mirror of
https://github.com/janishutz/eth-summaries.git
synced 2025-11-25 18:44:24 +00:00
127 lines
10 KiB
TeX
127 lines
10 KiB
TeX
|
|
|
|
|
|
|
|
\newsection
|
|
\section{\tr{Table of derivatives and Antiderivatives}{Tabelle von Ableitungen und Stammfunktionen}}
|
|
\begin{multicols}{2}
|
|
\begin{tables}{lll}{\tr{Antiderivative}{Stammfunktion} & \tr{Function}{Funktion} & \tr{Derivative}{Ableitung}}
|
|
$\displaystyle \frac{x^{n + 1}}{n + 1}$ & $x^n$ & $n \cdot x^{n - 1}$ \\
|
|
$\ln|x|$ & $\displaystyle \frac{1}{x} = x^{-1}$ & $\displaystyle -x^{-2} = -\frac{1}{x^2}$ \\[0.2cm]
|
|
$\frac{2}{3} x^{\frac{3}{2}}$ & $\displaystyle \sqrt{x} = x^{\frac{1}{2}}$ & $\displaystyle \frac{1}{2 \cdot \sqrt{x}}$ \\[0.3cm]
|
|
$\frac{n}{n + 1} x^{\frac{1}{n} + 1}$ & $\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}$ & $\frac{1}{n} x^{\frac{1}{n} - 1}$ \\[0.3cm]
|
|
\hline \\[-0.2cm]
|
|
$e^x$ & $e^x$ & $e^x$ \\
|
|
$\exp(x)$ & $\exp(x)$ & $\exp(x)$ \\
|
|
$\frac{1}{a \cdot (n + 1)}(ax + b)^{n + 1}$ & $(ax + b)^n$ & $n\cdot (ax + b)^{n - 1} \cdot a$ \\
|
|
$x \cdot (\ln|x| - 1)$ & $\ln(x)$ & $\frac{1}{x} = x^{-1}$ \\
|
|
$\displaystyle \frac{1}{\ln(a)}\cdot a^x$ & $a^x$ & $a^x \cdot \ln(a)$ \\
|
|
$\frac{x}{\ln(a)} \cdot (\ln|x| - 1)$ & $\log_a|x|$ & $\displaystyle \frac{1}{x \cdot \ln(a)}$ \\[0.3cm]
|
|
\hline \\[-0.2cm]
|
|
$-\cos(x)$ & $\sin(x)$ & $\cos(x)$ \\
|
|
$\sin(x)$ & $\cos(x)$ & $-\sin(x)$ \\
|
|
$-\ln|\cos(x)|$ & $\tan(x)$ & $\displaystyle \frac{1}{\cos^2(x)}$ \\[0.3cm]
|
|
$x \cdot \arcsin(x) + \sqrt{1 - x^2}$ & $\arcsin(x)$ & $\displaystyle\frac{1}{\sqrt{1 - x^2}}$ \\
|
|
$x \cdot \arccos(x) - \sqrt{1 - x^2}$ & $\arccos(x)$ & $\displaystyle -\frac{1}{\sqrt{1 - x^2}}$ \\
|
|
$\displaystyle x \cdot \arctan(x) - \frac{\ln(x^2 + 1)}{2}$ & $\arctan(x)$ & $\displaystyle \frac{1}{x^2 + 1}$ \\[0.2cm]
|
|
$\ln|\sin(x)|$ & $\cot(x)$ & $\displaystyle -\frac{1}{\sin^2(x)}$ \\
|
|
$\cosh(x)$ & $\sinh(x)$ & $\cosh(x)$ \\
|
|
$\sinh(x)$ & $\cosh(x)$ & $\sinh(x)$ \\
|
|
$\ln|\cosh(x)|$ & $\tanh(x)$ & $\displaystyle \frac{1}{\cosh^2(x)}$ \\
|
|
& $\arcsinh(x)$ & $\frac{1}{\sqrt{1 + x^2}}$ \\
|
|
& $\arccosh(x)$ & $\frac{1}{\sqrt{x^2 - 1}}$ \\
|
|
& $\arctanh(x)$ & $\frac{1}{1 - x^2}$ \\
|
|
\end{tables}
|
|
\shade{teal}{\tr{Logarithms}{Logarithmen}}\\
|
|
\textit{(\tr{Change of base}{Basiswechsel})} $\log_a(x) = \frac{\ln(x)}{\ln(a)}$
|
|
\textit{(\tr{Powers}{Potenzen})} $\log_a(x^y) = y\log_a(x)$
|
|
\textit{(Div, Mul)} $\log_a(x \cdot (\div) y) = \log_a(x) +(-) \log_a(y)$\\
|
|
$\log_a(1) = 0 \smallhspace \forall a \in \N$
|
|
|
|
\shade{teal}{\tr{Integration by parts}{Partielle Integration}}
|
|
\tr{Should we get unavoidable cycle, where we have to integrate the same thing again, we may simply add the integral to both sides, and we thus have $2$ times the integral on the left side and then finish the integration by parts on the right hand side and in the end divide by the factor up front to get the result}
|
|
{Sollte sich ein unvermeidbarer Zyklus, wo wir immer wieder denselben Integral erhalten, bilden, können wir einfach das Integral zu beiden Seiten addieren und erhalten so $2$ mal das Integral auf der linken Seite und können dann die partielle Integration auf der rechten Seite abschliessen und schliesslich durch den Faktor auf der linken Seite dividieren, um das Resultat zu erhalten}.
|
|
|
|
\shade{teal}{\tr{Inverse hyperbolic functions}{Umkehrfunktion der Hyperbelfunktionen}}
|
|
\vspace{-0.5pc}
|
|
\begin{itemize}
|
|
\item $\arcsinh(x) = \ln \left( x + \sqrt{x^2 + 1} \right)$
|
|
\item $\arccosh(x) = \ln \left( x + \sqrt{x^2 - 1} \right)$
|
|
\item $\arctanh(x) = \frac{1}{2} \ln \left( \frac{1 + x}{1 - x} \right)$
|
|
\end{itemize}
|
|
|
|
\shade{teal}{\tr{Complement trick}{Komplement-Trick}}
|
|
$\sqrt{ax + b} - \sqrt{cx + d} = \frac{ax + b - (cx + d)}{\sqrt{ax +b} + \sqrt{cx + d}}$
|
|
|
|
|
|
\shade{teal}{\tr{Values of trigonometric functions}{Werte der trigonometrischen Funktionen}}
|
|
\begin{tables}{ccccc}{° & rad & $\sin(\xi)$ & $\cos(\xi)$ & $\tan(\xi)$}
|
|
0° & $0$ & $0$ & $1$ & $1$ \\
|
|
\hline
|
|
30° & $\frac{\pi}{6}$ & $\frac{1}{2}$ & $\frac{\sqrt{3}}{2}$ & $\frac{\sqrt{3}}{2}$ \\
|
|
\hline
|
|
45° & $\frac{\pi}{4}$ & $\frac{\sqrt{2}}{2}$ & $\frac{\sqrt{2}}{2}$ & $1$ \\
|
|
\hline
|
|
60° & $\frac{\pi}{3}$ & $\frac{\sqrt{3}}{3}$ & $\frac{1}{2}$ & $\sqrt{3}$ \\
|
|
\hline
|
|
90° & $\frac{\pi}{2}$ & $1$ & $0$ & $\varnothing$ \\
|
|
\hline
|
|
120° & $\frac{2\pi}{3}$ & $\frac{\sqrt{3}}{2}$ & $-\frac{1}{2}$ & $-\sqrt{3}$ \\
|
|
\hline
|
|
135° & $\frac{3\pi}{4}$ & $\frac{\sqrt{2}}{2}$ & $-\frac{\sqrt{2}}{2}$ & $-1$ \\
|
|
\hline
|
|
150° & $\frac{5\pi}{6}$ & $\frac{1}{2}$ & $-\frac{\sqrt{3}}{2}$ & $-\frac{\sqrt{3}}{2}$ \\
|
|
\hline
|
|
180° & $\pi$ & $0$ & $-1$ & $0$ \\
|
|
\end{tables}
|
|
\end{multicols}
|
|
|
|
\vspace{3mm}
|
|
\hrule
|
|
|
|
\begin{multicols}{2}
|
|
\shade{teal}{\tr{Trigonometrie}{Trigonometrie}}
|
|
$\cot(\xi) = \displaystyle\frac{\cos(\xi)}{\sin(\xi)}, \tan(\xi) = \frac{\sin(\xi)}{\cos(\xi)}$
|
|
|
|
$\sinh(x) := \frac{e^x - e^{-x}}{2} : \R \rightarrow \R$,
|
|
$\cosh(x) := \frac{e^x + e^{-x}}{2} : \R \rightarrow [1, \infty]$,
|
|
$\cosh(x) := \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} : \R \rightarrow [-1, 1]$
|
|
|
|
\begin{enumerate}
|
|
\item $\cos(x) = \cos(-x)$ \trand $\sin(-x) = -\sin(x)$
|
|
\item $\cos(\pi - x) = -\cos(x)$ \trand $\sin(\pi - x) \sin(x)$
|
|
\item $\sin(x + w) = \sin(x) \cos(w) + \cos(x) \sin(w)$
|
|
\item $\cos(x + w) = \cos(x) \cos(w) - \sin(x) \sin(w)$
|
|
\item $\cos(x)^2 + \sin(x)^2 = 1$
|
|
\item $\sin(2x) = 2 \sin(x) \cos(x)$
|
|
\item $\cos(2x) = \cos(x)^2 - \sin(x)^2$
|
|
\end{enumerate}
|
|
\end{multicols}
|
|
|
|
\hrule
|
|
|
|
\shade{teal}{\tr{Further derivatives}{Weitere Ableitungen}}
|
|
\begin{multicols}{2}
|
|
\begin{tables}{cc}{$F(x)$ & $f(x)$}
|
|
$\frac{1}{a} \ln|ax + b|$ & $\frac{1}{ax + b}$ \\
|
|
$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln|cx + d|$ & $\frac{a (cx + d) - c(ax + b)}{(cx + d)^2}$ \\
|
|
$\frac{x}{2} f(x) + \frac{a^2}{2} \ln|x + f(x)|$ & $\sqrt{a^2 + x^2}$ \\
|
|
$\frac{x}{2} f(x) - \frac{a^2}{2} \arcsin\left( \frac{x}{|a|} \right)$ & $\sqrt{a^2 - x^2}$ \\
|
|
$\frac{x}{2} f(x) - \frac{a^2}{2} \ln|x + f(x)|$ & $\sqrt{x^2 - a^2}$ \\
|
|
$\ln(x + \sqrt{x^2 \pm a^2})$ & $\frac{1}{\sqrt{x^2 \pm a^2}}$\\
|
|
$\arcsin \left( \frac{x}{|a|} \right)$ & $\frac{1}{\sqrt{x^2 - a^2}}$\\
|
|
$\frac{1}{a}\arctan \left( \frac{x}{|a|} \right)$ & $\frac{1}{a^2 - x^2}$\\
|
|
\end{tables}
|
|
\begin{tables}{cc}{$F(x)$ & $f(x)$}
|
|
$-\frac{1}{a} \cos(ax + b)$ & $\sin(ax + b)$\\
|
|
$\frac{1}{a} \sin(ax + b)$ & $\cos(ax + b)$\\[1mm]
|
|
\hline
|
|
$x^x$ & $x^x \cdot (1 + \ln|x|)$\\
|
|
$(x^x)^x$ & $(x^x)^x \cdot (x + 2x\ln|x|)$\\
|
|
$x^{(x^x)}$ & $x^{(x^x)} \cdot (x^{x - 1} + \ln|x| \cdot x^x (1 + \ln|x|))$\\
|
|
\hline\\[-3mm]
|
|
$\frac{1}{2}(x - \frac{1}{2} \sin(2x))$ & $\sin(x)^2$\\[1mm]
|
|
$\frac{1}{2}(x + \frac{1}{2} \sin(2x))$ & $\cos(x)^2$\\
|
|
\end{tables}
|
|
\end{multicols}
|