mirror of
https://github.com/janishutz/BiogasControllerApp.git
synced 2025-11-25 05:44:23 +00:00
Added a config validator and documented code that was previously undocumented, for the plot_generator scripts, documented them.
93 lines
3.0 KiB
Python
93 lines
3.0 KiB
Python
import csv
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
n = int(input("Sensor number to be printed: "))
|
|
|
|
file = ""
|
|
|
|
|
|
def generate_plot():
|
|
# Read data using the CSV library
|
|
reader = csv.reader(file, delimiter=",")
|
|
|
|
# Create a list from the data
|
|
data = list(reader)
|
|
|
|
# Sort the list using a lambda sort descriptor
|
|
# A lambda function is an anonymous function (= an unnamed function),
|
|
# which makes it convenient. A sort descriptor is a function that
|
|
# (usually, but not here) returns a value indicating which of two values
|
|
# come before or after in the ordering.
|
|
# Here, instead we simply return a floating point value for each data point
|
|
data.sort(key=lambda data_point: float(data_point[2]))
|
|
|
|
# Store the x and y coordinates in two arrays
|
|
x = []
|
|
y = []
|
|
|
|
for _ in range(len(data)):
|
|
# Extract the data point
|
|
data_point = data.pop(0)
|
|
sensor = int(data_point.pop(0))
|
|
if sensor == n:
|
|
y.append(float(data_point.pop(0)))
|
|
x.append(float(data_point.pop(0)))
|
|
|
|
# Use Numpy's polyfit function to fit a 2nd degree polynomial to the points using quadratic regression
|
|
# This function returns an array with the coefficients
|
|
fit = np.polyfit(x, y, 2)
|
|
|
|
# The formula to output to the plot
|
|
formula = f"F(U) = {round(float(fit[0]), 4)}U^2+{round(float(fit[1]), 4)}U+{round(float(fit[2]), 4)}"
|
|
|
|
# Create a fit function from the previously determined coefficients
|
|
fit_fn = np.poly1d(fit) # Returns a function that takes a list of x-coordinate as argument
|
|
|
|
# Plot the line on the graph
|
|
plt.plot(x, fit_fn(x), color="BLUE", label="T(U)")
|
|
|
|
# Scatter Plot the data points that we have
|
|
plt.scatter(x, y, color="MAGENTA", marker="o", label="Data")
|
|
|
|
# Label the graph
|
|
plt.ylabel("Temperature")
|
|
plt.xlabel("Voltage")
|
|
plt.title("Sensor MCP9701A #{}".format(n))
|
|
|
|
# Scale the axis appropriately
|
|
plt.axis((0.6, 2.0, 15.0, 70.0))
|
|
|
|
# Print a legend and set the graph to be annotated
|
|
plt.legend(loc="lower right")
|
|
plt.annotate(formula, xy=(0.85, 60))
|
|
|
|
# Enable the background grid
|
|
plt.grid(True)
|
|
|
|
# Finally, show the graph
|
|
plt.show()
|
|
|
|
# Get user input whether to save the plot or not
|
|
saveit = input("Do you wish to save the plot? (y/N) ").lower()
|
|
|
|
if saveit == "y":
|
|
# Save the plot as Sensor[Number] (e.g. Sensor9) as png, pdf and svg
|
|
plt.savefig("Sensor" + str(n) + ".png")
|
|
plt.savefig("Sensor" + str(n) + ".pdf", format="pdf")
|
|
plt.savefig("Sensor" + str(n) + ".svg", format="svg")
|
|
print("==> Images saved")
|
|
else:
|
|
print("==> Images discarded")
|
|
|
|
|
|
# Since we have defined a function above as a function, this here is executed first
|
|
filename = input("Please enter a file path to the csv file to be plotted: ")
|
|
|
|
# Try to open the file
|
|
try:
|
|
file = open(filename, "r")
|
|
generate_plot()
|
|
except FileNotFoundError:
|
|
print("Failed to open file (non-existent or corrupted?)")
|