mirror of
https://github.com/janishutz/BiogasControllerApp.git
synced 2025-11-25 05:44:23 +00:00
Added a config validator and documented code that was previously undocumented, for the plot_generator scripts, documented them.
238 lines
8.3 KiB
Python
238 lines
8.3 KiB
Python
"""
|
||
Library to be used in standalone mode (without microcontroller, for testing functionality)
|
||
It simulates the behviour of an actual microcontroller being connected
|
||
"""
|
||
|
||
from typing import List, Optional
|
||
import queue
|
||
import random
|
||
import time
|
||
import struct
|
||
|
||
from lib.com import ComSuperClass
|
||
|
||
# ┌ ┐
|
||
# │ Testing Module For Com │
|
||
# └ ┘
|
||
# This file contains a Com class that can be used to test the functionality
|
||
# even without a microcontroller. It is not documented in a particularly
|
||
# beginner-friendly way, nor is the code written with beginner-friendliness
|
||
# in mind. It is the most complicated piece of code of the entire application
|
||
|
||
# ────────────────────────────────────────────────────────────────────
|
||
|
||
# All double __ prefixed properties and methods are not available in the actual impl
|
||
|
||
instruction_lut: dict[str, list[str]] = {
|
||
"PR": ["\n", "P", "R", "\n"],
|
||
"PT": ["\n", "P", "T", "\n"],
|
||
"RD": ["\n", "R", "D", "\n"],
|
||
"NM": ["\n", "N", "M", "\n"],
|
||
"FM": ["\n", "F", "M", "\n"],
|
||
}
|
||
|
||
reconfig = ["a", "b", "c", "t"]
|
||
|
||
|
||
class SimulationError(Exception):
|
||
pass
|
||
|
||
|
||
class SensorConfig:
|
||
a: float
|
||
b: float
|
||
c: float
|
||
t: float
|
||
|
||
def __init__(
|
||
self, a: float = 20, b: float = 30, c: float = 10, t: float = 55
|
||
) -> None:
|
||
self.a = a
|
||
self.b = b
|
||
self.c = c
|
||
self.t = t
|
||
|
||
|
||
class Com(ComSuperClass):
|
||
def __init__(
|
||
self, fail_sim: int, baudrate: int = 19200, filters: Optional[list[str]] = None
|
||
) -> None:
|
||
# Calling the constructor of the super class to assign defaults
|
||
print("\n\nWARNING: Using testing library for communication!\n\n")
|
||
super().__init__(baudrate, filters)
|
||
|
||
# Initialize queue with values to be sent on call of recieve
|
||
self.__simulated_data: queue.Queue[bytes] = queue.Queue()
|
||
self.__simulated_data_remaining = 0
|
||
|
||
self.__reconf_sensor = 0
|
||
self.__reconf_step = 0
|
||
self.__fail_sim = fail_sim
|
||
|
||
self.__config: List[SensorConfig] = [
|
||
SensorConfig(),
|
||
SensorConfig(),
|
||
SensorConfig(),
|
||
SensorConfig(),
|
||
]
|
||
|
||
# Initially, we are in normal mode (which leads to slower data intervals)
|
||
self.__mode = "NM"
|
||
|
||
def set_port_override(self, override: str) -> None:
|
||
"""Set the port override, to disable port search"""
|
||
self._port_override = override
|
||
|
||
def get_comport(self) -> str:
|
||
return "Sim" if self._port_override == "" else self._port_override
|
||
|
||
def connect(self) -> bool:
|
||
# Randomly return false in 1 in fail_sim ish cases
|
||
if random.randint(0, self.__fail_sim) == 0:
|
||
print("Simulating error to connect")
|
||
return False
|
||
return True
|
||
|
||
def close(self) -> None:
|
||
pass
|
||
|
||
def receive(self, byte_count: int) -> bytes:
|
||
data = []
|
||
# If queue is too short, refill it
|
||
if self.__simulated_data_remaining < byte_count:
|
||
self.__fill_queue()
|
||
|
||
for _ in range(byte_count):
|
||
if self.__mode == "NM":
|
||
time.sleep(0.005)
|
||
try:
|
||
data.append(self.__simulated_data.get_nowait())
|
||
self.__simulated_data_remaining -= 1
|
||
except Exception as e:
|
||
print("ERROR: Simulation could not continue")
|
||
raise SimulationError(
|
||
"Simulation encountered an error with the simulation queue. The error encountered: \n"
|
||
+ str(e)
|
||
)
|
||
return b"".join(data)
|
||
|
||
def send(self, msg: str) -> None:
|
||
# Using LUT to reference
|
||
readback = instruction_lut.get(msg)
|
||
if readback != None:
|
||
for i in range(len(readback)):
|
||
self.__add_ascii_char(readback[i])
|
||
if msg == "RD":
|
||
self.__set_read_data_data()
|
||
elif msg == "PR":
|
||
self.__reconf_sensor = 0
|
||
self.__reconf_step = 0
|
||
self.__add_ascii_char("a")
|
||
self.__add_ascii_char("0")
|
||
self.__add_ascii_char("\n")
|
||
|
||
def __set_read_data_data(self) -> None:
|
||
# Send data for all four sensors
|
||
for i in range(4):
|
||
self.__add_float_as_hex(self.__config[i].a)
|
||
self.__add_ascii_char(" ")
|
||
self.__add_float_as_hex(self.__config[i].b)
|
||
self.__add_ascii_char(" ")
|
||
self.__add_float_as_hex(self.__config[i].c)
|
||
self.__add_ascii_char(" ")
|
||
self.__add_float_as_hex(self.__config[i].t)
|
||
self.__add_ascii_char("\n")
|
||
|
||
def send_float(self, msg: float) -> None:
|
||
if self.__reconf_step == 0:
|
||
self.__config[self.__reconf_sensor].a = msg
|
||
elif self.__reconf_step == 1:
|
||
self.__config[self.__reconf_sensor].b = msg
|
||
elif self.__reconf_step == 2:
|
||
self.__config[self.__reconf_sensor].c = msg
|
||
elif self.__reconf_step == 3:
|
||
self.__config[self.__reconf_sensor].t = msg
|
||
|
||
if self.__reconf_step == 3:
|
||
self.__reconf_step = 0
|
||
self.__reconf_sensor += 1
|
||
else:
|
||
self.__reconf_step += 1
|
||
|
||
if self.__reconf_sensor == 4:
|
||
return
|
||
|
||
self.__add_ascii_char(reconfig[self.__reconf_step])
|
||
self.__add_ascii_char(str(self.__reconf_sensor))
|
||
self.__add_ascii_char("\n")
|
||
|
||
def __fill_queue(self):
|
||
# Simulate a full cycle
|
||
for _ in range(4):
|
||
self.__add_integer_as_hex(self.__generate_random_int(200))
|
||
self.__simulated_data.put(bytes(" ", "ascii"))
|
||
self.__add_float_as_hex(self.__generate_random_float(50))
|
||
self.__simulated_data.put(bytes(" ", "ascii"))
|
||
self.__simulated_data_remaining += 2
|
||
for _ in range(3):
|
||
self.__add_integer_as_hex(self.__generate_random_int(65535))
|
||
self.__simulated_data.put(bytes(" ", "ascii"))
|
||
self.__simulated_data_remaining += 1
|
||
self.__add_integer_as_hex(self.__generate_random_int(65535))
|
||
self.__simulated_data.put(bytes("\n", "ascii"))
|
||
self.__simulated_data_remaining += 1
|
||
|
||
def __generate_random_int(self, max: int) -> int:
|
||
return random.randint(0, max)
|
||
|
||
def __generate_random_float(self, max: int) -> float:
|
||
return random.random() * max
|
||
|
||
def __add_ascii_char(self, ascii_string: str):
|
||
self.__simulated_data.put(ord(ascii_string).to_bytes(1))
|
||
self.__simulated_data_remaining += 1
|
||
|
||
def __add_two_byte_value(self, c: int):
|
||
"""putchhex
|
||
|
||
Args:
|
||
c: The char (as integer)
|
||
"""
|
||
# First nibble (high)
|
||
high_nibble = (c >> 4) & 0x0F
|
||
high_char = chr(high_nibble + 48 if high_nibble < 10 else high_nibble + 55)
|
||
self.__simulated_data.put(high_char.encode())
|
||
|
||
# Second nibble (low)
|
||
low_nibble = c & 0x0F
|
||
low_char = chr(low_nibble + 48 if low_nibble < 10 else low_nibble + 55)
|
||
self.__simulated_data.put(low_char.encode())
|
||
self.__simulated_data_remaining += 2
|
||
|
||
def __add_integer_as_hex(self, c: int):
|
||
"""Writes the hexadecimal representation of the high and low bytes of integer `c` (16-bit) to the simulated serial port."""
|
||
if not (0 <= c <= 0xFFFF):
|
||
raise ValueError("Input must be a 16-bit integer (0–65535)")
|
||
|
||
# Get high byte (most significant byte)
|
||
hi_byte = (c >> 8) & 0xFF
|
||
# Get low byte (least significant byte)
|
||
lo_byte = c & 0xFF
|
||
|
||
# Call putchhex for the high byte and low byte
|
||
self.__add_two_byte_value(hi_byte)
|
||
self.__add_two_byte_value(lo_byte)
|
||
|
||
def __add_float_as_hex(self, f: float):
|
||
"""Converts a float to its byte representation and sends the bytes using putchhex."""
|
||
# Pack the float into bytes (IEEE 754 format)
|
||
packed = struct.pack(">f", f) # Big-endian format (network byte order)
|
||
|
||
# Unpack the bytes into 3 bytes: high, mid, low
|
||
high, mid, low = packed[0], packed[1], packed[2]
|
||
|
||
# Send each byte as hex
|
||
self.__add_two_byte_value(high)
|
||
self.__add_two_byte_value(mid)
|
||
self.__add_two_byte_value(low)
|