
Theoretische Informatik Janis Hutz

Theoretische Informatik

Janis Hutz
https://janishutz.com

31. Dezember 2025

q0, p0start q0, p1 q0, p2

q1, p0 q1, p1 q1, p2

q2, p0 q2, p1 q2, p2

a a

a

b b b

a a
ab

b
b

a a

a

b b b

“Sie können also alle C Programme in Kanonischer Ordnung aufzählen. Sollten
Sie dies tun? Wahrscheinlich nicht. Was aber zählt ist, sie können es tun”

- Prof. Dr. Dennis Komm, 2025

HS2025, ETHZ

Summary of the book Theoretische Informatik
by Prof. Dr. Juraj Hromkovic

31. Dezember 2025 1 / 32

https://janishutz.com
https://link.springer.com/book/10.1007/978-3-658-06433-4

Theoretische Informatik Janis Hutz

Inhaltsverzeichnis

1 Combinatorics 3
1.1 Introduction . 3
1.2 Simple counting operations . 3
1.3 Basic rules of counting . 3

1.3.1 Multiplication rule . 3
1.3.2 Addition rule . 3

1.4 Factorial . 4
1.4.1 Operations . 4

1.5 Permutations . 4
1.5.1 Permutation with repetition . 4

1.6 Variations . 5
1.6.1 Variations with repetition . 5

1.7 Combinations . 5
1.7.1 Combination with repetition . 5

1.8 Binomial Expansion . 5
1.9 Overview . 6

2 Alphabete, Wörter, Sprachen und Darstellung von Problemen 7
2.2 Alphabete, Wörter, Sprachen . 7
2.3 Algorithmische Probleme . 9
2.4 Kolmogorov-Komplexität . 10

3 Endliche Automaten 12
3.2 Darstellung . 12
3.3 Simulationen . 14
3.4 Beweise der Nichtexistenz . 15
3.5 Nichtdeterminismus . 17

4 Turing-Maschinen 19
4.3 Das Modell der Turingmaschine . 19
4.4 Mehrband-Turingmaschinen und Church’sche These . 20

4.4.1 Church’sche These . 21
4.5 Nichtdeterministische Turingmaschinen . 22

5 Berechenbarkeit 23
5.2 Diagonalisierung . 23
5.3 Die Methode der Reduktion . 24
5.4 Der Satz von Rice . 25
5.6 Die Methode der Kolmogorov-Komplexität . 25

6 Komplexitätstheorie 26
6.2 Komplexitätsmasse . 26
6.3 Komplexitätsklassen und die Klasse P . 27
6.4 Nichtdeterministische Komplexitätsmasse . 28
6.5 Die Klasse NP und Beweisverifikation . 29
6.6 NP-Vollständigkeit . 30

7 Grammatiken 32
7.2 Das Konzept der Grammatiken . 32

• Note: Definitions, Lemmas, etc are often 1:1 copies from the book or paraphrased (as I did not find an easier way of stating them)

• Note: In case I forgot to add the PDF page numbers, the PDF page number is given by PPDF = PBook + 15

31. Dezember 2025 2 / 32

Theoretische Informatik Janis Hutz

1 Combinatorics

1.1 Introduction

Please note: This section was not part of the book and is written in very simple terms (it is taken from a summary
I wrote 4 years ago during Gymnasium)

Combinatorics was developed from the willingness of humans to gamble and the fact that everybody wanted to
win as much money as possible.

1.2 Simple counting operations

The easiest way to find the best chance of winning is to write down all possible outcomes. This can be very tedious
though when the list gets longer.

We can note this all down as a list or as a tree diagram. So-called Venn Diagrams might also help represent the
relationship between two sets or events. Essentially a Venn Diagram is a graphical representation of set operations
such as A ∪B.

1.3 Basic rules of counting

1.3.1 Multiplication rule

If one has n possibilities for a first choice and m possibilities for a second choice, then there are a total of n · m
possible combinations.

When we think about a task, and we have an and in between e.g. properties, we need to multiply all the options.

1.3.2 Addition rule

If two events are mutually exclusive, the first has n possibilities and the second one has m possibilities, then both
events together have n+m possibilities.

When we think about a task, and we have an or in between e.g. properties, then we need to add all the options.

31. Dezember 2025 3 / 32

Theoretische Informatik Janis Hutz

1.4 Factorial

Factorial Definition 1.1

The factorial stands for the product of the first n natural numbers where n ≥ 1. Notation: !

n! = n · (n− 1) · (n− 2) · . . . · 3 · 2 · 1

Additionally, 0! = 1. We read n! as “n factorial”

1.4.1 Operations

We can rewrite n! as n · (n− 1)! or n · (n− 1) · (n− 2)! and so on.

It is also possible to write 7 · 6 · 5 with factorial notation:
7!

4!
, or in other words, for any excerpt of a factorial

sequence:

n · (n− 1) · . . . ·m =
n!

(m− 1)!

1.5 Permutations

Permutations Definition 1.2

A permutation of a group is any possible arrangement of the group’s elements in a particular order

Permutation rule without repetition: The number of n distinguishable elements is defined as: n!

1.5.1 Permutation with repetition

For n elements n1, n2, . . . , nk of which some are identical, the number of permutations can be calculated as follows:

p =
n!

n1! · n2! · . . . · nk!

where nk is the number of times a certain element occurs. As a matter of fact, this rule also applies to permutations

without repetition, as each element occurs only once, which means the denominator is 1, hence
n!

(1!)n
= n!

Beispiel 1.1: CANADA has 6 letters, of which 3 letters are the same. So the word consists of 3 A’s, which can

be arranged in 3! different ways, a C, N and D, which can be arranged in 1! ways each. Therefore, we have:

6!

3! · 1! · 1! · 1!
=

6!

3!
= 6 · 5 · 4 = 120

Since 1! equals 1, we can always ignore all elements that occur only once, as they won’t influence the final result.

31. Dezember 2025 4 / 32

Theoretische Informatik Janis Hutz

1.6 Variations

Variations Definition 1.3

A variation is a selection of k elements from a universal set that consists of n distinguishable elements.

Variation rule without repetition: The nPk function is used to place n elements on k places. In a more
mathematical definition: The number of different variations consisting of k different elements selected from
n distinguishable elements can be calculated as follows:

n!

(n− k)!
=n Pk

1.6.1 Variations with repetition

If an element can be selected more than once and the order matters, the number of different variations consisting
of k elements selected from n distinguishable elements can be calculated using nk

1.7 Combinations

Combination Definition 1.4

A combination is a selection of k elements from n elements in total without any regard to order or arran-
gement.
Combination rule without repetition:

nCk =

(
n

k

)
=

nPk

k!
=

n!

(n− k)! · k!

1.7.1 Combination with repetition

In general the question to ask for combinations is, in how many ways can I distribute k objects among n elements?

n+k−1Ck =

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!

1.8 Binomial Expansion

Binomial expansion is usually quite hard, but it can be much easier than it first seems. The first term of the
expression of (a + b)n is always 1anb0. Using the formula for combination without repetition, we can find the
coefficients of each element:

This theory is based on the Pascal’s Triangle and the numbers of row n correspond to the coefficients of each
element of the expanded term.

We can calculate the coefficient of each part of the expanded term k with combinatorics as follows:

(
n

k

)
Binomial Expansion Formel 1.1

In general:

(a+ b)n = 1anb0 +

(
n

1

)
an−1b1 +

(
n

2

)
an−2b2 + . . .+

(
n

n− 1

)
a1bn−1 +

(
n

n

)
a0bn

31. Dezember 2025 5 / 32

Theoretische Informatik Janis Hutz

1.9 Overview

31. Dezember 2025 6 / 32

Theoretische Informatik Janis Hutz

2 Alphabete, Wörter, Sprachen und Darstellung von Problemen

2.2 Alphabete, Wörter, Sprachen

Alphabet Definition 2.1

Eine endliche, nicht leere Menge Σ. Elemente sind Buchstaben (Zeichen & Symbole).
Beispiele: Σbool, Σlat latin characters, ΣTastatur, Σm m-adische Zahlen (m-ary numbers, zero index)

Wort Definition 2.2

Über Σ eine (möglicherweise leere) Folge von Buchstaben aus Σ. Leeres Wort λ (ab und zu ε) hat keine
Buchstaben.
|w| ist die Länge des Wortes (Anzahl Buchstaben im Wort), während Σ∗ die Menge aller Wörter über Σ ist
und Σ+ = Σ∗ − {λ}
In diesem Kurs werden Wörter ohne Komma geschrieben, also x1x2 . . . xn statt x1, x2, . . . , xn. Für das
Leersymbol gilt | |, also ist es nicht dasselbe wie λ

Für viele der Berechnungen in Verbindung mit der Länge der Wörter kann Kombinatorik nützlich werden. In
Kapitel 1 findet sich eine Zusammenfassung über jenes Thema (in English)

Ein mögliches Alphabet beispielsweise um einen Graphen darzustellen ist folgendes:

Angenommen, wir speichern den Graphen als Adjezenzmatrix ab, dann können wir beispielsweise mit dem Alphabet
Σ = {0, 1,#} diese Matrix darstellen, in dem wir jede neue Linie mit einem # abgrenzen. Das Problem hierbei ist
jedoch, dass dies nicht so effizient ist, besonders nicht, wenn der Graph sparse ist, da wir dann viele # im Vergleich
zu nützlicher Information haben.

Konkatenation Definition 2.3

Σ∗ × Σ∗ → Σ∗, so dass Kon(x, y) = x · y = xy ∀x, y ∈ Σ∗.
Intuitiv ist dies genau das was man denkt: Wörter zusammenhängen (wie in Programmiersprachen). Die
Operation ist assoziativ und hat das Neutralelement λ, was heisst, dass (Σ∗,Kon) ein Monoid ist.
Offensichtlich ist die Konkatenation nur für ein-elementige Alphabete kommutativ.
Die Notation (abc)n wird für die n-fache Konkatenation von abc verwendet

Umkehrung Definition 2.4

Sei a = a1a2 . . . an, wobei ai ∈ Σ für i ∈ {1, 2, . . . , n}, dann ist die Umkehrung von a, aR = anan−1 . . . a1

Iteration Definition 2.5

Die i-te Iteration xi von x ∈ Σ∗ für alle i ∈ N ist definiert als x0 = λ, x1 = x und xi = xxi−1

Teilwort, Präfix, Suffix Definition 2.6

Seien v, w ∈ Σ∗

• v heisst Präfix von w ⇐⇒ ∃y ∈ Σ∗ : w = vy
• v heisst Suffix von w ⇐⇒ ∃x ∈ Σ∗ : w = xv
• v heisst Teilwort von w ⇐⇒ ∃x, y ∈ Σ∗ : w = xvy
• v ̸= λ heisst echtes Teilwort (gilt auch für Präfix, Suffix) von w genau dann, wenn v ̸= w und v ein
Teilwort (oder eben Präfix oder Suffix) von w ist

31. Dezember 2025 7 / 32

Theoretische Informatik Janis Hutz

Kardinalität, Vorkommen und Potenzmenge Definition 2.7

Für Wort x ∈ Σ∗ und Buchstabe a ∈ Σ ist |x|a definiert als die Anzahl Male, die a in x vorkommt.
Für jede Menge A ist |A| die Kardinalität und P(A) = {S|S ⊆ A} die Potenzmenge von A

Kanonische Ordnung Definition 2.8

Wir definieren eine Ordnung s1 < . . . < sm auf Σ. Die kanonische Ordnung auf Σ∗ für u, v ∈ Σ∗ ist
definiert als:

u < v ⇐⇒ |u| < |v| ∨ (|u| = |v| ∧ u = x · si · u′ ∧ v = x · sj · v′) für beliebige x, u′, v′ ∈ Σ∗ und i < j

Oder in Worten, geordnet nach Länge und dann danach für den ersten nicht gemeinsamen Buchstaben, nach
dessen Ordnung.

Sprache Definition 2.9

L ⊆ Σ∗ ist eine Sprache, deren Komplement LC = Σ∗ − L ist. Dabei ist L∅ die leere Sprache und Lλ die
einelementige Sprache die nur aus dem leeren Wort besteht.
Die Konkatenation von L1 und L2 ist L1 · L2 = L1L2 = {vw | v ∈ L1 ∧ w ∈ L2} und L0 := Lλ und
Li+1 = Li ·L ∀i ∈ N und L∗ =

⋃
i∈N Li ist der Kleene’sche Stern von L, wobei L+ =

⋃
i∈N−{0} L

i = L·L∗

Für jede Sprache L gilt L2 ⊆ L =⇒ L = ∅∨L = {λ}∨L ist undendlich. Diese Aussage muss jedoch an der Prüfung
bewiesen werden (nicht im Buch vorhanden)

Da Sprachen Mengen sind, gelten auch die Üblichen Operationen, wie Vereinigung (∪) und Schnitt (∩). Die Gleich-
heit von zwei Sprachen bestimmen wir weiter mit A ⊆ B ∧ B ⊆ A ⇒ A = B. Um A ⊆ B zu zeigen reicht es
hier zu zeigen dass für jedes x ∈ A, x ∈ B hält. Wir betrachten nun, wie die üblichen Operationen mit der neu
hinzugefügten Konkatenation interagieren.

Distributivität von Kon und ∪ Lemma 2.1

Für Sprachen L1, L2 und L3 über Σ gilt: L1L2 ∪ L1L3 = L1(L2 ∪ L3)

Der Beweis hierfür läuft über die oben erwähnte “Regel” zur Gleichheit. Um das Ganze einfacher zu machen, teilen
wir auf: Wir zeigen also erst L1L2 ⊆ L1(L2 ∪ L3) und dann equivalent für L1L3.

Distributivität von Kon und ∩ Lemma 2.2

Für Sprachen L1, L2 und L3 über Σ gilt: L1(L2 ∩ L3) ⊆ L1L2 ∩ L1L3

L 2.3: Es existieren U1, U2, U3 ∈ (Σbool)
∗, so dass U1(U2 ∩ U3) ⊊ U1U2 ∩ U1U3

Homomorphismus Definition 2.10

Σ1,Σ2 beliebige Alphabete. Ein Homomorphismus von Σ∗
1 nach Σ∗

2 ist jede Funktion h : Σ∗
1 → Σ∗

2 mit:
(i) h(λ) = λ
(ii) h(uv) = h(u) · h(v) ∀u, v ∈ Σ∗

1

Erneut gilt hier, dass im Vergleich zu allgemeinen Homomorphismen, es zur Definition von einem Homomorphismus
ausreichtt, h(a) für alle Buchstaben a ∈ Σ1 festzulegen.

31. Dezember 2025 8 / 32

Theoretische Informatik Janis Hutz

2.3 Algorithmische Probleme

Ein Algorithmus A : Σ∗
1 → Σ∗

2 ist eine Teilmenge aller Programme, wobei ein Program ein Algorithmus ist, sofern
es für jede zulässige Eingabe eine Ausgabe liefert, es darf also nicht eine endlosschleife enthalten.

Entscheidungsproblem Definition 2.11

Das Entscheidungsproblem (Σ, L) ist für jedes x ∈ Σ∗ zu entscheiden, ob x ∈ L oder x /∈ L. Ein

Algorithmus A löst (Σ, L) (erkennt L) falls für alle x ∈ Σ∗: A(x) =

{
1, falls x ∈ L

0, falls x /∈ L
.

Funktion Definition 2.12

Algorithmus A berechnet (realisiert) eine Funktion (Transformation) f : Σ∗ → Γ∗ falls A(x) =
f(x) ∀x ∈ Σ∗ für Alphabete Σ und Γ

Berechnung Definition 2.13

Sei R ⊆ Σ∗ × Γ∗ eine Relation in den Alphabeten Σ und Γ. Ein Algorithmus A berechnet R (löst das
Relationsproblem R) falls für jedes x ∈ Σ∗, für das ein y ∈ Γ∗ mit (x, y) ∈ R existiert gilt: (x,A(x)) ∈ R

31. Dezember 2025 9 / 32

Theoretische Informatik Janis Hutz

2.4 Kolmogorov-Komplexität

Falls ein Wort x eine kürzere Darstellung hat, wird es komprimierbar genannt und wir nennen die Erzeugung
dieser Darstellung eine Komprimierung von x.

Eine mögliche Idee, um den Informationsgehalt eines Wortes zu bestimmen, wäre einem komprimierbaren Wort
einen kleinen Informationsgehalt zuzuordnen und einem unkomprimierbaren Wort einen grossen Informationsgehalt
zuzuordnen.

Wenn wir also das Wort 011011011011011011011011 haben, so kann man es auch als (011)8 darstellen und hat so
also einen kleineren Informationsgehalt als bspw. 0101101000101101001110110010.

Die Idee mit der Komprimierung den Informationsgehalt zu bestimmen ist jedoch nicht ideal, da für jede Kompri-
mierung bei unendlich langen Wörtern immer eine weitere Komprimierung existiert, die für unendlich viele Wörter
besser geeignet ist.

Hier kommt die Kolmogorov-Komplexit zum Zuge: Sie bietet eine breit Gültige Definition des Komplexitätsmasses.

Kolmogorov-Komplexität Definition 2.17

Für jedes Wort x ∈ (Σbool)
∗ ist die Kolmogorov-Komplexität K(x) des Wortes x das Minimum der

binären Längen der Pascal-Programme, die x generieren.

Hierbei ist mit der binären Länge die Anzahl Bits gemeint, die beim Übersetzen des Programms in einen vordefi-
nierten Maschinencode entsteht.

Ein Pascal-Programm in diesem Kurs ist zudem nicht zwingend ein Programm in der effektiven Programmiersprache
Pascal, sondern eine Abwandlung davon, worin es auch erlaubt ist, gewisse Prozesse zu beschreiben und nicht als
Code auszuformulieren, da das nicht das Ziel dieses Kurses ist.

Kolmogorov-Komplexität Lemma 2.4

Für jedes Wort x ∈ (Σbool)
∗ existiert eine Konstante d so dass K(x) ≤ |x|+ d

Beweis: Für jedes x ∈ (Σbool)
∗ kann folgendes Programm Ax verwendet werden:

1 A_x: begin

2 write(x);

3 end

Alle Teile, ausser x sind dabei von konstanter Länge, also ist die Länge der Bit-repräsentation des Programms
ausschliesslich von der binären Länge des Wortes x abhängig.

□

Für regelmässige Wörter gibt es natürlich Programme, bei denen das Wort nicht als komplette Variable vorkommt.
Deshalb haben diese Wörter auch (meist) eine kleinere Kolmogorov-Komplexität.

Definition 2.18: (K(n) für n ∈ N) Die Kolmogorov-Komplexität einer natürlichen Zahl n ist K(n) =
K(Bin(n)), wobei |Bin(x)| = ⌈log2(x+ 1)⌉

Lemma 2.5: Für jede Zahl n ∈ N − {0} existiert ein Wort wn ∈ (Σbool)
n so dass K(wn) ≥ |wn| = n, oder in

Worten, es existiert für jedes n ein nicht komprimierbares Wort.

Eine wichtige Eigenschaft der Kolmogorov-Komplexität ist, dass sie nicht wirklich von der gewählten Program-
miersprache abhängt. Man kann also beliebig auch C++, Swift, Python, Java oder welche auch immer, ohne dass
die Kolmogorov-Komplexität um mehr als eine Konstante wächst (auch wenn diese bei Java sehr gross ist):

31. Dezember 2025 10 / 32

Theoretische Informatik Janis Hutz

Unterschiedliche Programmiersprachen Satz 2.1

Für jede Programmiersprachen A und B existiert eine Konstante cA,B , die nur von A und B abhängig ist,
so dass für alle x ∈ (Σbool)

∗ gilt:

|KA(x)−KB(x)| ≤ cA,B

Anwendungen der Kolmogorov-Komplexität

Zufall Der Zufall ist ein intuitiver, aber nicht sehr formeller Begriff, der mit der Kolmogorov-Komplexität for-
malisiert werden kann:

Zufall Definition 2.19

EinWort x ∈ (Σbool)
∗ (eine Zahl n) heisst zufällig , fallsK(x) ≥ |x| (K(n) = K(Bin(n)) ≥ ⌈log2(n+ 1)⌉−1)

Existenz eines Programms vs Kolmogorov-Komplexität

Programm vs Komplexität Satz 2.2

Sei L eine Sprache über Σbool und für jedes n ∈ N−{0} sei zn das n-te Wort in L bezüglich der kanonischen
Ordnung. Falls ein Programm AL existiert, das das Entscheidungsproblem (Σbool, L) löst, so gilt für alle
n ∈ N− {0} dass

K(zn) ≤ ⌈log2(n+ 1)⌉+ c (c ist eine von n unabhängige Konstante)

Primality testing

Primzahlensatz Satz 2.3

lim
n→∞

Prim(n)
n

ln(n)

= 1

Die Annäherung von Prim(n) and n
ln(n) wird durch folgende Ungleichung gezeigt:

ln(n)− 3

2
<

n

Prim(n)
< ln(n)− 1

2
∀n ≥ 67 ∈ N

Anzahl Primzahlen mit Eigenschaften Lemma 2.6

Sei n1, n2, . . . eine stetig steigende unendliche Folge natürlicher Zahlen mit K(ni) ≥ ⌈log2(ni)⌉
2 . Für jedes

i ∈ N− {0} sei qi die grösste Primzahl, die ni teilt. Dann ist die Menge Q = {qi | i ∈ N− {0}} unendlich.

Lemma 2.6 zeigt nicht nur, dass es unendlich viele Primzahlen geben muss, sondern sogar, dass die Menge der
grössten Primzahlfaktoren einer beliebigen unendlichen Folge natürlicher Zahlen mit nichttrivialer Kolmogorov-
Komplexität unendlich ist.

Untere Schranke für Anzahl Primzahlen Satz 2.4

Für unendlich viele k ∈ N gilt

Prim(k) ≥ k

217 log2(k) · (log2(log2(k)))2

Der Beweis hierfür ist sehr ausführlich ab Seite 42 (= 57 im PDF) im Buch erklärt

31. Dezember 2025 11 / 32

Theoretische Informatik Janis Hutz

3 Endliche Automaten

3.2 Darstellung

Folgende Fragen müssen zur Definition eines Berechnungsmodells beantwortet werden:

1. Welche elementaren Operationen stehen zur Verfügung (um das Programm zusammenzustellen)?

2. Wie funktioniert der Speicher?

3. Wie funktioniert die Eingabe (und welches Alphabet verwendet sie)?

4. Wie funktioniert die Ausgabe (und welches Alphabet verwendet sie)?

Endliche Automaten haben keinen Speicher, mit Ausnahme des Zeigers (can be understood similarly to a program
counter)

Ein endlicher Automat mit dem Eingabealphabet Σ = {a1, . . . , ak} darf nur den Operationstyp select verwenden.

select input = a1 goto i1
...

input = ak goto ik

Alternativ, falls |Σ| = 2 (typischerweise für Σbool), kann man statt select auch if...then...else nutzen. Typi-
scherweise werden solche Programme für Entscheidungsprobleme genutzt und die Checks sind dann:

if input = 1 then goto i else goto j

Wir wählen eine Teilmenge F ⊆ {0, . . . ,m − 1}, wobei m die Anzahl Zeilen des Programms ist. Ist die Zeile auf
der das Programm endet ein Element von F , so akzeptiert das Programm die Eingabe. Die Menge F wird auch
die vom Programm akzeptierte Sprache genannt Ein Programm A arbeitet dann Buchstabe für Buchstabe
das Eingabewort ab und springt so also kontinuierlich durch das Programm bis die Eingabe endet. Mit formaleren
Begriffen ist das Eingabewort als Band dargestellt, welches von einem Lesekopf , der sich nur nach links oder
rechts bewegen kann gelesen wird und die gelesene Eingabe dann dem Programm weitergibt.

Diese Notation wird jedoch heute kaum mehr verwendet (because goto bad, Prof. Roscoe would approve). Heute
verwendet man meist einen gerichteten Graphen G(A):

• Hat so viele Knoten (= Zustände) wie das Programm A Zeilen hat

• Wenn das Programm beim Lesen von Symbol b von Zeile i auf j sprint, so gibt es in G(A) eine gerichtete
Kante (i, j) von Knoten i nach Knoten j mit Markierung b. Sie wird als Übergangsfunktion bezeichnet

• Jeder Knoten hat den Ausgangsgrad |Σ| (wir müssen alle Fälle abdecken)

Endlicher Automat Definition 3.1

Ist eine Quitupel M = (Q,Σ, δ, q0, F):
(i) Q ist eine endliche Menge von Zuständen
(ii) Σ ist das Eingabealphabet
(iii) δ : Q × Σ → Q ist die Übergangsfunktion . δ(q, a) = p bedeutet Übergang von Zustand q nach p

falls in q a gelesen wurde
(iv) q0 ∈ Q ist der Anfangszustand
(v) F ⊆ Q ist die Menge der akzeptierenden Zustände

• Konfiguration : Element aus Q× Σ∗

• Startkonfiguration auf x: (q0, x)
• Endkonfiguration : Jede aus Q× {λ}

• Schritt : Relation auf Konfigurationen M ⊆ (Q × Σ∗) × (Q × Σ∗ definiert durch (q, w) M (p, x) ⇔
w = ax, a ∈ Σ und δ(q, a) = p. Einfacher: Anwendung von δ auf die aktuelle Konfiguration

• Berechnung C: Endliche Folge von Konfigurationen, Ci M Ci+1. Auf Eingabe x ∈ Σ∗, C0 Start-
konfiguration und Cn Endkonfiguration. Falls Cn ∈ F × {λ}, C akzeptierende Berechnung , M
akzeptiert Wort x. Anderenfalls ist C eine verwerfende Berechnung und M verwirft (akzep-
tiert nicht) das Wort x

• Akzeptierte Sprache L(M) = {w ∈ Σ∗ |M akzeptiert das Wort w und M endet in Endkonfig.}
• LEA = {L(M)|M ist ein EA} ist die Klasse aller Sprachen die von endlichen Automaten akzeptiert
werden, auch genanntKlasse der regulären Sprachen und für jede Sprache L ∈ LEA gilt: L regulär

31. Dezember 2025 12 / 32

Theoretische Informatik Janis Hutz

Die Übergangsfunktion kann auch gut graphisch oder tabellarisch (wie eine Truth-Table) dargestellt werden.

M ist in der Konfiguration (q, w) ∈ Q×Σ∗, wenn M in Zustand q ist und noch das Suffix w zu lesen hat (also auf
dem Eingabeband hinter dem Zeiger noch w steht)

Reflexive und transitive Hülle Definition 3.2

Sei M = (Q,Σ, δ, q0, F) ein endlicher Automat. Die reflexive und transitive Hülle M
∗

der Schrittrelation M

von M als (q, w) M
∗

(p, u) ⇔ (q = p ∧ w = u) ∨ ∃k ∈ N− {0} so dass
(i) w = a1 . . . aku, ai ∈ Σ für i = 1, . . . , k

(ii) ∃r1, . . . , rk−1 ∈ Q, so dass (q, w) M (r1, a2 . . . aku) M (r2, a3 . . . aku) M . . . (rk−1, aku) M (p, u)

Wir definieren δ̂ : Q× Σ∗ → Q durch
(i) δ̂(q, λ) = q ∀q ∈ Q (ii) δ̂(q, wa) = δ(δ̂(q, w), a)∀a ∈ Σ, w ∈ Σ∗, q ∈ Q

M

∗
und δ̂(q, w) Intuition

(q, w) M
∗

(p, u) bedeutet, dass es eine Berechnung von M gibt, die von der Konfiguration (q, w) zu (p, u)
führt. Eine wichtiger Aspekt ist die Transitivität, was ja dann bedeutet, dass es (beliebig viele) Zwischen-
schritte gibt, so dass die Relation erfüllt ist. Oder noch viel einfacher: Es gibt irgendwieviele Zwischenschritte
zwischen dem linken und rechten Zustand
δ̂(q, w) = p repräsentiert den letzen Zustand der Berechnung ausgehend von (q, w). Etwas formaler bedeutet

dies (q, w) M
∗

(p, λ), also falls M im Zustand q das Wort w zu lesen beginnt, M im Zustand p endet.

Also gilt L(M) = {w ∈ Σ∗ | (q0, w) M
∗

(p, λ) ∀p ∈ F} = {w ∈ Σ∗ | δ̂(q0, w) ∈ F}.

Das folgende Lemma bezieht sich auf den Automaten M , den wir in der Tabelle weiter unten definieren. Der
Automat entscheidet, ob die beiden Zahlen gerade oder ungerade sind. Dies kann man aber auch folgendermassen
in formaler Ausdrucksweise ausdrücken:

Lemma 3.1: L(M) = {w ∈ {0, 1}∗ | |w|0 + |w|1 ≡ 0 mod 2}

Jeder EA teilt die Menge Σ∗ in |Q| Klassen Kl[p] = {w ∈ Σ∗ | δ̂(q0, w) = p} = {w ∈ Σ∗ | (q0, w) M
∗

(p, λ)} auf und
entsprechend gilt: ⋃

p∈Q

Kl[p] = Σ∗ und Kl[p] ∪Kl[q] = ∅ ∀p ̸= q ∈ Q

In dieser Terminologie gilt dann L(M) =
⋃

p∈F Kl[p]. Die Notation |w|i bedeutet die Länge der Buchstaben i in w.

Wir können L(M) mit Klassen bestimmen und haben eine Äquivalenzrelation xRδy ⇔ δ̂(q0, x) = δ̂(q0, y) auf
Σ∗. Man beweist die Korrektheit der gewählten Klassen oft mithilfe von Induktion über die Länge der Wörter.
Wir beginnen mit der Länge an Wörtern der Länge kleiner gleich zwei und erhöhen dies dann während unseres
Induktionsschrittes.

Intuition: Die Klassen sind Mengen, die hier Wörter mit gewissen Eigenschaften, die der EA bestimmt hat, wenn
er in Zustand qi endet, enthalten. Diese Eigenschaften sind beispielsweise, dass alle Wörter, für die der EA in
Zustand qi endet mit einer gewissen Sequenz enden, sie einen gewissen Zahlenwert haben, etc.

Die Klassen bestimmen wir vor dem Beginn der Induktion auf und jede Klasse repräsentiert einen der Zustände.

Zustand 0 1

q0 q2 q1
q1 q3 q0
q2 q0 q3
q3 q1 q2

Haben wir einen EA M mit nebenstehender Tabelle, so sind die Klassen
Kl[q0], . . . ,Kl[q3], definiert durch:

Kl[q0] = {w ∈ (Σbool)
∗ | |w|0 und |w|1 sind gerade}

Kl[q1] = {w ∈ (Σbool)
∗ | |w|0 ist gerade, |w|1 ist ungerade}

Kl[q2] = {w ∈ (Σbool)
∗ | |w|0 ist ungerade, |w|1 ist gerade}

Kl[q3] = {w ∈ (Σbool)
∗ | |w|0 und |w|1 sind ungerade}

Falls ein EA A genügend anschaulich und strukturiert dargestellt ist, kann man die Sprache L(A) auch ohne Beweis
bestimmen.

31. Dezember 2025 13 / 32

Theoretische Informatik Janis Hutz

Idealerweise konstruieren wir einen EA so, dass wir die Menge aller Wörter aus Σ∗ so in Klassen aufteilen, sodass
Wörter mit denselben Eigenschaften in derselben Klasse liegen und wir dann Übergangsfunktionen zu anderen
Klassen finden, die nur einen Buchstaben aus Σ zum Wort hinzufügen

Beispiel 3.1: Das Buch enthält einige zwei gute Beispiele (Beispiel 3.1 und 3.2) mit ausführlichen Erklärungen

ab Seite 58 (= Seite 73 im PDF).

3.3 Simulationen

Der Begriff der Simulation ist nicht ein formalisiert, da er je nach Fachgebiet, eine etwas andere Definition hat.
Die engste Definition fordert, dass jeder elementare Schritt der zu Berechnung, welche simuliert wird, durch eine
Berechnung in der Simulation nachgemacht wird. Eine etwas schwächere Forderung legt fest, dass in der Simulation
auch mehrere Schritte verwendet werden dürfen.

Es gibt auch eine allgemeinere Definition, die besagt, dass nur das gleiche Eingabe-Ausgabe-Verhalten gilt und der
Weg, oder die Berechnungen, welche die Simulation geht, respektive durchführt, wird ignoriert, respektive wird
nicht durch die Definition beschränkt.

Hier werden wir aber die enge Definition verwenden

Lemma 3.2: (Produktautomaten) Wir haben zwei EA M1 = (Q1,Σ, δ1, q01, F1) und M2 = (Q2,Σ, δ2, q02, F2),
die auf dem Alphabet Σ operieren. Für jede Mengenoperation ⊙ ∈ {∪,∩,−} existiert ein EA M , so dass L(M) =
L(M1)⊙ L(M2)

Was dieses Lemma nun aussagt ist folgendes: Man kann einen endlichen Automaten bauen, so dass das Verhalten
von zwei anderen EA im Bezug auf die Mengenoperation simuliert wird. Ein guter, ausführlicher Beweis dieses
Lemmas findet sich im Buch auf Seite 64 (= Seite 79 im PDF)

Dieses Lemma hat weitreichende Nutzen. Besonders ist es also möglich einen modularen EA zu bauen, in dem Teile
davon in kleinere und einfachere EA auszulagern, die dann wiederverwendet werden können.

Produktautomaten Intuition

Produktautomaten erstellt man, in dem man die (meist zwei) Automaten als einen Gridgraph aufschreibt
und eine Art Graph-Layering betreibt, so dass der eine Graph horizontal und der andere Graph vertikal
orientiert ist. Dann werden die Übergänge folgendermassen definiert: Für jeden Eingang liefert der Graph,
der horizontal ausgerichtet ist, ob wir nach links oder rechts gehen (oder bleiben), während der vertikal
ausgerichtete Graph entscheidet, ob wir nach oben oder unten gehen (oder bleiben).

Beispiel 3.3: Dieses Beispiel im Buch ist sehr gut erklärt und findet sich auf Seiten 65, 66 & 67 (= Seite 80, 81

& 82 im PDF)

31. Dezember 2025 14 / 32

Theoretische Informatik Janis Hutz

3.4 Beweise der Nichtexistenz

Im Gegensatz zum Beweis, dass eine bestimmte Klasse von Programmen (Algorithmen) ein Problem lösen kann
(was ein einfacher Existenzbeweis ist, bei welchem man eine korrekte Implementation liefern kann), ist der Beweis,
dass diese Klasse von Programmen (Algorithmen) dies nicht tun kann viel schwieriger, da man (logischerweise)
nicht für alle (unendlich vielen) Programme zeigen kann, dass sie das Problem nicht lösen.

In diesem Kurs werden wir aber vorerst nur die Klasse der endlichen Automaten behandlen, welche sehr stark
eingeschränkt sind, was diese Beweise verhältnismässig einfach macht. Falls also ein EA A für zwei unterschiedliche
Wörter x und y im gleichen Zustand endet (also δ̂(q0, x) = δ̂(q0, y))), so heisst das für uns von jetzt an, dass A
nicht zwischen x und y unterscheiden kann:

Unterscheidung von Wörtern Lemma 3.3

Sei A ein EA über Σ und x ̸= y ∈ Σ∗ so dass

(q0, x) A
∗
(p, λ) und (q0, y) A

∗
(p, λ)

für ein p ∈ Q (also δ̂A(q0, x) = δ̂(q0, y) = p(x, y ∈ Kl[p])). Dann existiert für jedes z ∈ Σ∗ ein r ∈ Q, so dass
xz, yz ∈ Kl[r], also gilt insbesondere

xz ∈ L(A) ⇐⇒ yz ∈ L(A)

Das obenstehende Lemma 3.3 ist ein Spezialfall einer Eigenschaft, die für jedes (deterministische) Rechnermodell
gilt. Es besagt eigentlich nichts anderes, als dass wenn das Wort xz akzeptiert wird, so wird auch das Wort yz

Mithilfe von Lemma 3.3 kann man für einen grossteil Sprachen deren Nichtregularität beweisen.

Beispiel: Sei L = {0n1n | n ∈ N}. Intuitiv ist diese Sprache Nichtregulär, da n unendlich gross sein kann, aber

ein EA logischerweise endlich ist. Wir müssen hier nur formal ausdrücken, dass das Zählen benötigt wird, dass L
akzeptiert wird:

Dazu benutzen wir einen Widerspruchsbeweis. Sei A ein EA über Σbool und L(A) = L. Wir nehmen an, dass L
regulär ist und betrachten die Wörter 01, 02, . . . , 0|Q|+1. Weil wir |Q| + 1 Wörter haben, existiert per Pigeonhole-
Principle o.B.d.A i < j ∈ {1, 2, . . . , |Q|+1} (die Ungleichheit kann in komplexeren Beweisen sehr nützlich werden,

da wir dann besser mit Längen argumentieren können), so dass δ̂A(q0, 0
i) = δ̂A(q0, 0

j), also gilt nach Lemma
0iz ∈ L ⇔ 0jz ∈ L ∀z ∈ (Σbool)

∗. Dies gilt jedoch nicht, weil für jedes z = 1i zwar jedes 0i1i ∈ L gilt, aber
0i1j /∈ Lh

Um die Nichtregularität konkreter Sprachen zu beweisen, sucht man nach einfach verifizierbaren Eigenschaften,
denn wenn eine Sprache eine dieser Eigenschaften nicht erfüllt, so ist sie nicht regulär.

Pumping

Eine weitere Methode zum Beweis von Aussagen L /∈ LEA nennt sich Pumping und basiert auf folgender Idee:
Wenn für ein Wort x und einen Zustand p gilt, dass (p, x) A

∗
(p, λ), so gilt auch für alle i ∈ N, dass (p, xi) A

∗
(p, λ).

Also kann A nicht zwischen x und xi unterscheiden, oder in anderen Worten, wie viele x er gelesen hat, also
akzeptiert A entweder alle Wörter der Form yxiz (für i ∈ N) oder keines davon

Pumping-Lemma für reguläre Sprachen Lemma 3.4

Sei L regulär. Dann existiert eine Konstante n0 ∈ N, so dass sich jedes Wort w ∈ Σ∗ mit |w| ≥ n0 in
w = yxz zerlegen lässt, wobei

(i) |yx| ≤ n0

(ii) |x| ≥ 1
(iii) Für X = {yxkz | k ∈ N} entweder X ⊆ L oder

X ∩ L = ∅ gilt

Bei der Wahl von den Teilen von w sollte man idealerweise einen Teil (der dann = y in w = yxz ist) bereits gross
genug zu wählen, so dass (i) zutrifft, was es nachher einfacher macht.

31. Dezember 2025 15 / 32

Theoretische Informatik Janis Hutz

Beispiel: Wir verwenden wieder die Sprache L = {0n1n | n ∈ N} und wieder einen Widerspruchsbeweis:

Wir nehmen an, dass L regulär ist, also gilt Lemma 3.4 und es existiert eine Konstante n0 so dass |w| ≥ n0. Um
zu zeigen, dass eine Sprache nicht regulär ist, reicht es aus, zu zeigen, dass es ein (hinreichend langes) Wort gibt,
für das eine der Eigenschaften in Lemma 3.4 nicht zutrifft.

Wir wählen w = 0n01n0 , also ist |w| = 2n0 ≥ n0. Zudem müssen wir eine sinnvolle Zerlegung wählen – denn eine
solche existiert für jedes Wort w mit |w| ≥ n0 laut Lemma 3.4 – wir wählen yx = 0n0 , also ist y = 0l und x = 0m

für irgendwelche l,m ∈ N, so dass l +m ≤ n0.

Nach Lemma 3.4 (ii) ist m ̸= 0 (|x| ≥ 1). Nun, da w = 0n01n0 ∈ L, ist {yxkz | k ∈ N} = {0n0−m+km1n0 | k ∈ N} ⊆
L, was aber ein Widerspruch ist, da yx0z = yz = 0n0−m1n0 /∈ L (0n01n0 ist sogar das einzige Wort aus der Menge,
das in L liegt)

Intuition: Woher kommt 0n0−m+km? Das Ganze wird mit Klammern bedeutend offensichtlicher: 0(n0−m)+(km).
Also ist der Ursprung der Koeffizienten auch klar, und sie kommen von |y| = n0 −m und |xk| = km. Die Addition
im Exponent kommt dann deshalb zustande, da dies ja nicht ein Exponent ist, sondern die Anzahl der Repetitionen.

Kolmogorov-Komplexität basiert

Kolmogorov-Komplexität regulärer Sprachen Satz 3.1

Sei L ⊆ (Σbool)
∗ eine reguläre Sprache. Sei Lx = {y ∈ (Σbool)

∗ | xy ∈ L} für jedes x ∈ (Σbool)
∗. Dann

existiert eine Konstante c, so dass für alle x, y ∈ (Σbool)
∗ gilt, dass

K(y) ≤ ⌈log2(n+ 1)⌉+ c

falls y das n-te Wort in der Sprache Lx ist

Beispiel: Wir verwenden wieder die Sprache L = {0n1n | n ∈ N} und wieder einen Widerspruchsbeweis:

Dazu nehmen wir wieder an, dass L regulär ist. Für jedes m ∈ N ist 1m das erste Wort in der Sprache L0m =
{y | 0my ∈ L} = {0j1m+j | j ∈ N}. Die zweite Menge beinhaltet also alle möglichen Wörter y, die noch immer in
L sind, wenn man sie mit 0m als 0m0j1m+j konkateniert und ist deshalb eine konkrete Beschreibung von L0m .

Also gibt es laut Satz 3.1 eine Konstante c, die unabhängig von x = 0m und y = 1m und somit von m ist, so dass
K(1m) ≤ ⌈log2(1 + 1)⌉ + c = 1 + c (n = 1 hier, da 1m das erste Wort in L0m ist und wir dieses Wort betrachten
wollen), also gilt für eine Konstante d = 1 + c, dass K(1m) ≤ d. Dies ist aber unmöglich, da:

(i) die Anzahl aller Programme, deren Länge ≤ d ist, ist höchstens 2d und entsprechend endlich

(ii) die Menge {1m |m ∈ N} unendlich ist

Für komplexere Sprachen ist es oft einfach, Lx so zu wählen, dass x = aα+1 ist, wobei α der Exponent (nach

Variabelnwechsel) aus der Sprache ist. Also beispielsweise für L = {0n2·2n | n∈N} ist α = m2 · 2m, also ist x =

0m
2·2m+1. y1 (das erste Wort der Sprache Lx) ist dann y1 = 0(m+1)2·2(m+1)−m2·2m+1.

Wir können dann mit der Länge des Wortes |y1| und dem Theorem 3.1 argumentieren, dass wir einen Widerspruch
erreichen und so also die Sprache nichtregulär ist.

Dazu sagen wir, dass für jedes m ∈ N eine Konstante c existiert, so dass K(y1) ≤ ⌈log2(1 + 1)⌉ + c = 1 + c. Da
unser Wort y1 unendlich lang werden kann, gibt es unendlich viele solcher Wörter. Dies widerspricht jedoch dem
Fakt, dass es nur endlich viele Programme mit Kolmogorov-Komplexität ≤ 1 + c gibt.

31. Dezember 2025 16 / 32

Theoretische Informatik Janis Hutz

3.5 Nichtdeterminismus

Einfach gesagt werden hier Automaten behandelt, die zufällige (genannt nichtdeterministische) Entscheidungen
treffen. Beispielsweise für ein Entscheidungsproblem (Σ, L) bedeutet dies, dass ein nichtdeterministischer EA A eine
Sprache L akzeptiert, falls für jedes x ∈ L mindestens eine akzeptierende Berechnung von A auf x existiert und für
y ∈ Σ∗ − L keine solve existiert.

Wir notieren das Ganze in graphischer Darstellung so, dass wir aus einem Zustand mehrere Übergänge mit dem
gleichen Eingabesymbol erlauben.

nichtdeterministischer Endlicher Automat (NEA) Definition 3.3

Ein NEA ist eine Quitupel M = (Q,Σ, δ, q0, F):
(i) Zustandsmenge: Q ist eine endliche Menge
(ii) Eingabealphabet: Σ ist ein Alphabet
(iii) Übergangsfunktion: δ : Q× Σ → P(Q). P(Q) ist das Powerset hierbei
(iv) Anfangszustand: q0 ∈ Q
(v) Akzeptierende Zustände: F ⊆ Q

Ein Schritt in der δ-Notation ist im Vergleich zum deterministischen EA nicht δ(q, a) = p, sondern p ∈
δ(q, a) ist, da die Übergangsfunktion ja jetzt ins Powerset von Q, anstelle von nach Q direkt mapped. Die
komplette Definition des Schritts ist also:

(q, w) M (p, x) ⇐⇒ w = ax für ein a ∈ Σ und p ∈ δ(q, a)

Eine Berechnung von M ist eine endliche Folge D1, D2, . . . , Dk von Konfigurationen, wobei Di M Di+1

für i = 1, . . . , k − 1
Eine Berechnung von M auf x hingegen ist eine Berechnung C0, C1, . . . , Cm von M , wobei C0 = (q0, x)
und entweder Cm ∈ Q× {λ} oder CM = (q, ay) für ein a ∈ Σ, y ∈ Σ∗ und q ∈ Q, so dass δ(q, a) = ∅.
C0, . . . , Cm ist akzeptierend falls Cm = (p, λ) für ein p ∈ F

Die Sprache L(M) = {w ∈ Σ∗ | (q0, w) M
∗

(p, λ) für ein p ∈ F}
Für die δ̂-Funktion, gilt nun δ̂(q, λ) = {q} für jedes q ∈ Q und wir definieren:

δ̂(q, wa) = {p ∈ Q | es existiert ein r ∈ δ̂(q, w), so dass p ∈ δ(r, a)}

=
⋃

r∈δ̂(q,w)

δ(r, a) ∀q ∈ Q, a ∈ Σ, w ∈ Σ∗

Ein Wort ist in L(M), falls M mindestens eine akzeptierende Berechnung auf x hat.

Bei einer akzeptierenden Berechnung auf x wird wie beim EA gefordert, dass das ganze Wort x gelesen worden ist
und M nach dem Lesen in einem akzeptierenden Zustand ist.

Bei NEA kann eine nicht akzeptierende Berechnung auch vor Beendung des Lesevorgangs enden, da wir hier nicht
vorschreiben, dass es für jedes Symbol des Eingabealphabets eine definierte Übergangsfunktion gibt, es ist also
erlaubt, dass bspw. δ(q, a) = ∅.

Zudem haben wir aus der Definition von δ̂ eine alternative Definition der von M akzeptierten Sprache: L(M) =

{w ∈ Σ∗ | δ̂(q0, w) ∩ F ̸= ∅}

Für NEA kann man einen Berechnungsbaum BM (x) von M auf x erstellen, der dann anschaulich alle möglichen
Enden der Berechnung darstellt. Wir beginnen den Baum mit Konfiguration (q0, x) und führen dann mit den Kanten
alle möglichen Berechnungen aus, die mit dem ersten Symbol des Wortes möglich sind.

Wir erreichen so also zum Beispiel die Konfiguration (q1, x1), wobei x1 x ohne das erste Zeichen ist.

Lemma 3.5: (NEA aus Abbildung 3.15 im Buch) Sei M der NEA aus Abbildung 3.15 im Buch (auf Seite 77 (=
92 im PDF) zu finden). Dann ist L(M) = {x11y | x, y ∈ (Σbool)

∗}

Der Beweis für eine solche Aussage läuft oft über Teilmengen (also mit X ⊆ Y ∧ Y ⊆ X ⇔ X = Y).

Eine zentrale Frage dieses Kapitels ist es, ob LNEA = LEA, wobei LNEA = {L(M) |M ist ein NEA}. In anderen
Worten: Können EA die Arbeit von NEA simulieren?

31. Dezember 2025 17 / 32

Theoretische Informatik Janis Hutz

Ja, es ist möglich und gilt allgemein, dass die Simulation von Nichtdeterminismus durch Determinismus nur dann
realisierbar ist, wenn es möglich ist, alle nichtdeterministischen Berechnungen durch deterministische Berechnungen
nachzuahmen.

Bei EA (nennen einen A im Folgenden) basiert diese Idee auf BFS der Berechnungsbäume von M . Die Idee ist dann,
dass alle Knoten mit Entfernung i von der Wurzel die ersten i Symbole von x gelesen haben. Da NEA endlich viele
Konfigurationen bei Entfernung i haben ist es möglich, die Transformation durchzuführen. Wenn es zwei Knoten
u ̸= v identisch sind, so müssen wir nur in einem der Teilbäume nach einer akzeptierenden Berechnung suchen.

Potenzmengenkonstruktion: Ein Zustand ⟨P ⟩ von A für P ⊆ Q erhält die Bedeutung, dass nach der gegebenen
Anzahl an Berechnungsschritten genau die Zustände aus P in den Berechnungen von M auf der gegebenen Ebene
erreichbar sind, also P = δ̂(q0, z). Ein Berechnungsschritt in A aus einem Zustand ⟨P ⟩ für ein gelesenes Symbol a
bedeutet die Bestimmung der Menge

⋃
p∈P δ(p, a), also aller Zustände, die aus irgendeinem Zustand p ∈ P beim

Lesen von a erreichbar sind.

Dabei benutzen wir ⟨P ⟩ statt P , um zu verdeutlichen, dass wir eine Zustand von A und nicht die Menge der
Zustände von M bezeichnen.

Ein EA, der die Sprache, bei welcher das k-letzte Symbol 1 ist, benötigt 2k Zustände. Er wird dabei aus dem NEA
dieser Sprache mit der Potenzmengenkonstruktion gebildet.

Satz 3.2: Zu jedem NEA M existiert ein EA A, so dass L(M) = L(A)

Um L(M) = L(A) zu zeigen, müssen wir folgende Äquivalenz beweisen:

∀x ∈ Σ∗ : δ̂M (q0, x) = P ⇐⇒ δ̂(q0A, x) = ⟨P ⟩

Wir können dies über einen Induktionsbeweis tun und ein vollständiger Beweis findet sich unten auf Seite 82 (=
Seite 97 im PDF) im Buch.

Wir sagen, dass zwei Automaten äquivalent sind, falls L(A) = L(B).

Eine Folge von Satz 3.2 ist eben, dass LEA = LNEA, also sind die EA genau so stark wie die NEA im Bezug auf
die Sprachakzeptierung. Was hingegen ein Problem sein kann, ist dass die durch die Potenzmengenkonstruktion
erzeugten Automaten (exponentiell) grösser sind als die NEA.

Es gibt gewisse NEA, bei welchen man bei der Simulation des Nichtdeterminismus durch Determinismus unaus-
weichlich in exponentiell grösseren EA resultiert. Man kann beweisen (siehe Seiten 83 und 84 mit Abbildung 3.19
im Buch (= Seiten 98 & 99 im PDF)), dass man die Potenzmengenkonstruktion nicht allgemein verbessern kann.

Lemma 3.6: Für alle k ∈ N − {0} muss jeder EA, der Lk = {x1y | x ∈ (Σbool)
∗, y ∈ (Σbool)

k−1} akzeptiert,
mindestens 2k Zustände haben.

Worked Example Zeige, das jeder endliche Automat, der die Sprache

L = {w ∈ {a, b}∗ | w enthält Teilwort ab gleich oft wie das Teilwort ba enthält}
mindestens n := 5 Zustände haben muss.

ab (ab)2 (ab)3 (ab)4 (ab)5

ab - (ba)2 (ba)3 (ba)4 (ba)5

(ab)2 - (ba)3 (ba)4 (ba)5

(ab)3 - (ba)4 (ba)5

(ab)4 - (ba)5

(ab)5 -

Sei S = {ab, (ab)2, (ab)3, (ab)4, (ab)5}. Laut Lemma 3.3

31. Dezember 2025 18 / 32

Theoretische Informatik Janis Hutz

4 Turing-Maschinen

4.3 Das Modell der Turingmaschine

Eine Turingmaschine (oft auch Turing-Maschine geschrieben) besteht informell aus

(i) einer endlichen Kontrolle, die das Programm enthält

(ii) einem Arbeitsband unendlicher Länge (das es Erlaubt, im Vergleich zum EA, Daten zu speichern)

(iii) einem Lese-/Schreibkopf, der sich in beide Richtungen auf dem Band bewegen kann

Formaler:

Turingmaschine (TM) Definition 4.1

Eine Turingmaschine ist eine 7-Tupel M = (Q,Σ,Γ, δ, q0, qaccept, qreject), wobei:
(i) Q ist die Zustandsmenge
(ii) Σ ist das Eingabealphabet mit ¢, /∈ Σ
(iii) Γ ist das Arbeitsalphabet mit Σ ⊆ Γ, ¢, ∈ Γ und Γ ∩Q = ∅ (¢ = Startmarker, = Blanksymbol)
(iv) δ : (Q − {qaccept, qreject}) × Γ −→ Q × Γ × {L,R,N} ist die Übergangsfunktion von M , wobei

{L,R,N} die möglichen Bewegunsrichtungen des Lese-/Schreibkopfs sind und hat die Eigenschaft
δ(q, ¢) ∈ Q× {¢} × {R,N} für alle q ∈ Q

(v) q0 ist der Anfangszustand
(vi) qaccept ist der akzeptierende Zustand (genau einer in jedem M)
(vii) qreject ist der verwerfende Zustand (genau einer in jedem M)
Eine Konfiguration C von M ist ein Element aus Konf(M) = {¢} · Γ∗ ·Q · Γ+ ∪Q · {¢} · Γ+ (wobei · die
Konkatenation ist)
Eine Startkonfiguration für ein Eingabewort x ist q0¢x
Ein Schritt von M ist eine Relation M auf der Menge der Konfigurationen, also M ⊆ Konf(M)×Konf(M).
LRE = {L(M) |M ist eine Turingmaschine}
Der Rest der Definition findet sich auf Seiten 96 - 98 (= Seiten 110 - 112 im PDF)

Turingmaschinen, die immer halten, repräsentieren Algorithmen, die immer terminieren und die richtige Ausgabe
liefern. Rekursive Sprachen und entscheidbare Entscheidungsprobleme sind algorithmisch erkennbar, respektive
lösbar.

Es gibt auch definitionen der TM, die ohne Startmarker ¢ auskommen, bei denen ist das Arbeitsband in beide
Richtungen unendlich.

Graphisch stellt man Turingmaschinen folgendermassen dar: Wir haben wieder einen Graphen mit gerichteten
Kanten. Für δ(q, a) = (p, b,X) mit q, p ∈ Q, a, b ∈ Σ und X ∈ {L,R,N} werden die Kanten mit folgendem Format
beschriftet: q → a,X.

Mit einem TM die Sprache {0n1n | n ∈ N} erkennen kann man nun, indem man jeweils das linkeste und rechteste
Symbol durch ein anderes Symbol ersetzt, beispielsweise, wenn das Eingabealphabet Σ = {0, 1}, dann könnte man
Γ das Symbol 2 hinzufügen, mit dem man jedes bearbeitete Symbol ersetzt.

Im Buch wird als Beispiel auf Seite 99ff (= Seite 114ff im PDF) ein komplexeres Wort gewählt, bei welchem ein
Zeichen a ∈ Σbool durch (a,B) ∈ Σbool × {A,B} ersetzt wird, da wir zwei Phasen haben und zwischen denen
unterscheiden wollen können.

31. Dezember 2025 19 / 32

Theoretische Informatik Janis Hutz

4.4 Mehrband-Turingmaschinen und Church’sche These

Die Turingmaschinen sind das Standardmodell der Berechenbarkeitstheorie, aber benötigen einige Modifikationen,
um wirklich geeignet zu sein (da das Von-Neumann Modell physisch unterschiedliche CPU, Eingabemedium und
Speicher für Programme und Daten fordert, aber die TM ein gemeinsames Eingabemedium und Speicher hat).

Eine k-Band-Turingmaschine (für k ∈ N0) hat folgende Komponenten:

• eine endliche Kontrolle (= Programm)

• ein endliches Band mit einem Lesekopf

• k Arbeitsbänder, jedes mit eigenem Lese-/Schreibkopf

Zu Beginn ist die MTM in folgender Situation:

• Das Eingabeband enthält ¢w$, wobei ¢ und $ die linke / rechte Seite der Eingabe markieren

• Der Lesekopf des Eingabebands zeigt auf ¢

• Alle Arbeitsbänder beinhalten ¢ . . . und deren Lese-/Schreibköpfe zeigen auf ¢

• Die endliche Kontrolle ist im Anfangszustand q0

Alle k+1 Köpfe dürfen sich während der Berechnung in beide Richtungen bewegen (solange das nicht out-of-bounds
geht). Zudem darf der Lesekopf nicht schreiben, also beleibt der Inhalt des Eingabebands gleich.

Gleich wie bei einer TM ist das Arbeitsalphabet der Arbeitsbänder Γ und alle Felder der Arbeitsbänder sind von
links nach rechts nummeriert, wobei 0 bei ¢ liegt.

Eine Konfiguration einer k-Band-TM M ist (q, w, i, u1, i1, u2, i2, . . . , uk, ik) ∈ Q×Σ∗ ×N× (Γ∗ ×N)k, wobei q der
Zustand ist, der Inhalt des Eingabebands ist ¢w$, der Lesekopf zeigt auf das i-te Feld, für j ∈ {1, 2, . . . , k} ist der
Inhalt des j-ten Bandes ¢uk . . . und ij ≤ |uj | ist die Position des Feldes.

Ein Berechnungsschritt von M kann mit

δ : Q× (Σ ∪ {¢, $})× Γk → Q× {L,R,N} × (Γ× {L,R,N})k

dargestellt werden, wobei die Argumente (q, a, b1, . . . , bk) der aktuelle Zustand q, das gelesene Eingabesymbol a
und die k Symbole bi ∈ Γ, auf welchen die Köpfe der Arbeitsbänder stehen.

Die Eingabe w wird von M akzeptiert, falls M den Zustand qaccept erreicht und falls M den Zustand qreject erreicht
oder nicht terminiert, wird die Eingabe verworfen.

Wir sagen, dass eine Maschine A äquivalent zu einer Maschine B ist, falls für jede Eingabe x ∈ (Σbool)
∗ gilt:

A <property> x ⇐⇒ B <property> x mit <property> ∈ {akzeptiert, verwrift, arbeitet unendlich lange auf},
also ist L(A) = L(B)

Lemma 4.1: Zu jeder TM A existiert eine zu A äquivalente 1-Band-TM B

Lemma 4.2: Zu jeder Mehrband-Turingmaschine A existiert eine zu A äquivalente TM B

Die Beweise dazu finden sich auf Seite 107, beziehungsweise Seite 109 (= 121 & 123 im PDF).

In diesem Kurs müssen wir glücklicherweise meist nicht Beweise der Äquivalenz durchführen, wie auch nicht dass
die TM die gewünschte Tätigkeit realisiert.

Definition 4.1: Zwei Maschinenmodelle (Maschinenklassen) A und B sind äquivalent wenn beides zutrifft:

(i) für jede Maschine A ∈ A eine zu A äquivalente Maschine B ∈ B existiert

(ii) für jede Maschine C ∈ B eine zu C äquivalente Maschine D ∈ A existiert

Satz 4.1: Die Maschinenmodelle von Turingmaschinen und Mehrband-Turingmaschinen sind äquivalent

Beweis: Impliziert von Lemmas 4.1 und 4.2

Um zu beweisen, dass Turing-Maschinen äquivalent zu höheren Programmiersprachen sind argumentiert man über
die Existenz eines Interpreters für TM.

31. Dezember 2025 20 / 32

Theoretische Informatik Janis Hutz

4.4.1 Church’sche These

Die Turingmaschinen sind die Formalisierung des Begriffes “Algorithmus”, das heisst, die Klasse der
rekursiven Sprachen (der entscheidbaren Entscheidungsproblem) stimmt mit der Klasse der algorithmisch
(automatisch) erkennbaren Sprache überein

Die These ist nicht beweisbar, da dazu der Begriff des Algorithmus formalisiert werden müsste, was er bekanntlich
nicht ist.

Dies führt zu einer interessanten Situation, in welcher es theoretisch möglich wäre, dass jemand ein stärkeres Modell
findet, als die TM sind, eines nämlich, welches Entscheidungsprobleme lösen kann, die die TM nicht kann.

Wir nehmen also (wie in vielen Bereichen der Physik (die Relativitätstheorie ist ein gutes Beispiel) und Mathematik)
und postulieren sie als Axiom.

Fun fact Die Church’sche These ist das Einzige informatikspezifische Axiom.

31. Dezember 2025 21 / 32

Theoretische Informatik Janis Hutz

4.5 Nichtdeterministische Turingmaschinen

Die Ideen sind hier sehr ähnlich wie der Übergang zwischen deterministischen und nichtdeterministischen Endlichen
Automaten.

Nichtdeterministische Turingmaschine (NTM) Definition 4.2

Hier werden nur die wichtigsten Unterschiede aufgezeigt. Formale Definition auf Seiten 113ff. (= Seiten 127ff im PDF) im Buch.

Die Übergangsfunktion geht wieder in die Potenzmenge, also gilt:

δ : (Q− {qaccept, qreject})× Γ → P(Q× Γ× {L,R,N})
und δ(p, ¢) ⊆ ({(q, ¢, X) | q ∈ Q,X ∈ {R,N}})

Die von der NTM M akzeptierte Sprache ist:

L(M) = {w ∈ Σ∗ | q0¢w M
∗

yqacceptz für irgendwelche y, z ∈ Γ∗}

Ein gutes Beispiel für eine NTM findet sich auf Seiten 114ff. im Buch (= Seite 128ff. im PDF)

Berechnungsbaum Definition 4.3

Ein Berechnungsbaum TM,x von M (eine NTM) auf x (Wort aus Eingabealphabet von M) ist ein (potentiell
un)gerichteter Baum mit einer Wurzel:
(i) Jeder Knoten von TM,x ist mit einer Konfiguration beschriftet
(ii) Die Wurzel ist der einzige Knoten mit degin(v) = 0, ist die Startkonfiguration q0¢x
(iii) Jeder mit C beschriftete Knoten hat genauso viele Kinder wie C Nachfolgekonfigurationen hat und

die Kinder sind mit diesen Nachfolgekonfigurationen markiert.

Diese Bäume können natürlich auch für nichtdeterministischen MTM verwendet werden.

Im Vergleich zu den Berechnungsbäumen von NEA sind die Bäume von NTM nicht immer endlich.

Satz 4.2: Sei M eine NTM. Dann existiert eine TM A, so dass L(M) = L(A) und falls M keine unendlichen
Berechnungen auf Wörtern aus (L(M))C hat, dann hält A immer.

Beweis: Auf Seite 117 im Buch (= 131 im PDF). Die Idee zur Umwandlung von M in die TM A ist, dass A
Breitensuche im Berechnungsbaum von M durchführt.

31. Dezember 2025 22 / 32

Theoretische Informatik Janis Hutz

5 Berechenbarkeit

5.2 Diagonalisierung

Wir definieren KodTM als die Menge der binären Kodierungen aller Turingmaschinen. Wir haben KodTM ⊆
(Σbool)

∗ und die obere Schranke der Kardinalität ist |(Σbool)
∗|, da es unendlich viele Turingmaschinen gibt.

Im Folgenden wird wieder Cantor’s Diagonalisierungsmethode verwendet

Cantor’s Diagonalization Argument Repetition

TODO: Finish

Definition 5.1: A und B sind Mengen. Dann ist |A| ≤ |B| falls eine injektive Funktion f von A nach B existiert;
|A| = |B| falls |A| ≤ |B| und |B| ≤ |A| (es existiert eine Bijektion); |A| < |B| falls |A| ≤ |B| und keine injektive
Abbildung von B nach A existiert.

Um zu zeigen, dass es nicht rekursiv aufzählbare (also von Turingmaschinen nicht erkennbare) Sprachen gibt. Also
müssen wir laut Definition 5.1 nur zeigen, dass keine Injektion von (Σbool)

∗ nach LRE existiert.

Definition 5.2: (Abzählbarkeit) A heisst abzählbar, falls A endlich ist oder |A| = |N|

Lemma 5.1: Sei Σ ein beliebiges Alphabet. Dann ist Σ∗ abzählbar

Satz 5.1: Die Menge KodTM der Turingmaschinenkodierungen ist abzählbar

Lemma 5.2: (N−{0})× (N−{0}) ist abzählbar. Die Idee ist dieselbe wie für |Q+| = |N|, nämlich, dass wir jedem
Element einen Index zuordnen können.

Satz 5.2: Q+ ist abzählbar. Die Idee für den Beweis ist eine Bijektion nach obiger Menge zu finden.

Satz 5.3: [0, 1] ⊆ R ist nicht abzählbar. Dies kann mit Cantor’s Diagonalization Argument bewiesen werden.

Satz 5.4: P((Σbool)
∗) ist nicht abzählbar

Korollar 5.1: |KodTM| < |P((Σbool)
∗)| und es existieren also unendlich viele nicht rekursiv aufzählbare Sprachen.

Um für eine spezifische Sprache zu beweisen, dass sie rekursiv aufzählbar ist, können wir einfach eine Turingmaschine
konstruieren. Für eine Beweis dafür, dass eine Sprache nicht rekursiv aufzählbar ist können wir folgende Methode
verwenden. Sei dazu mit dij = 1 ⇐⇒ Mi akzeptiert wj

Ldiag = {w ∈ (Σbool)
∗ | w = wi für ein i ∈ N− {0} und Mi akzeptiert wi nicht}

= {w ∈ (Σbool)
∗ | w = wi für ein i ∈ N− {0} und dii = 0}

Satz 5.5: Ldiag /∈ LRE Beweis: Zum Widerspruch nehmen wir an, dass Ldiag ∈ LRE . Dann gilt, dass Ldiag =
L(M) für eine Turingmaschine M . M ist eine Turingmaschine in der kanonischen Ordnung der Turingmaschinen,
also existiert ein i ∈ N− {0}, so dass M = Mi.

Dies führt zu einem Widerspruch, denn Ldiag kann nicht gleich L(Mi) sein, da

wi ∈ Ldiag ⇐⇒ dii = 0 ⇐⇒ wi /∈ L(Mi)

also ist wi genau dann in Ldiag wenn wi nicht in L(Mi) ist. (= in genau einer der Sprachen Ldiag oder L(Mi))

31. Dezember 2025 23 / 32

Theoretische Informatik Janis Hutz

5.3 Die Methode der Reduktion

Definition 5.3: (Rekursiv reduzierbare Sprache) Eine Sprache L1 ⊆ Σ∗
1 ist auf L2 ⊆ Σ∗

2 rekursiv reduzierbar,
geschrieben L1 ≤R L2, falls L2 ∈ LR ⇒ L1 ∈ LR.

Intuition: L2 ist bezüglich der algorithmischen Lösbarkeit mindestens so schwer wie L1. LR ist die Menge aller
rekursiv reduzierbaren Sprachen. Ist also L2 lösbar, so muss auch L1 lösbar sein.

Definition 5.4: (EE-reduzierbare Sprache) L1 ist auf L2 EE-reduzierbar , geschrieben L1 ≤EE L2, wenn eine
TM M existiert, die eine Abbildung fM : Σ∗

1 → Σ∗
2 mit der Eigenschaft x ∈ L1 ⇔ fM (x) ∈ L2 für alle x ∈ Σ∗

1

berechnet. Anders ausgedrückt: die TM M reduziert die Sprache L1 auf die Sprache L2

Lemma 5.3: Falls L1 ≤EE L2, dann auch L1 ≤R L2. Beweis: Im Buch auf Seite 135 (= 148 im PDF)

Wir müssen also nur zeigen, dass L1 ≤EE L2 um zu zeigen, dass L1 ≤R L2

Lemma 5.4: Für jede Sprache L ⊆ Σ∗ gilt: L ≤R LC und LC ≤R L

Korollar 5.2: (Ldiag)
C /∈ LR Beweis: Folgt davon, dass Ldiag /∈ LRE (was heisst, dass Ldiag /∈ LR) und nach

Lemma 5.4 Ldiag ≤R (Ldiag)
C und das umgekehrte gelten muss.

Lemma 5.5: (Ldiag)
C ∈ LRE Beweis: Auf Seite 137 (= 150 im PDF) wird eine Turingmaschine aufgezeigt, die

(Ldiag)
C akzeptiert.

Korollar 5.3: (Ldiag)
C ∈ LRE − LR und daher LR ⊊ LRE

Folgende Sprachen sind nicht rekursiv, liegen aber in LRE

Definition 5.5: (Universelle Sprache) LU = {Kod(M)#w | w ∈ (Σbool)
∗ und TM M akzeptiert w}

Satz 5.6: (Universelle TM) Eine TM U , so dass L(U) = LU , also gilt LU ∈ LRE

Beweis: Auf Seite 138 (= 151 im PDF)

Was dies bedeutet, es existiert eine TM ohne Haltegarantie, die eine beliebige Turingmaschine auf einer gegebenen
Eingabe simulieren kann. Untenstehendes Resultat bedeutet, dass man das Resultat der Berechnung einer TM M
auf einer Eingabe x anders berechnen kann, als die Berechnung von M auf x zu simulieren.

Satz 5.7: LU /∈ LR

Wenn jetzt aber M unendlich lange auf x arbeitet, so wissen wir nicht, ob wir die Simulation beenden können.
Dies führt zum Halteproblem

Halteproblem Definition 5.6

Das Halteproblem ist das Entscheidungsproblem ({0, 1,#}, LH) mit

LH = {Kod(M)#x | x ∈ {0, 1}∗ und M hält auf x}

Dies scheint vorerst nicht ein allzu grosses Problem zu sein, jedoch besagt das nächste Resultat, dass es keinen
Algorithmus gibt, der testen kann, ob ein gegebenes Programm immer terminiert.

Satz 5.8: LH /∈ LR Beweis: Auf Seiten 140 - 142 (153 - 155 im PDF)

Betrachten wir die Sprache Lempty = {Kod(M) | L(M) = ∅}, die die Kodierungen aller Turingmaschinen enthält,
die die leere Menge (kein Wort) akzeptieren. Es gilt

(Lempty)
C = {x ∈ (Σbool)

∗ | x /∈ Kod(M)∀ TM M oder x = Kod(M) und L(M) ̸= ∅}

Lemma 5.6: (Lempty)
C ∈ LRE Beweis: Auf Seiten 142 - 143 (155 - 156 im PDF)

Lemma 5.7: (Lempty)
C /∈ LR

Wir haben als wiederum die Nichtexistenz eines Algorithmus zur Überprüfung, ob ein gegebenes Programm die
leere Menge akzeptiert. Ein Beweis dazu findet sich auf Seiten 143 und 144 im Buch (156 - 157 im PDF)

Korollar 5.4: Lempty /∈ LR

Korollar 5.5: LEQ = {Kod(M)#Kod(M) | L(M) = L(M)} ist nicht entscheidbar (also LEQ /∈ LR)

31. Dezember 2025 24 / 32

Theoretische Informatik Janis Hutz

5.4 Der Satz von Rice

Definition 5.7: L heisst semantisch nichttriviales Entscheidungsproblem über Turingmaschinen , falls
folgende Bedingungen gelten:

(i) Es gibt eine TM M1, so dass Kod(M1) ∈ L (also L ̸= ∅)

(ii) Es gibt eine TM M2, so dass Kod(M2) /∈ L (also sind nicht alle Kodierungen in L)

(iii) für zwei TM A und B: L(A) = L(B) ⇒ Kod(A) ∈ L ⇔ Kod(B) ∈ L

Sei LH,λ = {Kod(M) |M hält auf λ} ein spezifisches Halteproblem.

Lemma 5.8: LH,λ /∈ LR Beweis: Auf Seite 146 im Buch (= 159 im PDF)

Satz von Rice Satz 5.9

Jedes semantisch nichttriviale Entscheidungsproblem über Turingmaschinen ist unentscheidbar.

Beweis: Ausführlich im Buch auf Seiten 146 - 149 beschrieben (= 159 - 162 im PDF)

5.6 Die Methode der Kolmogorov-Komplexität

Satz 5.10: Das Probelem, für jedes x ∈ (Σbool)
∗ die Kolmogorov-Komplexität K(x) von x zu berechnen ist

algorithmisch unlösbar.

Lemma 5.9: Falls LH ∈ LR, dann existiert ein Algorithmus zur Berechnung der Kolmogorov-Komplexität K(x)
für jedes x ∈ (Σbool)

∗

31. Dezember 2025 25 / 32

Theoretische Informatik Janis Hutz

6 Komplexitätstheorie

6.2 Komplexitätsmasse

Zeitkomplexität Definition 6.1

Sei M eine Mehrband-TM oder TM, die immer hält, x ∈ Σ∗ und D = C1, C2, . . . , Ck die Berechnung von
M auf x, deren Zeitkomplexität definiert ist durch:

TimeM (x) = k − 1

also durch die Anzahl der Berechnungsschritte in D Die Zeitkomplexität der TM M ist dabei definiert
durch:

TimeM (n) = max{TimeM (x) | x ∈ Σn}

Wir können weiterhin die big-O-notation verwenden um den Worstcase anzugeben.

Speicherplatzkomplexität Definition 6.2

Sei C = (q, x, i, α1, i1, α2, i2, . . . , αk, ik) mit 0 ≤ i ≤ |x| + 1 und 0 ≤ ij ≤ |αj | für j = 1, . . . , k eine
Konfiguration von M , welche eine k-Band TM ist. Die Speicherplatzkomplexität von C ist

SpaceM (C) = max{|αi| | i = 1, . . . , k}
Für die Berechnung C1, C2, . . . , Cl von M auf x haben wir:

SpaceM (x) = max{SpaceM (Ci) | i = 1, . . . , l}
Und die Speicherplatzkomplexität von M ist

SpaceM (n) = max{SpaceM (x) | x ∈ Σn}

Es ist auch möglich SpaceM (n) als eine Summe zu definieren, aber laut Lemma 4.2 wissen wir, dass man eine
k-Band-TM mit einer 1-Band-TM simulieren kann.

Lemma 6.1: Sei k ∈ N. Für jede k-Band-TM A, die immer hält existiert eine äquivalente 1-Band-TM B, so dass
SpaceB(n) ≤ SpaceA(n)

Lemma 6.2: Für jede k-Band-TM A, existiert eine äquivalente k-Band-TM B, so dass L(A) = L(B) und

SpaceB(n) ≤
SpaceA(n)

2 + 2

Definition 6.3: Wir notieren mit der big-O-notation folgendermassen: Falls r ∈ O (f(n)), so wächst r asympto-

tisch nicht schneller als f . Äquivalent für s ∈ Ω(g(n)) und l ∈ Θ(h(n)) sagen wir asymptotisch mindestens so

(gleich) schnell. Falls limn→∞
f(n)
g(n) = 0, dann wächst g asymptotisch schneller als f und f(n) = o(g(n))

Satz 6.1: Es existiert ein Entscheidungsproblem (Σbool, L), so dass für jede MTM A, die (Σbool, L) entscheidet,
eine MTM B existiert, die es auch entscheidet und für die gilt: TimeB(n) ≤ log2(TimeA(n)) für alle n ∈ N

Schranken, Optimal Definition 6.4

O (g(n)) (Ω (f(n))) ist eine obere (untere) Schranke für die Zeitkomplexität von L, falls eine MTM
A (B) existiert, die L entscheidet und TimeA(n) ∈ O (g(n)) (TimeB(n) ∈ Ω(f(n)))
Eine MTM C heisst optimal für L, falls TimeC(n) ∈ O (f(n)) gilt und Ω (f(n)) eine untere Schranke für
die Zeitkomplexität von L ist.

31. Dezember 2025 26 / 32

Theoretische Informatik Janis Hutz

6.3 Komplexitätsklassen und die Klasse P

Komplexitätsklasen Definition 6.5

Für alle Funktionen f, g : N → R+ definieren wir:

TIME(f) = {L(B) | B ist eine MTM mit TimeB(n) ∈ O (f(n))}
SPACE(g) = {L(A) | A ist eine MTM mit SpaceA(n) ∈ O (g(n))}

DLOG = SPACE(log2(n))

P =
⋃
c∈N

TIME(nc)

PSPACE =
⋃
c∈N

SPACE(nc)

EXPTIME =
⋃
d∈N

TIME(2n
d

)

Lemma 6.3: Für alle t : N → R+ gilt TIME(t(n)) ⊆ SPACE(t(n)) Korollar 6.1: P ⊆ PSPACE

Platz- und Zeitkonstruierbarkeit Definition 6.6

Eine Funktion s : N → N heisst platzkonstruierbar , falls eine 1-Band-TM M existiert, so dass
1. SpaceM (n) ≤ s(n) ∀n ∈ N
2. für jede Eingabe 0n für n ∈ N, generiert M das Wort 0s(n) auf ihrem Arbeitsband und hält in qaccept

Eine Funktion t : N → N heisst zeitkonstruierbar , falls eine MTM A existiert, so dass
1. TimeA(n) ∈ O (t(n))
2. für jede Eingabe 0n für n ∈ N, generiert A das Wort 0t(n) auf dem ersten Arbeitsband und hält in

qaccept

Wichtig ist, dass wir hier nicht zwingend eine 1-Band-TM konstruieren müssen, eine MTM geht auch.

Lemma 6.4: Sei s platzkonstruierbar und M eine MTM mit SpaceM (x) ≤ s(|x|) ∀x ∈ L(M). Dann existiert
MTM A mit L(A) = L(M) und SpaceA(n) ≤ s(n), es gilt also SpaceA(y) ≤ s(|y|) ∀y ∈ ΣM

Lemma 6.5: Sei t zeitkonstruierbar und M eine MTM mit TimeM (x) ≤ t(|x|) ∀x ∈ L(M). Dann existiert eine
MTM A mit L(A) = L(M) und TimeA(n) ∈ O (t(n))

Satz 6.2: Für jede Funktion s mit s(n) ≥ log2(n) gilt SPACE(s(n)) ⊆
⋃

c∈N TIME(cs(n))

Obiger Satz trifft auch für s(n)-platzbeschränkten TM zu, die nicht halten, aber nur, wenn s(n) platzkonstruierbar
ist.

Korollar 6.2: DLOG ⊆ P und PSPACE ⊆ EXPTIME

Die Korollare 6.1 und 6.2 geben zusammen DLOG ⊆ P ⊆ PSPACE ⊆ EXPTIME

Satz 6.3: Für s1, s2 : N → N mit folgenden Eigenschaften:
1. s2(n) ≥ log2(n) 2. s2 ist platzkonstruierbar 3. s1(n) = o(s2(n))

Dann gilt: SPACE(s1) ⊊ SPACE(s2)

Satz 6.4: Für t1, t2 : N → N mit folgenden Eigenschaften:
1. t2 ist platzkonstruierbar 2. t1(n) · log2(t1(n)) = o(t2(n))

Dann gilt: TIME(s1) ⊊ TIME(s2)

In den Sechzigerjahren entstand folgende “Definition” von parktisch lösbaren Problemen:

Ein Problem ist praktisch lösbar genau dann, wenn ein polynomialer Algorithmus zu seiner Lösung exis-
tiert. Die Klasse P ist die Klasse der praktisch entscheidbaren Probleme

31. Dezember 2025 27 / 32

Theoretische Informatik Janis Hutz

6.4 Nichtdeterministische Komplexitätsmasse

Zeit- und Speicherkomplexität Definition 6.7

Sei M eine NMTM oder MTM und x ∈ L(M) ⊆ Σ∗. TimeM (x) ist die länge einer kürzesten akzeptierenden
Berechnung von M auf x und TimeM (n) = max({TimeM (x) | x ∈ L(M) und |x| = n} ∪ {0}).

SpaceM (Ci) ist die Speicherkomplexität von Konfiguration Ci und SpaceM (C) = max{SpaceM (Ci) | i =
1, 2, . . . ,m}. Zudem ist SpaceM (x) = min{SpaceM (C) | C ist akzeptierende Berechnung von M auf x}.
Ausserdem ist SpaceM (n) = max({SpaceM (x) | x ∈ L(M) und |x| = n} ∪ {0})

Komplexitätsklassen Definition 6.8

Für alle f, g : N → R+ definieren wir:

NTIME(f) = {L(M) |M ist eine NMTM mit TimeM (n) ∈ O (f(n))}
NSPACE(g) = {L(M) |M ist eine NMTM mit SpaceM (n) ∈ O (g(n))}

NLOG = NSPACE(log2(n))

NP =
⋃
c∈N

NTIME(nc)

NPSPACE =
⋃
c∈N

NSPACE(nc)

Lemma 6.6: Für alle t und smit s(n) ≥ log2(n) gilt: NTIME(t) ⊆ NSPACE(t), NSPACE(s) ⊆
⋃

c∈N NTIME(cs(n))

Satz 6.5: Für jedes t : N → R+ und jedes platzkonstruierbare s mit s(n) ≥ log2(n) gilt:

(i) TIME(t) ⊆ NTIME(t)

(ii) SPACE(t) ⊆ NSPACE(t)

(iii) NTIME(s(n)) ⊆ SPACE(s(n)) ⊆
⋃

c∈N TIME(cs(n))

Korollar 6.3: NP ⊆ PSPACE

Satz 6.6: Für jede platzkonstruierbare Funktion s mit s(n) ≥ log2(n) gilt

NSPACE(s(n)) ⊆
⋃
c∈N

TIME(cs(n))

Korollar 6.4: NLOG ⊆ P und NPSPACE ⊆ EXPTIME

Satz 6.7: (Satz von Savitch) Sei s mit s(n) ≥ log2(n) eine platzkonstruierbare Funktion. Dann gilt:

NSPACE(s(n)) ⊆ SPACE(s(n)2)

Korollar 6.5: PSPACE = NPSPACE

Aus den obigen Resultaten resultiert die Komplexitätsklassenhierarchie der sequentiellen Berechnungen:

DLOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

31. Dezember 2025 28 / 32

Theoretische Informatik Janis Hutz

6.5 Die Klasse NP und Beweisverifikation

Da praktische Lösbarkeit eines Problems mit polynomieller Zeit verbunden wird, ist es wichtig zu wissen, welche
Probleme in polynomieller Zeit lösbar sind und welche nicht.

Der Vergleich zwischen den Klassen P und NP ist äquivalent zu der Frage, ob es einfacher ist, gegebene Beweise
zu verifizieren, als sie herzustellen.

Betrachten wir folgendes: Sei L = SAT , wobei

SAT = {x ∈ (Σlogic)
∗ | x kodiert eine erfüllbare Formel in CNF}.

Dann ist die Aussage Φ ∈ SAT äquivalent zu der Behauptung “Φ ist eine erfüllbare Formel in CNF”

Für nichtdeterministische Berechnungen nennen wir α1, . . . , αn Zertifikate für eine Aussage Ξ, falls für diese
Ξ(α1, . . . , αn) hält.

Verifizierer Definition 6.9

Sei L ⊆ Σ∗ und p : N → N. Eine MTM A ist ein p-Verifizierer und V (A) = L, falls A mit folgenden
Eigenschaften auf allen Eingaben aus Σ∗ × (Σbool)

∗ arbeitet:
(i) TimeA(w, x) ≤ p(|w|) für jede Eingabe (w, x) ∈ Σ∗ × (Σbool)

∗

(ii) Für jedes w ∈ L existiert ein x ∈ (Σbool)
∗, so dass |x| ≤ p(|w|) und (w, x) ∈ L(A). x ist Zeugen (oder

Beweis) der Behauptung w ∈ L
(iii) Für jedes y /∈ L gilt (y, z) /∈ L(A) für alle z ∈ (Σbool)

∗

(iv) Falls p(n) ∈ O
(
nk

)
für ein k ∈ N, so ist p ein Polynomialzeit-Verifizierer . Die Klasse ist

V P = {V (A) | A ist ein Polynomialzeit-Verifizierer }

Satz 6.8: V P = NP

Der Beweis für obiges Resultat ist auf Seiten 193 - 194 im Buch (= 205 - 206 im PDf) zu finden

31. Dezember 2025 29 / 32

Theoretische Informatik Janis Hutz

6.6 NP-Vollständigkeit

Es sind mittlerweile über 3000 Probleme bekannt, für welche wir keinen Algorithmus kennen, der in polynomieller
Zeit läuft. Es ist aber bis jetzt niemandem gelungen, eine höhere untere Schranke für alle zu beweisen, als Ω (n).

Wie bereits bei der Berechenbarkeit benutzen wir eine Reduktion. Falls jedes Problem aus NP effizient auf ein
Problem L ∈ NP reduzierbar ist, so ist L schwer.

Polynomielle Reduktion Definition 6.10

L1 ⊆ Σ∗
1 ist polynomiell reduzierbar auf L2 ⊆ Σ∗

2, geschrieben L1 ≤p L2, falls eine polynomielle TM A
existiert, die für jedes Wort x ∈ Σ∗

1 ein Word A(x) ∈ Σ∗
2 berechnet, so dass

x ∈ L1 ⇐⇒ A(x) ∈ L2
A wird eine polynomielle Reduktion von L1 auf L2 genannt.

Wieder bedeutet L1 ≤p L2, dass L2 mindestens so schwer ist wie L1

NP -Schwer Definition 6.11

Eine Sprache L ist NP -Schwer , falls für alle L′ ∈ NP gilt L′ ≤p L.
Eine Sprache L ist NP -Vollständig , falls
(i) L ∈ NP (ii) L NP -Schwer ist.

Lemma 6.7: Falls L ∈ P und L ist NP -schwer, dann gilt P = NP

Satz 6.9: (Cook) SAT ist NP -Vollständig

Der Beweis hierfür liefert eine grobe Struktur für weitere Beweise dieser Art und ist auf Seiten 199 - 205 im Buch
(= Seiten 211 - 217 im PDF) zu finden. Jedoch sind diese Beweise sehr gross und deshalb nicht prüfungsrelevant.

Lemma 6.8: Falls L1 ≤p L2 und L1 ist NP -Schwer, so ist auch L2 NP -Schwer

Betrachten wir folgende Sprachen:

SAT = {Φ | Φ ist eine erfüllbare Formel in CNF}
CLIQUE = {(G, k) | G ist ein ungerichteter Graph, der eine k-clique enthält}

V C = {(G, k) | G ist ein ungerichteter Graph mit einer Kontenüberdeckung der Mächtigkeit höchstens k}

Wir erinnern uns daran, dass eine Kontenüberdeckung eines Graphen G = (V,E) jede Menge von Konten U ⊆ V
ist, so dass jede Kante aus E mindestens einen Endpunkt in U hat.

Lemma 6.9: SAT ≤p CLIQUE

Lemma 6.10: CLIQUE ≤p V C

Lemma 6.11: SAT ≤p 3SAT , wobei wir beim 3SAT -Problem bestimmen wollen, ob eine Formel in 3CNF (CNF,
aber alle Klauseln enthalten höchstens 3 Variabeln) erfüllbar ist.

NPO Definition 6.12

NPO ist die Klasse der Optimierungsprobleme, mit U = (ΣI ,ΣO, L,M, cost, goal) ∈ NPO, falls folgende
Bedingungen erfüllt sind:
(i) L ∈ P
(ii) Es existiert ein Polynom pU , so dass

(a) Für jedes x ∈ L und jedes y ∈ M(x), |y| ≤ pU (|x|)
(b) es existiert ein polynomieller Algorithmus A, der für jedes y ∈ Σ∗

O und jedes x ∈ L mit |y| ≤
pU (|x|) entscheidet, ob y ∈ M(x) oder nicht

(iii) Die Funktion cost kann man in polynomieller Zeit berechnen.

31. Dezember 2025 30 / 32

Theoretische Informatik Janis Hutz

Ein Optimierungsproblem U ist also in NPO, falls
1. man effizient überprüfen kann, ob ein gegebenes Wort ein Problemfall von U ist
2. die Grösse der Lösungen polynomiell in der Grösse des Problemfalls (Eingabe) und in polynomieller Zeit

verifizert werden kann, ob y eine zulässige Lösung für einen gegebenen Problemfall ist
3. man die Kosten der zulässigen Lösung effizient berechnen kann

MAX-SAT liegt in NPO

PO Definition 6.13

PO ist die Klasse von Optimierungsproblemen U = (ΣI ,ΣO, L,M, cost, goal), so dass
(i) U ∈ NPO
(ii) ∃ polynomieller Algorithmus A, so dass A(x) für jedes x ∈ L die optimale Lösung für x ist.

Schwellenwert-Sprache Definition 6.14

Die Schwellenwert-Sprache für U (ein Optimierungsproblem aus NPO) ist

LangU = {(x, a) ∈ L× (Σbool)
∗ | OptU (x) ≤ Nummer(a)}

mit OptU (x) die optimale Lösung, falls goal = Minimum, und

LangU = {(x, a) ∈ L× (Σbool)
∗ | OptU (x) ≤ Nummer(a)}

falls goal = Maximum
Wir sagen, dass U NP-schwer ist, falls LangU NP-schwer ist.

Lemma 6.12: Falls ein Optimierungsproblem U ∈ PO, dann LangU ∈ P

Satz 6.10: Sei U ∈ NPO. Falls U NP-schwer ist und P ̸= NP , dann U /∈ PO

Lemma 6.13: MAX-SAT ist NP-schwer.

Lemma 6.14: MAX-CL (Das Problem der maximalen Clique) ist NP-schwer

Um zu zeigen, dass solche Probleme U NP-schwer sind, reicht es zu zeigen, dass LangU NP-schwer ist, was wir mit
einer P -Reduktion machen können.

31. Dezember 2025 31 / 32

Theoretische Informatik Janis Hutz

7 Grammatiken

7.2 Das Konzept der Grammatiken

Mit Grammatiken haben wir eine alternative formale Beschreibung von Sprachen. Die Idee der Grammatiken ist
anstelle der Beschreibung der Eigenschaften einzelner Wörter oder von Maschinen / Automaten, die die Sprachen
erkennen, die Erzeugung der Sprachen zu beschreiben.

Grammatik Definition 7.1

1.

31. Dezember 2025 32 / 32

	Combinatorics
	Introduction
	Simple counting operations
	Basic rules of counting
	Multiplication rule
	Addition rule

	Factorial
	Operations

	Permutations
	Permutation with repetition

	Variations
	Variations with repetition

	Combinations
	Combination with repetition

	Binomial Expansion
	Overview

	Alphabete, Wörter, Sprachen und Darstellung von Problemen
	Alphabete, Wörter, Sprachen
	Algorithmische Probleme
	Kolmogorov-Komplexität

	Endliche Automaten
	Darstellung
	Simulationen
	Beweise der Nichtexistenz
	Nichtdeterminismus

	Turing-Maschinen
	Das Modell der Turingmaschine
	Mehrband-Turingmaschinen und Church'sche These
	Church'sche These

	Nichtdeterministische Turingmaschinen

	Berechenbarkeit
	Diagonalisierung
	Die Methode der Reduktion
	Der Satz von Rice
	Die Methode der Kolmogorov-Komplexität

	Komplexitätstheorie
	Komplexitätsmasse
	Komplexitätsklassen und die Klasse P
	Nichtdeterministische Komplexitätsmasse
	Die Klasse NP und Beweisverifikation
	NP-Vollständigkeit

	Grammatiken
	Das Konzept der Grammatiken

