\subsection{Partial Derivatives} \begin{subbox}{Partial Derivative} \smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R,\quad 1 \leq i \leq n,\quad x_0 \in X$} $$\dfd{i}(x_{0}) := g'(x_{0,i})$$ \smalltext{for $g: \{ t \in \R \sep (x_{0, 1}, \ldots,\ t\ ,\ldots, x_{0, n}) \in X \} \to \R^n$} $$ g(t) := \underbrace{f(x_{0,i}, \ldots, x_{0,t-1},\ t\ , x_{0, t+1},\ldots,x_{0, n})}_{ \text{ Freeze all }x_{0, k} \text{ except one } x_{0, i} \to t}$$ \end{subbox} \notation $\dfd{i}(x_0) = \sdfd{i}(x_0) =\ssdfd{i}(x_0)$ \lemma \textbf{Properties of Partial Derivatives}\\ \smalltext{Assuming $\sdfd{i} \text{ and } \partial_{x_i} g \text{ exist }$:} $ \begin{array}{ll} (i) & \partial x_i (f+g) = \partial x_i f + \partial x_i g \\ (ii) & \partial x_i (fg) = \partial x_i (f)g + \partial x_i (g)f\quad \text{ if } m=1\\ (iii) & \partial x_i \Bigr(\displaystyle\frac{f}{g}\Bigl) = \displaystyle\frac{\partial x_i(f)g - \partial x_i(g)f}{g^2}\quad \text{ if } g(x) \neq 0\ \forall x \in X\\ \end{array} $\\ \subtext{$X \subset \R^n \text{ open},\quad f.g: X \to \R^n,\quad 1 \leq i \leq n$} \begin{subbox}{The Jacobian} \smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R^n \text{ with partial derivatives existing}$} $$ \textbf{J}_f(x) := \begin{bmatrix} \partial x_1 f_1(x) & \partial x_2 f_1(x) & \cdots & \partial x_n f_1(x) \\ \partial x_1 f_2(x) & \partial x_2 f_2(x) & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \partial x_1 f_n(x) & \partial x_2 f_n(x) & \cdots & \partial x_n f_m(x) \end{bmatrix} $$ \end{subbox} \subtext{Think of $f$ as a vector of $f_i$, then $\textbf{J}_f$ is that vector stretched for all $x_j$} \definition \textbf{Gradient} $\nabla f(x_0) := \begin{bmatrix} \partial x_1 f(x_0) \\ \vdots \\ \partial x_n f(x_0) \end{bmatrix} = \textbf{J}_f(x)^\top$\\ \subtext{$X \subset \R^n \text{ open},\quad f: X \to \R$} \definition \textbf{Divergence} $\text{div}(f)(x_0) := \text{Tr}\bigr(\textbf{J}_f(x_0)\bigl)$\\ \subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^n,\quad \textbf{J}_f \text{ exists}$} \subsection{The Differential} \smalltext{ Partial derivatives don't provide a good approx. of $f$, unlike in the $1$-dimensional case. The \textit{differential} is a linear map which replicates this purpose in $\R^n$. } \begin{subbox}{Differentiability in $\R^n$} \smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R^n,\quad u: \R^n \to \R^m \text{ linear map}$} $$ df(x_0) := u $$ If $f$ is differentiable at $x_0 \in X$ with $u$ s.t. $$ \underset{x \neq x_0 \to x_0}{\lim} \frac{1}{\big\| x - x_0 \big\|}\Biggl( f(x) - f(x_0) - u(x - x_0) \Biggr) = 0 $$ \end{subbox}