

# 1 Differential Equations

## Def Differential Equation (DE)

Equation relating unknown  $f$  to derivatives  $f^{(i)}$  at same  $x$ .

## Def Ordinary Differential Equation (ODE)

DE s.t.  $f : I \rightarrow \mathbb{R}$  is in one variable.

## Def Partial Differential Equation (PDE)

DE s.t.  $f : I^d \rightarrow \mathbb{R}$  is in multiple variables.

Notation  $f^{(i)}$  or  $y^{(i)}$  instead of  $f^{(i)}(x)$  for brevity.

Def Order  $\text{ord}(F) := \max_{i \geq 0} \{i \mid f^{(i)} \in F, f^{(i)} \neq 0\}$

Remark Any  $F$  s.t.  $\text{ord}(F) \geq 2$  can be reduced to  $\text{ord}(F') = 1$ , but using functions of higher dimensions.

## Solutions to ODEs

$\forall F : \mathbb{R}^2 \rightarrow \mathbb{R}$  s.t.  $F$  is cont. diff. and  $x_0, y_0 \in \mathbb{R}$ :

$$\exists f : I \rightarrow \mathbb{R}$$

s.t.  $\forall x \in I : f'(x) = F(x, f(x))$  and  $f(x_0) = y_0$

s.t.  $I$  is open and maximal.

Intuition: Solutions always exist (locally!) for nice enough equations.

## 1.1 Linear Differential Equations

### Def Linear Differential Equation (LDE)

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$$

$I \subset \mathbb{R}$  is open,  $k \geq 1$ ,  $\forall i < k : a_i : I \rightarrow \mathbb{C}$

### Def Homogeneity of LDEs

**Homogeneous**  $\overset{\text{def}}{\iff} b = 0$

**Inhomogeneous**  $\overset{\text{def}}{\iff} b \neq 0$

Remark  $D(y) := y^{(k)} + \dots + a_0y$  is a linear operation:

$$D(z_1f_1 + z_2f_2) = z_1D(f_1) + z_2D(f_2)$$

$\forall z_1, z_2 \in \mathbb{C}$ ,  $f_1, f_2$   $k$ -times differentiable:

### Def Homogeneous Solution Space

$$\mathcal{S}(F) := \{f : I \rightarrow \mathbb{C} \mid f \text{ solves } F, f \text{ is } k\text{-times diff.}\}$$

Remark  $\mathcal{S}(F)$  is the Nullspace of a lin. map:  $f$  to  $D(f)$ :

$$D(f) = z_1D(f_1) + z_2D(f_2) = 0$$

$$\forall z_1, z_2 \in \mathbb{C}, \quad f_1, f_2 \in \mathcal{S}$$

### Solutions for complex homogeneous LDEs

$F$  s.t.  $a_0, \dots, a_{k-1}$  continuous and complex-valued

1.  $\mathcal{S}$  is a complex vector space,  $\dim(\mathcal{S}) = k$
2.  $\mathcal{S}$  is a subspace of  $\{f \mid f : I \rightarrow \mathbb{C}\}$
3.  $\forall x_0 \in I, (y_0, \dots, y_{k-1}) \in \mathbb{C}^k$  a unique sol. exists

### Solutions for real homogeneous LDEs

$F$  s.t.  $a_0, \dots, a_{k-1}$  continuous and real-valued

1.  $\mathcal{S}$  is a real vector space,  $\dim(\mathcal{S}) = k$
2.  $\mathcal{S}$  is a subspace of  $\{f \mid f : I \rightarrow \mathbb{R}\}$
3.  $\forall x_0 \in I, (y_0, \dots, y_{k-1}) \in \mathbb{R}^k$  a unique sol. exists

### Def Inhomogeneous Solution Space

$$\mathcal{S}_b(F) := \{f + f_0 \mid f \in \mathcal{S}(F), f_0 \text{ is a particular sol.}\}$$

Note: This is only a vector space if  $b = 0$ , where  $\mathcal{S}_b = \mathcal{S}$ .

### Solutions for real inhomogeneous LDEs

$F$  s.t.  $a_0, \dots, a_{k-1}$  continuous,  $b : I \rightarrow \mathbb{C}$

1.  $\forall x_0 \in I, (y_0, \dots, y_{k-1}) \in \mathbb{C}^k$  a unique sol. exists
2. If  $b, a_i$  are real-valued, a real-valued sol. exists.

### Remark Applications of Linearity

If  $f_1$  solves  $F$  for  $b_1$ , and  $f_2$  for  $b_2$ :  $f_1 + f_2$  solves  $b_1 + b_2$ .

Follows from:  $D(f_1) + D(f_2) = b_1 + b_2$ .

## 1.2 Finding Solutions: First Order

$$I \subset \mathbb{R}, \quad a, b : I \rightarrow \mathbb{R}$$

$$y' + ay = b$$

Approach:

1. Hom. Solution:  $y' + ay = 0$  using  $f_1 = ke^{-A(x)}$

Note that  $\mathcal{S}$  has  $\dim(\mathcal{S}) = 1$ , so  $f_1 \neq 0$  is a Basis for  $\mathcal{S}$

2. Part. Solution:  $f_0 \in \mathcal{S}_b$  using Variance of Parameters

Solutions:  $f_0 + zf_1$  for  $z \in \mathbb{C}$

### Explicit Solution for 1st Order LDEs

$A(x)$  is a primitive of  $a$ ,  $f(x_0) = y_0$

$$f(x) = z \cdot \exp(-A(x))$$

$$f(x) = y_0 \cdot \exp(A(x_0) - a(x))$$