///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
/**
* Type Definitions for Gjs (https://gjs.guide/)
*
* These type definitions are automatically generated, do not edit them by hand.
* If you found a bug fix it in `ts-for-gir` or create a bug report on https://github.com/gjsify/ts-for-gir
*
* The based EJS template file is used for the generated .d.ts file of each GIR module like Gtk-4.0, GObject-2.0, ...
*/
declare module 'gi://Astal?version=4.0' {
// Module dependencies
import type Gio from 'gi://Gio?version=2.0';
import type GObject from 'gi://GObject?version=2.0';
import type GLib from 'gi://GLib?version=2.0';
import type GModule from 'gi://GModule?version=2.0';
import type AstalIO from 'gi://AstalIO?version=0.1';
import type Gdk from 'gi://Gdk?version=4.0';
import type cairo from 'cairo';
import type PangoCairo from 'gi://PangoCairo?version=1.0';
import type Pango from 'gi://Pango?version=1.0';
import type HarfBuzz from 'gi://HarfBuzz?version=0.0';
import type freetype2 from 'gi://freetype2?version=2.0';
import type GdkPixbuf from 'gi://GdkPixbuf?version=2.0';
import type Gtk from 'gi://Gtk?version=4.0';
import type Gsk from 'gi://Gsk?version=4.0';
import type Graphene from 'gi://Graphene?version=1.0';
export namespace Astal {
/**
* Astal-4.0
*/
export namespace Exclusivity {
export const $gtype: GObject.GType;
}
enum Exclusivity {
NORMAL,
/**
* Request the compositor to allocate space for this window.
*/
EXCLUSIVE,
/**
* Request the compositor to stack layers on top of each other.
*/
IGNORE,
}
export namespace Layer {
export const $gtype: GObject.GType;
}
enum Layer {
BACKGROUND,
BOTTOM,
TOP,
OVERLAY,
}
export namespace Keymode {
export const $gtype: GObject.GType;
}
enum Keymode {
/**
* Window should not receive keyboard events.
*/
NONE,
/**
* Window should have exclusive focus if it is on the top or overlay layer.
*/
EXCLUSIVE,
/**
* Focus and Unfocues the window as needed.
*/
ON_DEMAND,
}
const MAJOR_VERSION: number;
const MINOR_VERSION: number;
const MICRO_VERSION: number;
const VERSION: string;
export namespace WindowAnchor {
export const $gtype: GObject.GType;
}
enum WindowAnchor {
NONE,
TOP,
RIGHT,
LEFT,
BOTTOM,
}
namespace Bin {
// Constructor properties interface
interface ConstructorProps extends Gtk.Widget.ConstructorProps, Gtk.Buildable.ConstructorProps {
child: Gtk.Widget;
}
}
/**
* A widget with one child. It is useful for deriving subclasses, since it provides common code needed for handling a single child widget.
*/
class Bin extends Gtk.Widget implements Gtk.Buildable {
static $gtype: GObject.GType;
// Properties
get child(): Gtk.Widget;
set child(val: Gtk.Widget);
// Constructors
constructor(properties?: Partial, ...args: any[]);
_init(...args: any[]): void;
static ['new'](): Bin;
// Methods
get_child(): Gtk.Widget | null;
set_child(value?: Gtk.Widget | null): void;
// Inherited methods
/**
* Gets the ID of the `buildable` object.
*
* `GtkBuilder` sets the name based on the ID attribute
* of the `` tag used to construct the `buildable`.
* @returns the ID of the buildable object
*/
get_buildable_id(): string | null;
/**
* Adds a child to `buildable`. `type` is an optional string
* describing how the child should be added.
* @param builder a `GtkBuilder`
* @param child child to add
* @param type kind of child or %NULL
*/
vfunc_add_child(builder: Gtk.Builder, child: GObject.Object, type?: string | null): void;
/**
* Similar to gtk_buildable_parser_finished() but is
* called once for each custom tag handled by the `buildable`.
* @param builder a `GtkBuilder`
* @param child child object or %NULL for non-child tags
* @param tagname the name of the tag
* @param data user data created in custom_tag_start
*/
vfunc_custom_finished(
builder: Gtk.Builder,
child: GObject.Object | null,
tagname: string,
data?: any | null,
): void;
/**
* Called at the end of each custom element handled by
* the buildable.
* @param builder `GtkBuilder` used to construct this object
* @param child child object or %NULL for non-child tags
* @param tagname name of tag
* @param data user data that will be passed in to parser functions
*/
vfunc_custom_tag_end(
builder: Gtk.Builder,
child: GObject.Object | null,
tagname: string,
data?: any | null,
): void;
/**
* Called for each unknown element under ``.
* @param builder a `GtkBuilder` used to construct this object
* @param child child object or %NULL for non-child tags
* @param tagname name of tag
*/
vfunc_custom_tag_start(
builder: Gtk.Builder,
child: GObject.Object | null,
tagname: string,
): [boolean, Gtk.BuildableParser, any];
/**
* The getter corresponding to `set_id`. Implement this
* if you implement `set_id`.
*/
vfunc_get_id(): string;
/**
* Retrieves the internal child called `childname` of the `buildable` object.
* @param builder a `GtkBuilder`
* @param childname name of child
*/
vfunc_get_internal_child(builder: Gtk.Builder, childname: string): T;
/**
* Called when a builder finishes the parsing
* of a UI definition. It is normally not necessary to implement this,
* unless you need to perform special cleanup actions. `GtkWindow` sets
* the `GtkWidget:visible` property here.
* @param builder
*/
vfunc_parser_finished(builder: Gtk.Builder): void;
/**
* Sets a property of a buildable object.
* It is normally not necessary to implement this, g_object_set_property()
* is used by default. `GtkWindow` implements this to delay showing itself
* (i.e. setting the [property`Gtk`.Widget:visible] property) until the whole
* interface is created.
* @param builder
* @param name
* @param value
*/
vfunc_set_buildable_property(builder: Gtk.Builder, name: string, value: GObject.Value | any): void;
/**
* Stores the id attribute given in the `GtkBuilder` UI definition.
* `GtkWidget` stores the name as object data. Implement this method if your
* object has some notion of “ID” and it makes sense to map the XML id
* attribute to it.
* @param id
*/
vfunc_set_id(id: string): void;
/**
* Creates a binding between `source_property` on `source` and `target_property`
* on `target`.
*
* Whenever the `source_property` is changed the `target_property` is
* updated using the same value. For instance:
*
*
* ```c
* g_object_bind_property (action, "active", widget, "sensitive", 0);
* ```
*
*
* Will result in the "sensitive" property of the widget #GObject instance to be
* updated with the same value of the "active" property of the action #GObject
* instance.
*
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
* if `target_property` on `target` changes then the `source_property` on `source`
* will be updated as well.
*
* The binding will automatically be removed when either the `source` or the
* `target` instances are finalized. To remove the binding without affecting the
* `source` and the `target` you can just call g_object_unref() on the returned
* #GBinding instance.
*
* Removing the binding by calling g_object_unref() on it must only be done if
* the binding, `source` and `target` are only used from a single thread and it
* is clear that both `source` and `target` outlive the binding. Especially it
* is not safe to rely on this if the binding, `source` or `target` can be
* finalized from different threads. Keep another reference to the binding and
* use g_binding_unbind() instead to be on the safe side.
*
* A #GObject can have multiple bindings.
* @param source_property the property on @source to bind
* @param target the target #GObject
* @param target_property the property on @target to bind
* @param flags flags to pass to #GBinding
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
*/
bind_property(
source_property: string,
target: GObject.Object,
target_property: string,
flags: GObject.BindingFlags | null,
): GObject.Binding;
/**
* Complete version of g_object_bind_property().
*
* Creates a binding between `source_property` on `source` and `target_property`
* on `target,` allowing you to set the transformation functions to be used by
* the binding.
*
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
* if `target_property` on `target` changes then the `source_property` on `source`
* will be updated as well. The `transform_from` function is only used in case
* of bidirectional bindings, otherwise it will be ignored
*
* The binding will automatically be removed when either the `source` or the
* `target` instances are finalized. This will release the reference that is
* being held on the #GBinding instance; if you want to hold on to the
* #GBinding instance, you will need to hold a reference to it.
*
* To remove the binding, call g_binding_unbind().
*
* A #GObject can have multiple bindings.
*
* The same `user_data` parameter will be used for both `transform_to`
* and `transform_from` transformation functions; the `notify` function will
* be called once, when the binding is removed. If you need different data
* for each transformation function, please use
* g_object_bind_property_with_closures() instead.
* @param source_property the property on @source to bind
* @param target the target #GObject
* @param target_property the property on @target to bind
* @param flags flags to pass to #GBinding
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
*/
bind_property_full(
source_property: string,
target: GObject.Object,
target_property: string,
flags: GObject.BindingFlags | null,
transform_to?: GObject.BindingTransformFunc | null,
transform_from?: GObject.BindingTransformFunc | null,
notify?: GLib.DestroyNotify | null,
): GObject.Binding;
// Conflicted with GObject.Object.bind_property_full
bind_property_full(...args: never[]): any;
/**
* This function is intended for #GObject implementations to re-enforce
* a [floating][floating-ref] object reference. Doing this is seldom
* required: all #GInitiallyUnowneds are created with a floating reference
* which usually just needs to be sunken by calling g_object_ref_sink().
*/
force_floating(): void;
/**
* Increases the freeze count on `object`. If the freeze count is
* non-zero, the emission of "notify" signals on `object` is
* stopped. The signals are queued until the freeze count is decreased
* to zero. Duplicate notifications are squashed so that at most one
* #GObject::notify signal is emitted for each property modified while the
* object is frozen.
*
* This is necessary for accessors that modify multiple properties to prevent
* premature notification while the object is still being modified.
*/
freeze_notify(): void;
/**
* Gets a named field from the objects table of associations (see g_object_set_data()).
* @param key name of the key for that association
* @returns the data if found, or %NULL if no such data exists.
*/
get_data(key: string): any | null;
/**
* Gets a property of an object.
*
* The value can be:
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
* - a GObject.Value initialized with the expected type of the property
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
*
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
*
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
* @param property_name The name of the property to get
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
*/
get_property(property_name: string, value: GObject.Value | any): any;
/**
* This function gets back user data pointers stored via
* g_object_set_qdata().
* @param quark A #GQuark, naming the user data pointer
* @returns The user data pointer set, or %NULL
*/
get_qdata(quark: GLib.Quark): any | null;
/**
* Gets `n_properties` properties for an `object`.
* Obtained properties will be set to `values`. All properties must be valid.
* Warnings will be emitted and undefined behaviour may result if invalid
* properties are passed in.
* @param names the names of each property to get
* @param values the values of each property to get
*/
getv(names: string[], values: (GObject.Value | any)[]): void;
/**
* Checks whether `object` has a [floating][floating-ref] reference.
* @returns %TRUE if @object has a floating reference
*/
is_floating(): boolean;
/**
* Emits a "notify" signal for the property `property_name` on `object`.
*
* When possible, eg. when signaling a property change from within the class
* that registered the property, you should use g_object_notify_by_pspec()
* instead.
*
* Note that emission of the notify signal may be blocked with
* g_object_freeze_notify(). In this case, the signal emissions are queued
* and will be emitted (in reverse order) when g_object_thaw_notify() is
* called.
* @param property_name the name of a property installed on the class of @object.
*/
notify(property_name: string): void;
/**
* Emits a "notify" signal for the property specified by `pspec` on `object`.
*
* This function omits the property name lookup, hence it is faster than
* g_object_notify().
*
* One way to avoid using g_object_notify() from within the
* class that registered the properties, and using g_object_notify_by_pspec()
* instead, is to store the GParamSpec used with
* g_object_class_install_property() inside a static array, e.g.:
*
*
* ```c
* typedef enum
* {
* PROP_FOO = 1,
* PROP_LAST
* } MyObjectProperty;
*
* static GParamSpec *properties[PROP_LAST];
*
* static void
* my_object_class_init (MyObjectClass *klass)
* {
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
* 0, 100,
* 50,
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
* g_object_class_install_property (gobject_class,
* PROP_FOO,
* properties[PROP_FOO]);
* }
* ```
*
*
* and then notify a change on the "foo" property with:
*
*
* ```c
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
* ```
*
* @param pspec the #GParamSpec of a property installed on the class of @object.
*/
notify_by_pspec(pspec: GObject.ParamSpec): void;
/**
* Increases the reference count of `object`.
*
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
* of `object` will be propagated to the return type (using the GCC typeof()
* extension), so any casting the caller needs to do on the return type must be
* explicit.
* @returns the same @object
*/
ref(): GObject.Object;
/**
* Increase the reference count of `object,` and possibly remove the
* [floating][floating-ref] reference, if `object` has a floating reference.
*
* In other words, if the object is floating, then this call "assumes
* ownership" of the floating reference, converting it to a normal
* reference by clearing the floating flag while leaving the reference
* count unchanged. If the object is not floating, then this call
* adds a new normal reference increasing the reference count by one.
*
* Since GLib 2.56, the type of `object` will be propagated to the return type
* under the same conditions as for g_object_ref().
* @returns @object
*/
ref_sink(): GObject.Object;
/**
* Releases all references to other objects. This can be used to break
* reference cycles.
*
* This function should only be called from object system implementations.
*/
run_dispose(): void;
/**
* Each object carries around a table of associations from
* strings to pointers. This function lets you set an association.
*
* If the object already had an association with that name,
* the old association will be destroyed.
*
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
* This means a copy of `key` is kept permanently (even after `object` has been
* finalized) — so it is recommended to only use a small, bounded set of values
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
* @param key name of the key
* @param data data to associate with that key
*/
set_data(key: string, data?: any | null): void;
/**
* Sets a property on an object.
* @param property_name The name of the property to set
* @param value The value to set the property to
*/
set_property(property_name: string, value: GObject.Value | any): void;
/**
* Remove a specified datum from the object's data associations,
* without invoking the association's destroy handler.
* @param key name of the key
* @returns the data if found, or %NULL if no such data exists.
*/
steal_data(key: string): any | null;
/**
* This function gets back user data pointers stored via
* g_object_set_qdata() and removes the `data` from object
* without invoking its destroy() function (if any was
* set).
* Usually, calling this function is only required to update
* user data pointers with a destroy notifier, for example:
*
* ```c
* void
* object_add_to_user_list (GObject *object,
* const gchar *new_string)
* {
* // the quark, naming the object data
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
* // retrieve the old string list
* GList *list = g_object_steal_qdata (object, quark_string_list);
*
* // prepend new string
* list = g_list_prepend (list, g_strdup (new_string));
* // this changed 'list', so we need to set it again
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
* }
* static void
* free_string_list (gpointer data)
* {
* GList *node, *list = data;
*
* for (node = list; node; node = node->next)
* g_free (node->data);
* g_list_free (list);
* }
* ```
*
* Using g_object_get_qdata() in the above example, instead of
* g_object_steal_qdata() would have left the destroy function set,
* and thus the partial string list would have been freed upon
* g_object_set_qdata_full().
* @param quark A #GQuark, naming the user data pointer
* @returns The user data pointer set, or %NULL
*/
steal_qdata(quark: GLib.Quark): any | null;
/**
* Reverts the effect of a previous call to
* g_object_freeze_notify(). The freeze count is decreased on `object`
* and when it reaches zero, queued "notify" signals are emitted.
*
* Duplicate notifications for each property are squashed so that at most one
* #GObject::notify signal is emitted for each property, in the reverse order
* in which they have been queued.
*
* It is an error to call this function when the freeze count is zero.
*/
thaw_notify(): void;
/**
* Decreases the reference count of `object`. When its reference count
* drops to 0, the object is finalized (i.e. its memory is freed).
*
* If the pointer to the #GObject may be reused in future (for example, if it is
* an instance variable of another object), it is recommended to clear the
* pointer to %NULL rather than retain a dangling pointer to a potentially
* invalid #GObject instance. Use g_clear_object() for this.
*/
unref(): void;
/**
* This function essentially limits the life time of the `closure` to
* the life time of the object. That is, when the object is finalized,
* the `closure` is invalidated by calling g_closure_invalidate() on
* it, in order to prevent invocations of the closure with a finalized
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
* added as marshal guards to the `closure,` to ensure that an extra
* reference count is held on `object` during invocation of the
* `closure`. Usually, this function will be called on closures that
* use this `object` as closure data.
* @param closure #GClosure to watch
*/
watch_closure(closure: GObject.Closure): void;
/**
* the `constructed` function is called by g_object_new() as the
* final step of the object creation process. At the point of the call, all
* construction properties have been set on the object. The purpose of this
* call is to allow for object initialisation steps that can only be performed
* after construction properties have been set. `constructed` implementors
* should chain up to the `constructed` call of their parent class to allow it
* to complete its initialisation.
*/
vfunc_constructed(): void;
/**
* emits property change notification for a bunch
* of properties. Overriding `dispatch_properties_changed` should be rarely
* needed.
* @param n_pspecs
* @param pspecs
*/
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
/**
* the `dispose` function is supposed to drop all references to other
* objects, but keep the instance otherwise intact, so that client method
* invocations still work. It may be run multiple times (due to reference
* loops). Before returning, `dispose` should chain up to the `dispose` method
* of the parent class.
*/
vfunc_dispose(): void;
/**
* instance finalization function, should finish the finalization of
* the instance begun in `dispose` and chain up to the `finalize` method of the
* parent class.
*/
vfunc_finalize(): void;
/**
* the generic getter for all properties of this type. Should be
* overridden for every type with properties.
* @param property_id
* @param value
* @param pspec
*/
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
/**
* Emits a "notify" signal for the property `property_name` on `object`.
*
* When possible, eg. when signaling a property change from within the class
* that registered the property, you should use g_object_notify_by_pspec()
* instead.
*
* Note that emission of the notify signal may be blocked with
* g_object_freeze_notify(). In this case, the signal emissions are queued
* and will be emitted (in reverse order) when g_object_thaw_notify() is
* called.
* @param pspec
*/
vfunc_notify(pspec: GObject.ParamSpec): void;
/**
* the generic setter for all properties of this type. Should be
* overridden for every type with properties. If implementations of
* `set_property` don't emit property change notification explicitly, this will
* be done implicitly by the type system. However, if the notify signal is
* emitted explicitly, the type system will not emit it a second time.
* @param property_id
* @param value
* @param pspec
*/
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
/**
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
* @param id Handler ID of the handler to be disconnected
*/
disconnect(id: number): void;
/**
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
* @param properties Object containing the properties to set
*/
set(properties: { [key: string]: any }): void;
/**
* Blocks a handler of an instance so it will not be called during any signal emissions
* @param id Handler ID of the handler to be blocked
*/
block_signal_handler(id: number): void;
/**
* Unblocks a handler so it will be called again during any signal emissions
* @param id Handler ID of the handler to be unblocked
*/
unblock_signal_handler(id: number): void;
/**
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
* @param detailedName Name of the signal to stop emission of
*/
stop_emission_by_name(detailedName: string): void;
}
namespace Box {
// Constructor properties interface
interface ConstructorProps extends Gtk.Box.ConstructorProps {
vertical: boolean;
children: Gtk.Widget[];
child: Gtk.Widget;
}
}
class Box extends Gtk.Box {
static $gtype: GObject.GType;
// Properties
/**
* Corresponds to [property`Gtk`.Orientable :orientation].
*/
get vertical(): boolean;
set vertical(val: boolean);
get children(): Gtk.Widget[];
set children(val: Gtk.Widget[]);
get child(): Gtk.Widget;
set child(val: Gtk.Widget);
// Constructors
constructor(properties?: Partial, ...args: any[]);
_init(...args: any[]): void;
static ['new'](): Box;
// Methods
get_vertical(): boolean;
set_vertical(value: boolean): void;
get_children(): Gtk.Widget[];
set_children(value: Gtk.Widget[]): void;
get_child(): Gtk.Widget | null;
set_child(value?: Gtk.Widget | null): void;
}
namespace Slider {
// Constructor properties interface
interface ConstructorProps extends Gtk.Scale.ConstructorProps {
value: number;
min: number;
max: number;
step: number;
page: number;
}
}
class Slider extends Gtk.Scale {
static $gtype: GObject.GType;
// Properties
/**
* Value of this slider. Defaults to `0`.
*/
get value(): number;
set value(val: number);
/**
* Minimum possible value of this slider. Defaults to `0`.
*/
get min(): number;
set min(val: number);
/**
* Maximum possible value of this slider. Defaults to `1`.
*/
get max(): number;
set max(val: number);
/**
* Size of step increments. Defaults to `0.05`.
*/
get step(): number;
set step(val: number);
/**
* Size of page increments. Defaults to `0.01`.
*/
get page(): number;
set page(val: number);
// Constructors
constructor(properties?: Partial, ...args: any[]);
_init(...args: any[]): void;
static ['new'](): Slider;
// Methods
get_value(): number;
set_value(value: number): void;
get_min(): number;
set_min(value: number): void;
get_max(): number;
set_max(value: number): void;
get_step(): number;
set_step(value: number): void;
get_page(): number;
set_page(value: number): void;
}
namespace Window {
// Constructor properties interface
interface ConstructorProps extends Gtk.Window.ConstructorProps {
namespace: string;
anchor: WindowAnchor;
exclusivity: Exclusivity;
layer: Layer;
keymode: Keymode;
gdkmonitor: Gdk.Monitor;
margin_top: number;
marginTop: number;
margin_bottom: number;
marginBottom: number;
margin_left: number;
marginLeft: number;
margin_right: number;
marginRight: number;
margin: number;
monitor: number;
}
}
/**
* Subclass of [class`Gtk`.Window] which integrates GtkLayerShell as class fields.
*/
class Window extends Gtk.Window {
static $gtype: GObject.GType;
// Properties
/**
* Namespace of this window. This can be used to target the layer in compositor rules.
*/
get namespace(): string;
set namespace(val: string);
/**
* Edges to anchor the window to.
* If two perpendicular edges are anchored, the surface will be anchored to that corner. If two opposite edges are anchored, the window will be
* stretched across the screen in that direction.
*/
get anchor(): WindowAnchor;
set anchor(val: WindowAnchor);
/**
* Exclusivity of this window.
*/
get exclusivity(): Exclusivity;
set exclusivity(val: Exclusivity);
/**
* Which layer to appear this window on.
*/
get layer(): Layer;
set layer(val: Layer);
/**
* Keyboard mode of this window.
*/
get keymode(): Keymode;
set keymode(val: Keymode);
/**
* Which monitor to appear this window on.
*/
get gdkmonitor(): Gdk.Monitor;
set gdkmonitor(val: Gdk.Monitor);
get margin_top(): number;
set margin_top(val: number);
get marginTop(): number;
set marginTop(val: number);
get margin_bottom(): number;
set margin_bottom(val: number);
get marginBottom(): number;
set marginBottom(val: number);
get margin_left(): number;
set margin_left(val: number);
get marginLeft(): number;
set marginLeft(val: number);
get margin_right(): number;
set margin_right(val: number);
get marginRight(): number;
set marginRight(val: number);
set margin(val: number);
/**
* Which monitor to appear this window on.
* CAUTION: the id might not be the same mapped by the compositor.
*/
get monitor(): number;
set monitor(val: number);
// Constructors
constructor(properties?: Partial, ...args: any[]);
_init(...args: any[]): void;
static ['new'](): Window;
// Methods
/**
* Get the current [class`Gdk`.Monitor] this window resides in.
*/
get_current_monitor(): Gdk.Monitor;
get_namespace(): string;
set_namespace(value: string): void;
get_anchor(): WindowAnchor;
set_anchor(value: WindowAnchor | null): void;
get_exclusivity(): Exclusivity;
set_exclusivity(value: Exclusivity | null): void;
get_layer(): Layer;
set_layer(value: Layer | null): void;
get_keymode(): Keymode;
set_keymode(value: Keymode | null): void;
get_gdkmonitor(): Gdk.Monitor;
set_gdkmonitor(value: Gdk.Monitor): void;
get_margin_top(): number;
set_margin_top(value: number): void;
get_margin_bottom(): number;
set_margin_bottom(value: number): void;
get_margin_left(): number;
set_margin_left(value: number): void;
get_margin_right(): number;
set_margin_right(value: number): void;
set_margin(value: number): void;
get_monitor(): number;
set_monitor(value: number): void;
}
namespace Application {
// Signal callback interfaces
interface WindowToggled {
(window: Gtk.Window): void;
}
// Constructor properties interface
interface ConstructorProps extends Gtk.Application.ConstructorProps, AstalIO.Application.ConstructorProps {
monitors: Gdk.Monitor[];
windows: Gtk.Window[];
gtk_theme: string;
gtkTheme: string;
icon_theme: string;
iconTheme: string;
cursor_theme: string;
cursorTheme: string;
}
}
class Application extends Gtk.Application implements AstalIO.Application {
static $gtype: GObject.GType;
// Properties
/**
* Get all monitors from [class`Gdk`.Display].
*/
get monitors(): Gdk.Monitor[];
/**
* Windows that has been added to this app using [method`Gtk`.Application.add_window].
*/
get windows(): Gtk.Window[];
/**
* Shortcut for [property`Gtk`.Settings:gtk_theme_name]
*/
get gtk_theme(): string;
set gtk_theme(val: string);
/**
* Shortcut for [property`Gtk`.Settings:gtk_theme_name]
*/
get gtkTheme(): string;
set gtkTheme(val: string);
/**
* Shortcut for [property`Gtk`.Settings:gtk_icon_theme_name]
*/
get icon_theme(): string;
set icon_theme(val: string);
/**
* Shortcut for [property`Gtk`.Settings:gtk_icon_theme_name]
*/
get iconTheme(): string;
set iconTheme(val: string);
/**
* Shortcut for [property`Gtk`.Settings:gtk_cursor_theme_name]
*/
get cursor_theme(): string;
set cursor_theme(val: string);
/**
* Shortcut for [property`Gtk`.Settings:gtk_cursor_theme_name]
*/
get cursorTheme(): string;
set cursorTheme(val: string);
// Constructors
constructor(properties?: Partial, ...args: any[]);
_init(...args: any[]): void;
static ['new'](): Application;
// Signals
connect(id: string, callback: (...args: any[]) => any): number;
connect_after(id: string, callback: (...args: any[]) => any): number;
emit(id: string, ...args: any[]): void;
connect(signal: 'window-toggled', callback: (_source: this, window: Gtk.Window) => void): number;
connect_after(signal: 'window-toggled', callback: (_source: this, window: Gtk.Window) => void): number;
emit(signal: 'window-toggled', window: Gtk.Window): void;
// Virtual methods
/**
* Handler for an incoming request.
* @param request Body of the request
* @param conn The connection which expects the response.
*/
vfunc_request(request: string, conn: Gio.SocketConnection): void;
// Methods
/**
* Remove all [class`Gtk`.StyleContext] providers.
*/
reset_css(): void;
/**
* Get a window by its [property`Gtk`.Widget:name] that has been added to this app using [method`Gtk`.Application.add_window].
* @param name
*/
get_window(name: string): Gtk.Window | null;
/**
* Add a new [class`Gtk`.StyleContext] provider.
* @param style Css string or a path to a css file.
* @param reset
*/
apply_css(style: string, reset: boolean): void;
/**
* Shortcut for [method`Gtk`.IconTheme.add_search_path].
* @param path
*/
add_icons(path?: string | null): void;
/**
* Handler for an incoming request.
* @param request Body of the request
* @param conn The connection which expects the response.
*/
request(request: string, conn: Gio.SocketConnection): void;
get_monitors(): Gdk.Monitor[];
get_windows(): Gtk.Window[];
get_gtk_theme(): string;
set_gtk_theme(value: string): void;
get_icon_theme(): string;
set_icon_theme(value: string): void;
get_cursor_theme(): string;
set_cursor_theme(value: string): void;
// Inherited properties
get instance_name(): string;
set instance_name(val: string);
get instanceName(): string;
set instanceName(val: string);
// Inherited methods
quit(): void;
inspector(): void;
toggle_window(window: string): void;
acquire_socket(): void;
get_instance_name(): string;
set_instance_name(value: string): void;
vfunc_quit(): void;
vfunc_inspector(): void;
vfunc_toggle_window(window: string): void;
vfunc_acquire_socket(): void;
vfunc_get_instance_name(): string;
vfunc_set_instance_name(value: string): void;
/**
* Creates a binding between `source_property` on `source` and `target_property`
* on `target`.
*
* Whenever the `source_property` is changed the `target_property` is
* updated using the same value. For instance:
*
*
* ```c
* g_object_bind_property (action, "active", widget, "sensitive", 0);
* ```
*
*
* Will result in the "sensitive" property of the widget #GObject instance to be
* updated with the same value of the "active" property of the action #GObject
* instance.
*
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
* if `target_property` on `target` changes then the `source_property` on `source`
* will be updated as well.
*
* The binding will automatically be removed when either the `source` or the
* `target` instances are finalized. To remove the binding without affecting the
* `source` and the `target` you can just call g_object_unref() on the returned
* #GBinding instance.
*
* Removing the binding by calling g_object_unref() on it must only be done if
* the binding, `source` and `target` are only used from a single thread and it
* is clear that both `source` and `target` outlive the binding. Especially it
* is not safe to rely on this if the binding, `source` or `target` can be
* finalized from different threads. Keep another reference to the binding and
* use g_binding_unbind() instead to be on the safe side.
*
* A #GObject can have multiple bindings.
* @param source_property the property on @source to bind
* @param target the target #GObject
* @param target_property the property on @target to bind
* @param flags flags to pass to #GBinding
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
*/
bind_property(
source_property: string,
target: GObject.Object,
target_property: string,
flags: GObject.BindingFlags | null,
): GObject.Binding;
/**
* Complete version of g_object_bind_property().
*
* Creates a binding between `source_property` on `source` and `target_property`
* on `target,` allowing you to set the transformation functions to be used by
* the binding.
*
* If `flags` contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
* if `target_property` on `target` changes then the `source_property` on `source`
* will be updated as well. The `transform_from` function is only used in case
* of bidirectional bindings, otherwise it will be ignored
*
* The binding will automatically be removed when either the `source` or the
* `target` instances are finalized. This will release the reference that is
* being held on the #GBinding instance; if you want to hold on to the
* #GBinding instance, you will need to hold a reference to it.
*
* To remove the binding, call g_binding_unbind().
*
* A #GObject can have multiple bindings.
*
* The same `user_data` parameter will be used for both `transform_to`
* and `transform_from` transformation functions; the `notify` function will
* be called once, when the binding is removed. If you need different data
* for each transformation function, please use
* g_object_bind_property_with_closures() instead.
* @param source_property the property on @source to bind
* @param target the target #GObject
* @param target_property the property on @target to bind
* @param flags flags to pass to #GBinding
* @param transform_to the transformation function from the @source to the @target, or %NULL to use the default
* @param transform_from the transformation function from the @target to the @source, or %NULL to use the default
* @param notify a function to call when disposing the binding, to free resources used by the transformation functions, or %NULL if not required
* @returns the #GBinding instance representing the binding between the two #GObject instances. The binding is released whenever the #GBinding reference count reaches zero.
*/
bind_property_full(
source_property: string,
target: GObject.Object,
target_property: string,
flags: GObject.BindingFlags | null,
transform_to?: GObject.BindingTransformFunc | null,
transform_from?: GObject.BindingTransformFunc | null,
notify?: GLib.DestroyNotify | null,
): GObject.Binding;
// Conflicted with GObject.Object.bind_property_full
bind_property_full(...args: never[]): any;
/**
* This function is intended for #GObject implementations to re-enforce
* a [floating][floating-ref] object reference. Doing this is seldom
* required: all #GInitiallyUnowneds are created with a floating reference
* which usually just needs to be sunken by calling g_object_ref_sink().
*/
force_floating(): void;
/**
* Increases the freeze count on `object`. If the freeze count is
* non-zero, the emission of "notify" signals on `object` is
* stopped. The signals are queued until the freeze count is decreased
* to zero. Duplicate notifications are squashed so that at most one
* #GObject::notify signal is emitted for each property modified while the
* object is frozen.
*
* This is necessary for accessors that modify multiple properties to prevent
* premature notification while the object is still being modified.
*/
freeze_notify(): void;
/**
* Gets a named field from the objects table of associations (see g_object_set_data()).
* @param key name of the key for that association
* @returns the data if found, or %NULL if no such data exists.
*/
get_data(key: string): any | null;
/**
* Gets a property of an object.
*
* The value can be:
* - an empty GObject.Value initialized by G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
* - a GObject.Value initialized with the expected type of the property
* - a GObject.Value initialized with a type to which the expected type of the property can be transformed
*
* In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling GObject.Value.unset.
*
* Note that GObject.Object.get_property is really intended for language bindings, GObject.Object.get is much more convenient for C programming.
* @param property_name The name of the property to get
* @param value Return location for the property value. Can be an empty GObject.Value initialized by G_VALUE_INIT (auto-initialized with expected type since GLib 2.60), a GObject.Value initialized with the expected property type, or a GObject.Value initialized with a transformable type
*/
get_property(property_name: string, value: GObject.Value | any): any;
/**
* This function gets back user data pointers stored via
* g_object_set_qdata().
* @param quark A #GQuark, naming the user data pointer
* @returns The user data pointer set, or %NULL
*/
get_qdata(quark: GLib.Quark): any | null;
/**
* Gets `n_properties` properties for an `object`.
* Obtained properties will be set to `values`. All properties must be valid.
* Warnings will be emitted and undefined behaviour may result if invalid
* properties are passed in.
* @param names the names of each property to get
* @param values the values of each property to get
*/
getv(names: string[], values: (GObject.Value | any)[]): void;
/**
* Checks whether `object` has a [floating][floating-ref] reference.
* @returns %TRUE if @object has a floating reference
*/
is_floating(): boolean;
/**
* Emits a "notify" signal for the property `property_name` on `object`.
*
* When possible, eg. when signaling a property change from within the class
* that registered the property, you should use g_object_notify_by_pspec()
* instead.
*
* Note that emission of the notify signal may be blocked with
* g_object_freeze_notify(). In this case, the signal emissions are queued
* and will be emitted (in reverse order) when g_object_thaw_notify() is
* called.
* @param property_name the name of a property installed on the class of @object.
*/
notify(property_name: string): void;
/**
* Emits a "notify" signal for the property specified by `pspec` on `object`.
*
* This function omits the property name lookup, hence it is faster than
* g_object_notify().
*
* One way to avoid using g_object_notify() from within the
* class that registered the properties, and using g_object_notify_by_pspec()
* instead, is to store the GParamSpec used with
* g_object_class_install_property() inside a static array, e.g.:
*
*
* ```c
* typedef enum
* {
* PROP_FOO = 1,
* PROP_LAST
* } MyObjectProperty;
*
* static GParamSpec *properties[PROP_LAST];
*
* static void
* my_object_class_init (MyObjectClass *klass)
* {
* properties[PROP_FOO] = g_param_spec_int ("foo", NULL, NULL,
* 0, 100,
* 50,
* G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS);
* g_object_class_install_property (gobject_class,
* PROP_FOO,
* properties[PROP_FOO]);
* }
* ```
*
*
* and then notify a change on the "foo" property with:
*
*
* ```c
* g_object_notify_by_pspec (self, properties[PROP_FOO]);
* ```
*
* @param pspec the #GParamSpec of a property installed on the class of @object.
*/
notify_by_pspec(pspec: GObject.ParamSpec): void;
/**
* Increases the reference count of `object`.
*
* Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
* of `object` will be propagated to the return type (using the GCC typeof()
* extension), so any casting the caller needs to do on the return type must be
* explicit.
* @returns the same @object
*/
ref(): GObject.Object;
/**
* Increase the reference count of `object,` and possibly remove the
* [floating][floating-ref] reference, if `object` has a floating reference.
*
* In other words, if the object is floating, then this call "assumes
* ownership" of the floating reference, converting it to a normal
* reference by clearing the floating flag while leaving the reference
* count unchanged. If the object is not floating, then this call
* adds a new normal reference increasing the reference count by one.
*
* Since GLib 2.56, the type of `object` will be propagated to the return type
* under the same conditions as for g_object_ref().
* @returns @object
*/
ref_sink(): GObject.Object;
/**
* Releases all references to other objects. This can be used to break
* reference cycles.
*
* This function should only be called from object system implementations.
*/
run_dispose(): void;
/**
* Each object carries around a table of associations from
* strings to pointers. This function lets you set an association.
*
* If the object already had an association with that name,
* the old association will be destroyed.
*
* Internally, the `key` is converted to a #GQuark using g_quark_from_string().
* This means a copy of `key` is kept permanently (even after `object` has been
* finalized) — so it is recommended to only use a small, bounded set of values
* for `key` in your program, to avoid the #GQuark storage growing unbounded.
* @param key name of the key
* @param data data to associate with that key
*/
set_data(key: string, data?: any | null): void;
/**
* Sets a property on an object.
* @param property_name The name of the property to set
* @param value The value to set the property to
*/
set_property(property_name: string, value: GObject.Value | any): void;
/**
* Remove a specified datum from the object's data associations,
* without invoking the association's destroy handler.
* @param key name of the key
* @returns the data if found, or %NULL if no such data exists.
*/
steal_data(key: string): any | null;
/**
* This function gets back user data pointers stored via
* g_object_set_qdata() and removes the `data` from object
* without invoking its destroy() function (if any was
* set).
* Usually, calling this function is only required to update
* user data pointers with a destroy notifier, for example:
*
* ```c
* void
* object_add_to_user_list (GObject *object,
* const gchar *new_string)
* {
* // the quark, naming the object data
* GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
* // retrieve the old string list
* GList *list = g_object_steal_qdata (object, quark_string_list);
*
* // prepend new string
* list = g_list_prepend (list, g_strdup (new_string));
* // this changed 'list', so we need to set it again
* g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
* }
* static void
* free_string_list (gpointer data)
* {
* GList *node, *list = data;
*
* for (node = list; node; node = node->next)
* g_free (node->data);
* g_list_free (list);
* }
* ```
*
* Using g_object_get_qdata() in the above example, instead of
* g_object_steal_qdata() would have left the destroy function set,
* and thus the partial string list would have been freed upon
* g_object_set_qdata_full().
* @param quark A #GQuark, naming the user data pointer
* @returns The user data pointer set, or %NULL
*/
steal_qdata(quark: GLib.Quark): any | null;
/**
* Reverts the effect of a previous call to
* g_object_freeze_notify(). The freeze count is decreased on `object`
* and when it reaches zero, queued "notify" signals are emitted.
*
* Duplicate notifications for each property are squashed so that at most one
* #GObject::notify signal is emitted for each property, in the reverse order
* in which they have been queued.
*
* It is an error to call this function when the freeze count is zero.
*/
thaw_notify(): void;
/**
* Decreases the reference count of `object`. When its reference count
* drops to 0, the object is finalized (i.e. its memory is freed).
*
* If the pointer to the #GObject may be reused in future (for example, if it is
* an instance variable of another object), it is recommended to clear the
* pointer to %NULL rather than retain a dangling pointer to a potentially
* invalid #GObject instance. Use g_clear_object() for this.
*/
unref(): void;
/**
* This function essentially limits the life time of the `closure` to
* the life time of the object. That is, when the object is finalized,
* the `closure` is invalidated by calling g_closure_invalidate() on
* it, in order to prevent invocations of the closure with a finalized
* (nonexisting) object. Also, g_object_ref() and g_object_unref() are
* added as marshal guards to the `closure,` to ensure that an extra
* reference count is held on `object` during invocation of the
* `closure`. Usually, this function will be called on closures that
* use this `object` as closure data.
* @param closure #GClosure to watch
*/
watch_closure(closure: GObject.Closure): void;
/**
* the `constructed` function is called by g_object_new() as the
* final step of the object creation process. At the point of the call, all
* construction properties have been set on the object. The purpose of this
* call is to allow for object initialisation steps that can only be performed
* after construction properties have been set. `constructed` implementors
* should chain up to the `constructed` call of their parent class to allow it
* to complete its initialisation.
*/
vfunc_constructed(): void;
/**
* emits property change notification for a bunch
* of properties. Overriding `dispatch_properties_changed` should be rarely
* needed.
* @param n_pspecs
* @param pspecs
*/
vfunc_dispatch_properties_changed(n_pspecs: number, pspecs: GObject.ParamSpec): void;
/**
* the `dispose` function is supposed to drop all references to other
* objects, but keep the instance otherwise intact, so that client method
* invocations still work. It may be run multiple times (due to reference
* loops). Before returning, `dispose` should chain up to the `dispose` method
* of the parent class.
*/
vfunc_dispose(): void;
/**
* instance finalization function, should finish the finalization of
* the instance begun in `dispose` and chain up to the `finalize` method of the
* parent class.
*/
vfunc_finalize(): void;
/**
* the generic getter for all properties of this type. Should be
* overridden for every type with properties.
* @param property_id
* @param value
* @param pspec
*/
vfunc_get_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
/**
* Emits a "notify" signal for the property `property_name` on `object`.
*
* When possible, eg. when signaling a property change from within the class
* that registered the property, you should use g_object_notify_by_pspec()
* instead.
*
* Note that emission of the notify signal may be blocked with
* g_object_freeze_notify(). In this case, the signal emissions are queued
* and will be emitted (in reverse order) when g_object_thaw_notify() is
* called.
* @param pspec
*/
vfunc_notify(pspec: GObject.ParamSpec): void;
/**
* the generic setter for all properties of this type. Should be
* overridden for every type with properties. If implementations of
* `set_property` don't emit property change notification explicitly, this will
* be done implicitly by the type system. However, if the notify signal is
* emitted explicitly, the type system will not emit it a second time.
* @param property_id
* @param value
* @param pspec
*/
vfunc_set_property(property_id: number, value: GObject.Value | any, pspec: GObject.ParamSpec): void;
/**
* Disconnects a handler from an instance so it will not be called during any future or currently ongoing emissions of the signal it has been connected to.
* @param id Handler ID of the handler to be disconnected
*/
disconnect(id: number): void;
/**
* Sets multiple properties of an object at once. The properties argument should be a dictionary mapping property names to values.
* @param properties Object containing the properties to set
*/
set(properties: { [key: string]: any }): void;
/**
* Blocks a handler of an instance so it will not be called during any signal emissions
* @param id Handler ID of the handler to be blocked
*/
block_signal_handler(id: number): void;
/**
* Unblocks a handler so it will be called again during any signal emissions
* @param id Handler ID of the handler to be unblocked
*/
unblock_signal_handler(id: number): void;
/**
* Stops a signal's emission by the given signal name. This will prevent the default handler and any subsequent signal handlers from being invoked.
* @param detailedName Name of the signal to stop emission of
*/
stop_emission_by_name(detailedName: string): void;
}
type BinClass = typeof Bin;
abstract class BinPrivate {
static $gtype: GObject.GType;
// Constructors
_init(...args: any[]): void;
}
type BoxClass = typeof Box;
abstract class BoxPrivate {
static $gtype: GObject.GType;
// Constructors
_init(...args: any[]): void;
}
type SliderClass = typeof Slider;
abstract class SliderPrivate {
static $gtype: GObject.GType;
// Constructors
_init(...args: any[]): void;
}
type WindowClass = typeof Window;
abstract class WindowPrivate {
static $gtype: GObject.GType;
// Constructors
_init(...args: any[]): void;
}
type ApplicationClass = typeof Application;
abstract class ApplicationPrivate {
static $gtype: GObject.GType;
// Constructors
_init(...args: any[]): void;
}
/**
* Name of the imported GIR library
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L188
*/
const __name__: string;
/**
* Version of the imported GIR library
* `see` https://gitlab.gnome.org/GNOME/gjs/-/blob/master/gi/ns.cpp#L189
*/
const __version__: string;
}
export default Astal;
}
declare module 'gi://Astal' {
import Astal40 from 'gi://Astal?version=4.0';
export default Astal40;
}
// END