Files
eth-summaries/semester3/analysis-ii-rb/parts/01_diffeq.tex
2025-12-29 12:08:03 +01:00

118 lines
4.1 KiB
TeX

\definition \textbf{Differential Equation} (DE)\\
Equation relating unknown $f$ to derivatives $f^{(i)}$ at \textit{same} $x$.
\definition \textbf{Ordinary Differential Equation} (ODE)\\
DE s.t. $f: I \to \R$ is in one variable.
\definition \textbf{Partial Differential Equation} (PDE)\\
DE s.t. $f: I^d \to \R$ is in multiple variables.
\notation $f^{(i)}$ or $y^{(i)}$ instead of $f^{(i)}(x)$ for brevity.
\definition \textbf{Order} $\ \ord(F) := \underset{i \geq 0}{\text{max}}\{ i \sep f^{(i)} \in F,\ f^{(i)} \neq 0 \}$
\remark Any $F$ s.t. $\ord(F) \geq 2$ can be reduced to $\ord(F') = 1$, but using functions of higher dimensions.
\begin{subbox}{Solutions to ODEs}
\smalltext{$\forall F: \R^2 \to \R$ s.t. $F$ is cont. diff. and $x_0,y_0 \in \R$:}
\begin{align*}
& \exists f: I \to \R \\
& \text{s.t. } \forall x \in I: f'(x) = F(x, f(x)) \text{ and } f(x_0) = y_0
\end{align*}
\smalltext{s.t. $I$ is open and maximal.}
\end{subbox}
\subtext{Intuition: Solutions always exist (locally!) for \textit{nice enough} equations.}
\subsection{Linear Differential Equations}
\definition \textbf{Linear Differential Equation} (LDE)\\
$$
y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b
$$
\subtext{
$I \subset \R$ is open$,\quad k \geq 1,\quad \forall i < k: a_i: I \to \C$
}
\definition Homogeneity of LDEs\\
\begin{tabular}{ll}
\textbf{Homogeneous} & $\iffdef b = 0$\\
\textbf{Inhomogeneous} & $\iffdef b \neq 0$
\end{tabular}
\remark $D(y) := y^{(k)} + \ldots + a_0y$ is a linear operation:
$$
D(z_1f_1 + z_2f_2) = z_1D(f_1) + z_2D(f_2)
$$
\subtext{
$\forall z_1,z_2 \in \C,\quad f_1,f_2\ k$-times differentiable:
}
\definition \textbf{Homogeneous Solution Space}\\
$\S(F) := \{ f: I \to \C \sep f \text{ solves } F, f \text{ is } k \text{-times diff.} \}$
\remark $\S(F)$ is the Nullspace of a lin. map: $f$ to $D(f)$:
$$
D(f) = z_1D(f_1) + z_2D(f_2) = 0
$$
\subtext{ $\forall z_1,z_2 \in \C,\quad f_1,f_2 \in \S$ }
\begin{subbox}{Solutions for complex homogeneous LDEs}
\smalltext{ $F$ s.t. $a_0,\ \ldots\ ,a_{k-1}$ continuous and complex-valued }
\begin{enumerate}
\item $\S$ is a complex vector space, $\dim(\S) = k$
\item $\S$ is a subspace of $\{ f \sep f: I \to \C \}$
\item $\forall x_0 \in I, (y_0,\ldots,y_{k-1}) \in \C^k$ a unique sol. exists
\end{enumerate}
\end{subbox}
\begin{subbox}{Solutions for real homogeneous LDEs}
\smalltext{$F$ s.t. $a_0,\ \ldots\ ,a_{k-1}$ continuous and real-valued}
\begin{enumerate}
\item $\S$ is a real vector space, $\dim(\S) = k$
\item $\S$ is a subspace of $\{ f \sep f: I \to \R \}$
\item $\forall x_0 \in I, (y_0,\ldots,y_{k-1}) \in \R^k$ a unique sol. exists
\end{enumerate}
\end{subbox}
\definition \textbf{Inhomogeneous Solution Space}\\
$\S_b(F) := \{ f + f_0 \sep f \in \S(F),\ f_0 \text{ is a particular sol.} \}$\\
\subtext{Note: This is only a vector space if $b = 0$, where $\S_b = \S$.}
\begin{subbox}{Solutions for real inhomogeneous LDEs}
\smalltext{$F$ s.t. $a_0,\ \ldots\ ,a_{k-1}$ continuous, $b: I \to \C$}
\begin{enumerate}
\item $\forall x_0 \in I, (y_0,\ldots,y_{k-1}) \in \C^k$ a unique sol. exists
\item If $b, a_i$ are real-valued, a real-valued sol. exists.
\end{enumerate}
\end{subbox}
\remark \textbf{Applications of Linearity}\\
If $f_1$ solves $F$ for $b_1$, and $f_2$ for $b_2$: $f_1 + f_2$ solves $b_1 + b_2$. \\
Follows from: $D(f_1) + D(f_2) = b_1 + b_2$.
\newpage
\subsection{Finding Solutions: First Order}
\subtext{ $I \subset \R, \quad a,b: I \to \R$ }
$$ y' + ay = b $$
Approach:
\begin{enumerate}
\item Hom. Solution: $y' + ay = 0$ using $f_1 = ke^{-A(x)}$\\
\subtext{Note that $\S$ has $\dim(\S) = 1$, so $f_1 \neq 0$ is a Basis for $\S$}
\item Part. Solution: $f_0 \in \S_b$ using Variance of Parameters
\end{enumerate}
Solutions: $ f_0 + zf_1 \quad \text{ for } z \in \C $
\begin{subbox}{Explicit Solution for 1st Order LDEs}
\smalltext{$A(x)$ is a primitive of $a$, $f(x_0) = y_0$}
\begin{align*}
f(x) &= z \cdot \exp(-A(x)) \\
f(x) &= y_0 \cdot \exp(A(x_0) - a(x))
\end{align*}
\end{subbox}