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1 Introduction

This Cheat-Sheet does not serve as a replacement for solving exercises and getting familiar with the content. There is no guarantee
that the content is 100% accurate, so use at your own risk. If you discover any errors, please open an issue or fix the issue yourself
and then open a Pull Request here:

https://github.com/janishutz/eth-summaries

This Cheat-Sheet was designed with the HS2025 page limit of 10 A4 pages in mind. Thus, the whole Cheat-Sheet can be printed
full-sized, if you exclude the title page, contents and this page. You could also print it as two A5 pages per A4 page and also print

the Analysis I summary in the same manner, allowing you to bring both to the exam.

And yes, she did really miss an opportunity there with the quote. . . But she was also sick, so it’s not as unexpected
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2 Differential Equations

2.1 Introduction

Ex 2.1.1: f ′(x) = f(x) has only solution f(x) = aex for any a ∈ R; f ′ − a = 0 has only solution f(x) =
∫ x

x0
a(t) dt

T 2.1.2: Let F : R2 → R be a differential function of two variables. Let x0 ∈ R and y0 ∈ R2. The Ordinary Differential Equation
(ODE) y′ = F (x, y) has a unique solution f defined on a “largest” interval I that contains x0 such that y0 = f(x0)

2.2 Linear Differential Equations

An ODE is considered linear if and only if the ys are only scaled and not part of powers.

D 2.2.1: (Linear differential equation of order k) (order = highest derivative) y(k) + ak−1y
(k−1) + . . . + a1y

′ + a0y = b, with ai
and b functions in x. If b(x) = 0 ∀x, homogeneous, else inhomogeneous

T 2.2.2: For open I ⊆ R and k ≥ 1, for lin. ODE over I with continuous ai we have:
1. Set S of k× diff. sol. f : I → C(R) of the eq. is a complex (real) subspace of complex (real)-valued func. over I
2. dim(S) = k ∀x0 ∈ I and any (y0, . . . , yk−1) ∈ Ck, exists unique f ∈ S s.t. f(x0) = y0, f

′(x0) = y1, . . . , f
(k−1)(x0) = yk−1. If

ai real-valued, same applies, but C replaced by R.
3. Let b continuous on I. Exists solution f0 to inhom. lin. ODE and Sb is set of funct. f + f0 where f ∈ S

The solution space S is spanned by k functions, which thus form a basis of S. If inhomogeneous, S not vector space.

Finding solutions (in general)

(1) Find basis {f1, . . . , fk} for S0 for homogeneous equation (set b(x) = 0) (i.e. find homogeneous part, solve it)
(2) If inhomogeneous, find fp that solves the equation. The set of solutions is then Sb = {fh + fp | fh ∈ S0}.
(3) If there are initial conditions, find equations ∈ Sb which fulfill conditions using SLE (as always)

2.3 Linear differential equations of first order
P 2.3.1: Solution of y′ + ay = 0 is of form f(x) = ze−A(x) with A anti-derivative of a

Imhomogeneous equation

1. Plug all values into yp =
∫
b(x)eA(x) (A(x) in the exponent instead of −A(x) as in the homogeneous solution)

2. Solve and the final y(x) = yh + yp. For initial value problem, determine coefficient z

2.4 Linear differential equations with constant coefficients

The coefficients ai are constant functions of form ai(x) = k with k constant, where b(x) can be any function.

Homogeneous Equation

1. Find characteristic polynomial (of form λk + ak−1λ
k−1 + . . .+ a1λ+ a0 for order k lin. ODE with coefficients ai ∈ R).

2. Find the roots of polynomial. The solution space is given by {zj · xvj−1eγix | vj ∈ N, γi ∈ R} where vj is the multiplicity of
the root γi. For γi = α+βi ∈ C, we have z1 · eαx cos(βx), z2 · eαx sin(βx), representing the two complex conjugated solutions.

Inhomogeneous Equation

1. (Case 1) b(x) = cxdeαx, with special cases xd and eαx: fp = Q(x)eαx with Q a polynomial with deg(Q) ≤ j + d, where j is
multiplicity of root α (if P (α) ̸= 0, then j = 0) of characteristic polynomial

2. (Case 2) b(x) = cxd cos(αx), or b(x) = cxd sin(αx): fp = Q1(x) · cos(αx) +Q2(x9 · sin(αx)), where Qi(x) a polynomial with
deg(Qi) ≤ d+ j, where j is the multiplicity of root αi (if P (αi) ̸= 0, then j = 0) of characteristic polynomial

Other methods
• Change of variable Apply substitution method here, substituting for example for y′ = f(ax+ by+ c) u = ax+ by to make
the integral simpler. Mostly intuition-based (as is the case with integration by substitution)

• Separation of variables For equations of form y′ = a(y) · b(x) (NOTE: Not linear), we transform into y′

a(y) = b(x) and then

integrate by substituting y′(x)dx = dy, changing the variable of integration. Solution: A(y) = B(x) + c, with A =
∫

1
a and

B(x) =
∫
b(x). To get final solution, solve for the above equation for y.

3 Differential Calculus in Vector Space

3.2 Continuity

D 3.2.1: (Convergence in Rn) Let (xk)k∈N where xk ∈ Rn with xk = (xk,1, . . . , xk,n) and let y = (y1, . . . , yn) ∈ Rn. (xk)

converges to y as k → +∞ if ∀ε > 0 ∃N ≥ 1 s.t. ∀n ≥ N we have ||xk − y|| < ε L 3.2.2: (xk) converges to y as k → +∞ iff one
of following equiv. statements holds: (1) ∀1 ≤ i ≤ n, the sequence (xk,i) with xk,i ∈ R converges to yi (2) (||xk − y||) converges
to 0 as k → +∞ D 3.2.3: (Continuity) Let X ⊆ Rn and f : X → Rm. (1) Let x0 ∈ X. f continuous in Rn if ∀ε > 0 ∃δ > 0 s.t.

if x ∈ X satisfies ||x−x0|| < δ, then ||f(x)− f(x0)|| < ε (2) f continuous on X if continuous at x0 ∀x0 ∈ X P 3.2.4: Let X and
f as prev. Let x0 ∈ X. f continuous at x0 iff ∀(xk)k≥1 in X s.t. xk → x0 as k → +∞, (f(xk))k≥1 in Rm converges to f(x)

D 3.2.5: (Limit) Let X, f and x0 as prev. and y ∈ Rm. f has limit y as x → x0 with x ̸= x0 if ∀ε > 0 ∃δ > 0 s.t.

∀x ̸= x0 ∈ X, ||x− x0|| < δ we have ||f(x)− y|| < ε. We write lim x→x0
x̸=x0

f(x) = y R 3.2.6: Also possible without ass. that x0 ∈ X
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P 3.2.7: Let X, f , x0 and y as prev. We have lim x→x0
x̸=x0

f(x) = y iff ∀(xk) in X s.t. xk → x as k → +∞ and xk ̸= x0 (f(xk)) in

Rm converges to y P 3.2.9: Let X ⊆ Rn, y ⊆ Rm, p ∈ N and let f : X → Y and g : Y → Rp be cont. Then g ◦ f is continuous

Ex 3.2.10: (1) f1 : Rn → Rm1 and f2 : Rn → Rm2 continuous ⇒ f = (f1, f2) : Rn → Rm1+m2 is continuous (Cartesian product)
(2) Any linear map f : Rn → Rm is continuous. In particular, the identity map is continuous (3) If f1, . . . , fn continuous, then
f(x1, . . . , xn) = f1(x1) · . . . · fn(xn) is continuous (4) Polynomials in x1, . . . , xn are continuous (5) f1f2 is continuous if f1 and f2
are continuous and if f2(x) ̸= 0 ∀x ∈ X, then f1 ÷ f2 is continuous. (see Theorem 2.1.8 in Analysis I)
(6) If both f and g have limits, then lim

x→x0

(f(x)+g(x)) = lim
x→x0

f(x)+ lim
x→x0

g(x) and analogous for × (7) If f : R2 → R continuous,

then g(x) = f(x, y0) for y0 ∈ R is continuous. The converse is not true

D 3.2.11: (1) X ⊆ Rn is bounded if the set of ||x|| for x ∈ X is bounded in R (2) X ⊆ Rn is closed if ∀(xk) in X that converge
in Rn to some vector y ∈ Rn, we have y ∈ X (3) X ⊆ Rn is compact if it is bounded and closed

Ex 3.2.12: (1) ∅ and Rn are closed. (2) The open disc D = {x ∈ Rn : ||x− x0|| < r} for r > 0 and x0 ∈ Rn is bounded and not
closed. (3) The closed disc ∆ = {x ∈ Rn : ||x− x0|| ≤ r} is bounded and closed. In particular, a closed interval is a closed set. An
interval is compact if it is bounded (4) If X1 ⊆ Rn and X2 ⊆ Rm are bounded (also closed or compact), then so is X1×X2 ⊆ Rn+m

P 3.2.13: Let f : Rn → Rm be a continuous map. For any closed Y ⊆ Rm, the set f−1(Y ) = {x ∈ Rn : f(x) ∈ Y } ⊆ Rn is closed

Ex 3.2.14: The zero set Z = {x ∈ Rn : f(x) = 0} is closed in Rn because {0} ⊆ R is closed. More generally: for any r ≥ 0,
{x ∈ Rn : |f(x)| ≤ r} is f−1([−r, r]) and is closed, since [−r, r] is closed. Furthermore: {x ∈ R3 : ||x− x0|| = r} is closed

T 3.2.15: Let (X ̸= ∅) ⊆ Rn compact and f : X → R continuous. Then f bounded, has max and min, i.e. ∃x+, x− ∈ X s.t.
f(x+) = sup

x∈X
f(x) and f(x−) = inf

x∈X
f(x)

3.3 Partial derivatives

5


	Introduction
	Differential Equations
	Introduction
	Linear Differential Equations
	Linear differential equations of first order
	Linear differential equations with constant coefficients

	Differential Calculus in Vector Space
	Continuity
	Partial derivatives


