Yes, you're right! The next step is to diagonalize the matrix, which involves calculating the **eigenvalues** and **eigenvectors** of the transformation matrix \( T \). Once you do that, you can express the recurrence as a closed-form formula for \( a_n \). Let's break down the steps involved: ### Step 1: Find the eigenvalues of the matrix You want to find the eigenvalues \( \lambda \) of the matrix \( T \): \[ T = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} \] Eigenvalues are found by solving the characteristic equation: \[ \text{det}(T - \lambda I) = 0 \] where \( I \) is the identity matrix. First, compute the determinant of \( T - \lambda I \): \[ T - \lambda I = \begin{bmatrix} 2 - \lambda & 3 \\ 1 & -\lambda \end{bmatrix} \] Now, compute the determinant: \[ \text{det}(T - \lambda I) = (2 - \lambda)(-\lambda) - (3)(1) = -2\lambda + \lambda^2 - 3 \] Simplify the equation: \[ \lambda^2 - 2\lambda - 3 = 0 \] Now, solve this quadratic equation for \( \lambda \): \[ \lambda = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-3)}}{2(1)} = \frac{2 \pm \sqrt{4 + 12}}{2} = \frac{2 \pm \sqrt{16}}{2} = \frac{2 \pm 4}{2} \] Thus, the two eigenvalues are: \[ \lambda_1 = \frac{2 + 4}{2} = 3 \quad \text{and} \quad \lambda_2 = \frac{2 - 4}{2} = -1 \] ### Step 2: Find the eigenvectors Now that you have the eigenvalues \( \lambda_1 = 3 \) and \( \lambda_2 = -1 \), you need to find the corresponding eigenvectors. #### Eigenvector for \( \lambda_1 = 3 \): Solve \( (T - 3I) \mathbf{v} = 0 \), where \( \mathbf{v} \) is the eigenvector corresponding to \( \lambda_1 \). \[ T - 3I = \begin{bmatrix} 2 - 3 & 3 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix} \] Now solve the system: \[ \begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \] This gives the system: \[ - v_1 + 3 v_2 = 0 \] \[ v_1 - 3 v_2 = 0 \] Both equations are equivalent, so we have: \[ v_1 = 3 v_2 \] Thus, the eigenvector corresponding to \( \lambda_1 = 3 \) is: \[ \mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \] #### Eigenvector for \( \lambda_2 = -1 \): Solve \( (T + I) \mathbf{v} = 0 \), where \( \mathbf{v} \) is the eigenvector corresponding to \( \lambda_2 \). \[ T + I = \begin{bmatrix} 2 + 1 & 3 \\ 1 & 0 + 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 1 & 1 \end{bmatrix} \] Now solve the system: \[ \begin{bmatrix} 3 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \] This gives the system: \[ 3 v_1 + 3 v_2 = 0 \] \[ v_1 + v_2 = 0 \] From the second equation, we have \( v_1 = -v_2 \). So, the eigenvector corresponding to \( \lambda_2 = -1 \) is: \[ \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \] ### Step 3: Diagonalize the matrix Now that we have the eigenvalues and eigenvectors, we can diagonalize the matrix \( T \). Let \( P \) be the matrix formed by the eigenvectors as columns: \[ P = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \] The inverse of \( P \) is computed as follows (using the formula for the inverse of a 2x2 matrix): \[ P^{-1} = \frac{1}{\text{det}(P)} \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \] where \( \text{det}(P) = (3)(1) - (-1)(1) = 3 + 1 = 4 \), so: \[ P^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \] The diagonal matrix \( D \) will have the eigenvalues on the diagonal: \[ D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \] Thus, \( T \) can be written as: \[ T = P D P^{-1} \] ### Step 4: Express the closed-form solution Now, to compute \( a_n \), we can use the diagonalization of \( T \): \[ \mathbf{v}_n = T^{n-1} \mathbf{v}_1 = P D^{n-1} P^{-1} \mathbf{v}_1 \] The term \( D^{n-1} \) is easy to compute because \( D \) is diagonal: \[ D^{n-1} = \begin{bmatrix} 3^{n-1} & 0 \\ 0 & (-1)^{n-1} \end{bmatrix} \] Thus, the closed-form formula for \( a_n \) is obtained by applying the matrix multiplication: \[ \mathbf{v}_n = P \begin{bmatrix} 3^{n-1} & 0 \\ 0 & (-1)^{n-1} \end{bmatrix} P^{-1} \mathbf{v}_1 \] By carrying out these matrix multiplications (which can be done step by step), you'll arrive at a direct formula for \( a_n \), which is a linear combination of the terms involving powers of \( 3 \) and \( (-1)^{n-1} \). To rewrite the closed-form solution for \( a_n \) without using vectors or matrices, we need to compute the expression directly in terms of \( n \) and use the properties of the eigenvalues and eigenvectors. Let's break down the steps to arrive at a direct formula for \( a_n \). ### Step 1: General Formula Structure From the diagonalization of the matrix \( T \), we have: \[ \mathbf{v}_n = P D^{n-1} P^{-1} \mathbf{v}_1 \] where \( P = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \), \( D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \), and \( \mathbf{v}_1 = \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} \). After performing the matrix multiplication and solving for the values of \( a_n \), we can arrive at a **direct expression** for \( a_n \). ### Step 2: Compute \( a_n \) in Terms of Eigenvalues Since \( T^{n-1} \) is diagonalizable, we know that \( D^{n-1} \) is simply: \[ D^{n-1} = \begin{bmatrix} 3^{n-1} & 0 \\ 0 & (-1)^{n-1} \end{bmatrix} \] Now, we need to express the evolution of the state vector without matrices. The formula for \( a_n \) will be a combination of the eigenvalues \( \lambda_1 = 3 \) and \( \lambda_2 = -1 \), weighted by the initial values \( a_1 \) and \( a_0 \). To get the value of \( a_n \), we need to express the result of \( P^{-1} \mathbf{v}_1 \) in a way that we can compute directly. ### Step 3: Use the Initial Conditions The initial conditions give us the starting values of \( a_1 \) and \( a_0 \), and we use the fact that the matrix multiplication \( P D^{n-1} P^{-1} \mathbf{v}_1 \) essentially results in the following: \[ a_n = \alpha_1 3^{n-1} + \alpha_2 (-1)^{n-1} \] where \( \alpha_1 \) and \( \alpha_2 \) are constants determined by the initial conditions. Let's compute these coefficients using \( \mathbf{v}_1 = \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} \). ### Step 4: Solve for the Coefficients \( \alpha_1 \) and \( \alpha_2 \) We know that \( \mathbf{v}_n = P D^{n-1} P^{-1} \mathbf{v}_1 \), and we can solve this system by applying the initial conditions. For the recurrence \( a_n = 2a_{n-1} + 3a_{n-2} \), this gives the following two linear equations: 1. \( \alpha_1 3^0 + \alpha_2 (-1)^0 = a_0 \) (this gives the equation for \( a_0 \)) 2. \( \alpha_1 3^1 + \alpha_2 (-1)^1 = a_1 \) (this gives the equation for \( a_1 \)) These equations are: \[ \alpha_1 + \alpha_2 = a_0 \] \[ 3 \alpha_1 - \alpha_2 = a_1 \] ### Step 5: Solve the System of Equations We can now solve this system of two linear equations for \( \alpha_1 \) and \( \alpha_2 \). Add the two equations: \[ (\alpha_1 + \alpha_2) + (3 \alpha_1 - \alpha_2) = a_0 + a_1 \] \[ 4 \alpha_1 = a_0 + a_1 \] \[ \alpha_1 = \frac{a_0 + a_1}{4} \] Substitute \( \alpha_1 = \frac{a_0 + a_1}{4} \) into \( \alpha_1 + \alpha_2 = a_0 \): \[ \frac{a_0 + a_1}{4} + \alpha_2 = a_0 \] \[ \alpha_2 = a_0 - \frac{a_0 + a_1}{4} = \frac{3a_0 - a_1}{4} \] ### Step 6: Write the General Formula for \( a_n \) Now we substitute \( \alpha_1 \) and \( \alpha_2 \) back into the formula for \( a_n \): \[ a_n = \alpha_1 3^{n-1} + \alpha_2 (-1)^{n-1} \] \[ a_n = \frac{a_0 + a_1}{4} 3^{n-1} + \frac{3a_0 - a_1}{4} (-1)^{n-1} \] This is the closed-form formula for \( a_n \), which you can now use to compute \( a_n \) directly for any \( n \), given the initial conditions \( a_0 \) and \( a_1 \). ### Final Formula: \[ a_n = \frac{a_0 + a_1}{4} 3^{n-1} + \frac{3a_0 - a_1}{4} (-1)^{n-1} \] This formula allows you to compute \( a_n \) directly without needing to iterate through the recurrence!