mirror of
https://github.com/janishutz/eth-summaries.git
synced 2025-11-25 18:44:24 +00:00
60 lines
3.0 KiB
TeX
60 lines
3.0 KiB
TeX
\newsection
|
|
\section{Alphabets, Words, etc}
|
|
\stepcounter{subsection}
|
|
\subsection{Alphabets, Words, Languages}
|
|
\fancydef{Alphabet} Set $\Sigma$.
|
|
Important alphabets: $\alphabetbool$, $\alphabets{lat}$ (all latin chars), $\alphabets{Keyboard}$ (all chars on keyboard), $\Sigma_m$ ($m$-ary numbers)
|
|
|
|
\fancydef{Word} Possibly empty (denoted $\lambda$) sequences of characters from $\Sigma$. $|w|$ is the length,
|
|
$\Sigma^*$ is the set of all words and $\Sigma^+ = \Sigma^* - \{ \lambda \}$
|
|
|
|
\fancydef{Konkatenation} $\text{Kon}(x, y) = xy$, (so like string concat). $(xy)^n$ is $n$-times repeated concat.
|
|
|
|
\fancydef{Reversal} $a^R$, simply read the word backwards.
|
|
|
|
\stepLabelNumber{definition}
|
|
\fancydef{Prefix, Suffix, Subword} $v$ in $w = vy$; $s$ in $w = sx$; Subword is $u$ in $w = xuy$
|
|
|
|
\fancydef{Appearance} $|x|_a$ is the number of times $a \in \Sigma$ appears in $x$
|
|
|
|
\fancydef{Canonical ordering} Ordered by length and then by first non-common letter:
|
|
\rmvspace
|
|
\begin{align*}
|
|
u < v \Longleftrightarrow |u| < |v| \lor (|u| = |v| \land u = x \cdot s_i \cdot u' \land v = x \cdot s_j \cdot v') \text{ for any } x, u', v' \in \word \text{ and } i < j
|
|
\end{align*}
|
|
|
|
\drmvspace
|
|
\fancydef{Language} $L \subseteq \word$, and we define $L^C = \word - L$ as the complement, with $L_{\emptyset}$ being the empty language,
|
|
whereas $L_\lambda$ is the language with just the empty word in it.
|
|
|
|
\bi{Concatenation}: $L_1 \cdot L_2 = \{ vw | v \in L_1 \land w \in L_2 \}$ and $L^{i + 1} = L^i \cdot L \ \forall i \in \N$.
|
|
|
|
\bi{Cleen Star}: $L^* = \bigcup_{i \in \N} L^i$ and $L^+ = L \cdot L^*$
|
|
|
|
|
|
\inlinelemma $L_1L_2 \cup L_1 L_2 = L_1(L_2 \cup L_3)$
|
|
\inlinelemma $L_1(K_2 \cap L_3) \subseteq L_1 L_2 \cap L_1 L_3$
|
|
|
|
|
|
\stepcounter{subsection}
|
|
\subsection{Kolmogorov-Complexity}
|
|
\setLabelNumber{definition}{17}
|
|
\fancydef{Kolmogorov-Complexity} $K(x)$ for $x \in \wordbool$ is the minimum of all binary lengths of Pascal programs that output $x$,
|
|
where the Program doesn't have to compile, i.e. we can describe processes informally
|
|
|
|
\stepLabelNumber{lemma}
|
|
\inlinelemma For each word $x$ exists constant $d$ s.t. $K(x) \leq |x| + d$, for which we can use a program that simply includes a \texttt{write(x)} command
|
|
|
|
\fancydef{Of natural number} $K(n) = K(\text{Bin}(x))$ with $|\text{Bin}(x)| = \ceil{\log_2(x + 1)}$
|
|
|
|
\inlinelemma For each $n \in \N \exists w_n \in (\alphabetbool)^n$ s.t. $K(w_n) \geq |w_n| = n$, i.e. exists a non-compressible word.
|
|
|
|
\inlinetheorem Kolmogorov-Complexity doesn't depend on programming language. It only differs in constant
|
|
|
|
\fancydef{Randomness} $x \in \wordbool$ random if $K(x) \geq |x|$, thus for $n \in \N$, $K(n) \geq \ceil{\log_2(n + 1)} - 1$
|
|
|
|
\stepLabelNumber{theorem}
|
|
\fancytheorem{Prime number} $\displaystyle \limni \frac{\text{Prime}(n)}{\frac{n}{\ln(n)}}$
|
|
|
|
\fhlc{Cyan}{Proofs} Most of the proofs start with defining the number of words of exactly the required length and we can then usually deduce some kind of indirect proof (using the fact that there are at most $2^n - 1$ words $x$ with $K(x) < n$).
|