mirror of
https://github.com/janishutz/eth-summaries.git
synced 2026-01-13 21:08:28 +00:00
80 lines
3.0 KiB
TeX
80 lines
3.0 KiB
TeX
\subsubsection{Gauss-Newton Verfahren}
|
|
Direkt das Newton-Verfahren auf ein Problem anzuwenden kann unmöglich oder schwer praktikabel sein.
|
|
|
|
Die Idee des Gauss-Newton Verfahrens ist es, die komplizierte Funktion $F(x)$ lokal durch eine lineare Funktion approximiert, also:
|
|
\begin{align*}
|
|
F(x) \approx F(y) + DF(y) (x - y) = F(y) + DF(y)x - DF(y)y
|
|
\end{align*}
|
|
Falls man $A := DF(y)$ und $b = DF(y)y - F(y)$ definiert, so erhält man ein lineares Ausgleichsproblem:
|
|
\rmvspace
|
|
\begin{align*}
|
|
\argmin{x \in \R^n} \frac{1}{2} ||F(x)||^2_2 \approx \argmin{x \in \R^n} \frac{1}{2} ||F(y) + DF(y) x||^2_2 = \argmin{x \in \R^n} \frac{1}{2} ||Ax - b||^2_2
|
|
\end{align*}
|
|
|
|
\drmvspace
|
|
wobei $y$ eine Näherung der Lösung $x$ ist.
|
|
Die Iterationsvorschrift ist gegeben durch:
|
|
\rmvspace
|
|
\begin{align*}
|
|
x^{(k + 1)} = x^{(k)} - s \smallhspace \text{ mit } s := \argmin{z \in \R^n} ||F(x^{(k)}) - DF(x^{(k)})z||^2_2
|
|
\end{align*}
|
|
|
|
\begin{code}{python}
|
|
import numpy as np
|
|
|
|
def gauss_newton(start_vec, Func, Jacobian, tolerance):
|
|
# Start vector has to be chosen intelligently
|
|
s = np.linalg.lstsq(Jacobian(start_vec), Func(start_vec))[0]
|
|
start_vec = start_vec - s
|
|
# now we perform the iteration
|
|
while np.linalg.norm(s) > tolerance * np.linalg.norm(start_vec):
|
|
# every time we update x by subtracting s, found with the least square method
|
|
s = np.linalg.lstsq(Jacobian(start_vec), Func(start_vec))[0]
|
|
start_vec = start_vec - s
|
|
return start_vec
|
|
\end{code}
|
|
|
|
Der Vorteil ist, dass die zweite Ableitung nicht benötigt wird, jedoch ist die Konvergenzordnung niedrieger ($p \leq 2$)
|
|
|
|
\newpage
|
|
\setLabelNumber{all}{3}
|
|
\inlineex Wir haben zwei Modellfunktionen, $F_1(t) = a_1 + b_1 e^{-c_1 t}$ and $F_2(t) = a_2 - b_2 e^{-c_2 t}$. ($F_1$ ist ein Heizvorgang, $F_2$ ist ein Abkühlvorgang).
|
|
Untenstehender code berechnet die Lösung des nichtlinearen Ausgleichsproblems
|
|
\begin{code}{python}
|
|
import numpy as np
|
|
|
|
t = np.arange(0, 30, 5); n = len(t)
|
|
curr_heating = np.array([24.34, 18.93, 17.09, 16.27, 15.97, 15.91])
|
|
curr_cooling = np.array([9.66, 18.8, 22.36, 24.07, 24.59, 24.91])
|
|
# define the functions that have to be minimized
|
|
F_1 = lambda a: a[0] + a[1] * np.exp(-a[2] * t) - curr_heating
|
|
F_2 = lambda a: a[0] - a[1] * np.exp(-a[2] * t) - curr_cooling
|
|
|
|
# define the corresponding Jacobi matrices
|
|
def J_1(a):
|
|
mat = np.zeros((n, 3))
|
|
for k in range(n):
|
|
mat[k, 0] = 1.0
|
|
mat[k, 1] = np.exp(-t[k] * a[2])
|
|
mat[k, 2] = -t[k] * a[1] * np.exp(-t[k] * a[2])
|
|
return mat
|
|
|
|
def J_2(a):
|
|
mat = np.zeros((n, 3))
|
|
for k in range(n):
|
|
mat[k, 0] = 1.0
|
|
mat[k, 1] = -np.exp(-t[k] * a[2])
|
|
mat[k, 2] = t[k] * a[1] * np.exp(-t[k] * a[2])
|
|
return mat
|
|
|
|
# guess starting vector
|
|
x_1 = np.array([10.0, 5.0, 0.0])
|
|
x_2 = np.array([30.0, 10.0, 0.0])
|
|
|
|
# use the Gauss-Newton algorithm declared above
|
|
a_1 = gauss_newton(x_1, F_1, J_1, tolerance=10e-6)
|
|
a_2 = gauss_newton(x_2, F_2, J_2, tolerance=10e-6)
|
|
print("Heating ", a_1)
|
|
print("Cooling ", a_2)
|
|
\end{code}
|