\newsection \section{Computability} \stepcounter{subsection} \subsection{Diagonalization} The \bi{set of binary encodings of all TMs} is denoted $\text{KodTM}$ and $\text{KodTM} \subseteq \wordbool$ and the upper bound of the cardinality is $|\wordbool|$, as there are infinitely many TMs. Below is a list of countable objects. They all have corresponding Lemmas in the script, but omitted here: \drmvspace \begin{multicols}{4} \begin{itemize} \item $\word$ for any $\Sigma$ \item $\text{KodTM}$ \item $\N \times \N$ \item $\Q^+$ \end{itemize} \end{multicols} \rmvspace \drmvspace The following objects are uncountable: $[0, 1]$, $\R$, $\cP(\wordbool)$ \inlinecorollary $|\text{KodTM}| < |\cP(\wordbool)|$ and thus there exist infinitely many not recursively enumerable languages over $\alphabetbool$ \fhlc{Cyan}{Proof of $L$ (not) recursively enumerable} Proving that a language \textit{is} recursively enumerable is as difficult as providing a Turing Machine that accepts it. Proving that a language is \textit{not} recursively enumerable is likely easier. For it, let $d_{ij} = 1 \Longleftrightarrow M_i$ accepts $w_j$. \inlineex Assume towards contradiction that $L_\text{diag} \in \cL_{RE}$. Let \rmvspace \begin{align*} L_{\text{diag}} & = \{ w \in \wordbool \divides w = w_i \text{ for an } i \in \N - \{ 0 \} \text{ and $M_i$ does not accept } w_i \} \\ & = \{ w \in \wordbool \divides w = w_i \text{ for an } i \in \N - \{ 0 \} \text{ and } d_{ii} = 0\} \end{align*} Thus assume that, $L_\text{diag} = L(M)$ for a Turing Machine $M$. Since $M$ is a Turing Machine in the canonical ordering of all Turing Machines, so there exists an $i \in \N - \{ 0 \}$, such that $M = M_i$. This however leads to a contradiction, as $w_i \in L_\text{diag} \Longleftrightarrow d_{ii} = 0 \Longleftrightarrow w_i \notin L(M_i)$. In other words, $w_i$ is in $L_\text{diag}$ if and only if $w_i$ is not in $L(M_i)$, which contradicts our statement above, in which we assumed that $L_\text{diag} \in \cL_{RE}$ In other, more different, words, $w_i$ being in $L_\text{diag}$ implies (from the definition) that $d_{ii} = 0$, which from its definition implies that $w_i \notin L(M_i)$ \setLabelNumber{theorem}{3} \inlinetheorem $L_\text{diag} \notin \cL_{RE}$ % ──────────────────────────────────────────────────────────────────── \subsection{Reductions} This is the start of the topics that are part of the endterm. First off, a list of important languages for this and the next section: \begin{itemize} \item $L_U = \{ \text{Kod}(M)\# w \divides w \in \wordbool \text{ and TM $M$ accepts } w \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) \item $L_H = \{ \text{Kod}(M)\# x \divides x \in \wordbool \text{ and TM $M$ halts on } x \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) \item $L_{\text{diag}} = \{ w \in \wordbool \divides w = w_i \text{ for an } i \in \N - \{ 0 \} \text{ and $M_i$ does not accept } w_i \}$ ($\notin \cL_{RE}$ and thus $\notin \cL_R$) \item $(L_{\text{diag}})^C$ ($\in \cL_{RE}$, but $\notin \cL_R$) \item $L_{EQ} = \{ \text{Kod}(M)\# \text{Kod}(\overline{M}) \divides L(M) = L(\overline{M}) \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) \item $\lempty = \{ \text{Kod}(M) \divides L(M) = \emptyset \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) \item $(\lempty)^C = \{ x \in \wordbool \divides x \notin \text{Kod}(\overline{M}) \forall \text{ TM } \overline{M} \text{ or } x = \text{Kod}(M) \text{ and } L(M) \neq \emptyset \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) \item $L_{H, \lambda} = \{ \text{Kod}(M) \divides M \text{ halts on } \lambda \}$ ($\in \cL_{RE}$, but $\notin \cL_R$) \end{itemize} \setLabelNumber{theorem}{6} \fancytheorem{Universal TM} A TM $U$, such that $L(U) = L_U$ % ──────────────────────────────────────────────────────────────────── \subsection{Rice's Theorem} \setLabelNumber{theorem}{9} \fancytheorem{Rice's Theorem}