize` method of the
|
|
* parent class.
|
|
*/
|
|
vfunc_finalize(): void;
|
|
/**
|
|
* the generic getter for all properties of this type. Should be
|
|
* overridden for every type with properties.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Emits a "notify" signal for the property `property_name` on `object`.
|
|
*
|
|
* When possible, eg. when signaling a property change from within the class
|
|
* that registered the property, you should use g_object_notify_by_pspec()
|
|
* instead.
|
|
*
|
|
* Note that emission of the notify signal may be blocked with
|
|
* g_object_freeze_notify(). In this case, the signal emissions are queued
|
|
* and will be emitted (in reverse order) when g_object_thaw_notify() is
|
|
* called.
|
|
* @param pspec
|
|
*/
|
|
vfunc_notify(pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* the generic setter for all properties of this type. Should be
|
|
* overridden for every type with properties. If implementations of
|
|
* `set_property` don't emit property change notification explicitly, this will
|
|
* be done implicitly by the type system. However, if the notify signal is
|
|
* emitted explicitly, the type system will not emit it a second time.
|
|
* @param property_id
|
|
* @param value
|
|
* @param pspec
|
|
*/
|
|
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
|
|
/**
|
|
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
|
|
* @param id Handler ID of the handler to be disconnected
|
|
*/
|
|
disconnect(id: number): void;
|
|
/**
|
|
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
|
|
* @param properties Object containing the properties to set
|
|
*/
|
|
set(properties: { [key: string]: any }): void;
|
|
/**
|
|
* Blocks a handler of an instance so it will not be called during any signal emissions
|
|
* @param id Handler ID of the handler to be blocked
|
|
*/
|
|
block_signal_handler(id: number): void;
|
|
/**
|
|
* Unblocks a handler so it will be called again during any signal emissions
|
|
* @param id Handler ID of the handler to be unblocked
|
|
*/
|
|
unblock_signal_handler(id: number): void;
|
|
/**
|
|
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
|
|
* @param detailedName Name of the signal to stop emission of
|
|
*/
|
|
stop_emission_by_name(detailedName: string): void;
|
|
}
|
|
|
|
type MenuClass = typeof Menu;
|
|
abstract class MenuPrivate {
|
|
static $gtype: GObject.GType<MenuPrivate>;
|
|
|
|
// Constructors
|
|
|
|
_init(...args: any[]): void;
|
|
}
|
|
|
|
/**
|
|
* Name of the imported GIR library
|
|
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L188
|
|
*/
|
|
const __name__: string;
|
|
/**
|
|
* Version of the imported GIR library
|
|
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L189
|
|
*/
|
|
const __version__: string;
|
|
}
|
|
|
|
export default GarconGtk;
|
|
}
|
|
|
|
declare module 'gi://GarconGtk' {
|
|
import GarconGtk10 from 'gi://GarconGtk?version=1.0';
|
|
export default GarconGtk10;
|
|
}
|
|
// END
|