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0 Introduction
This summary is designed to provide the optimal balance between depth and broadness for the exam. To print
this summary, print two pages per A4 paper (so A5 size), leaving out the first three pages (Title page, Table of
Contents, Introduction)

The introductory sections were kept as short as possible to allow for more space for the more difficult parts
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1 Vectors
SIMPLIFY RESULTS AS MUCH AS POSSIBLE (21÷ 12 = 7÷ 4)

D 1.5: Linear Combination:
∑n

i=1 λivi, scaled combination of n vectors vi.

D 1.8: It is called an Affine Combination if
∑n

i=1 λi = 1, a Conic Combination if λi ≥ 0 for i = 1, 2, . . . , n
and a Convex Combination if it is affine and conic. Linear combination as a matrix: Ax = b, where the matrix’s
columns are the vectors vi and x’s components are λi D 1.10: Scalar-Product: Multiply component wise, add
all components together. Results in number, alternatively v⊤w (S2.2.3), or

∑n
i=1 viwi;

Figure 1.1: Different kinds of combinations of two vectors

Dot-Free Notation: Similar to summation notation,
we can use it to define e.g. vector addition: [vi]

m
i=1 +

[wi]
m
i=1 := [vi + wi]

m
i=1; D 1.12: Euclidean Norm:

||v|| =
√
v · v =

√
v⊤v; Squared norm: v⊤v = ||v||2

Unit-Vector: ||v|| = 1, obtaining: v
||v|| = 1

||v|| · v;
L 1.13: Cauchy-Schwarz inequality: |v ·w| ≤ ||v|| ·
||w|| for any vectors v, w ∈ Rm. Equality if vλ = w or
wλ = v; D 1.15: Angles: cos(α) = v·w

||v||·||w|| . If v ⊥
w ∈ Rm, then v·w = 0; L 1.17: Triangle inequality:
||v +w|| ≤ ||v||+ ||w||; Hyperplane: {v ∈ Rn : v · d =

0}, d ∈ Rn, d ̸= 0; L 1.20: Linear independence: Vectors are linearly independent if (a) no vector is a linear
combination of the others or (b) there are no λi, such that

∑n
i=1 λivi = 0. For matrices: ¬∃x ̸= 0 : Ax = 0 (no

column vector is a linear combination of another). D 1.23: Span of vectors: Set of all linear combinations of a
vector; Standard Basis vector: Vector with just one component being 1, all others 0;

2 Matrices
Size: m × n: m rows, n cols (Zeilen zuerst, Spalten später); D 2.3: Addition: A + B := [aij + bij ]

m n
i=1,j=1;

Scalar-multiple: λA := [λaij ]
m n
i=1,j=1; D 2.4: Square matrices: Identity matrix: quadratic matrix, diagonals

1, A = AI = IA; Diagonal matrix: aij = 0 if i ̸= j; Triangle matrix: lower if aij = 0 for i < j, upper else;
Symmetric matrix: aij = aji∀i, j, A⊤ = A;

D 2.5: Matrix-Vector-Product: Rows of matrix (m × n) with vector (n elements), i.e. u1 =
∑m

i=1 a1,i · vi,
Ix = x; Trace: Sum of the diagonal entries;

D 2.9: Column Space: {Ax : x ∈ Rn}, i.e. the span of the column vectors; D 2.10: Rank: rank(A) :=

the number of linearly independent column vectors; D 2.12: Transpose: Mirror the matrix along its diagonal.
L 2.20: (AB)⊤ = B⊤A⊤, (A⊤)⊤ = A (O2.12); D 2.14: Row Space: R(A) = C(A⊤);

D 2.17: Matrix Multiplication: A × B = C, cij =
∑n

k=1 ai,kbk,j . Dimension restrictions: A is m × n, B is
n × p, result is m × p. For each entry, multiply the i-th row of A with the j-th column of B. Not commutative,
but associative & distributive; L 2.22: Outer product: rank(A) = 1 ⇔ ∃ non-zero vectors v ∈ Rm, w ∈ Rn, s.t.
A is outer product, i.e. A = vw⊤, thus rank(vw⊤) = 1

Rotation matrix: R(ξ) =

[
cos(ξ) − sin(ξ)
sin(ξ) cos(ξ)

]
;

T 2.24: CR-Decomposition: A = CR. Get R from (reduced) row echelon form, C is the columns from A where
there is a pivot in R. C ∈ Rm×r, R ∈ Rr×n (in RREF), r = rank(A); Row Echelon Form: To find REF, try to

create pivots: R0 =

1 0 2 3
0 1 2 1
0 0 0 0

, use Gauss-Jordan-Elimination to find it (row-transformations); Reduced REF:

RREF is simply REF without any zero rows (i.e. in R0, R (in RREF) would be R0 without the last row).

D 2.26: Transformations: A matrix can be understood as a re-mapping of the unit vectors, scaling and re-
orienting them. Each column vector can then be understood as the new unit vector ei, hence essentially adding
another coordinate system to the original one, which is moved and rotated a certain way. The rotation matrix under
2 is such an example. To prove that T is linear transformation, use: T (x+ y) = T (x) + T (y) and T (λx) = λT (x).
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Then insert the linear transformation given by the task and replace x (or whatever variable there is) with x+ y or
λx. Ax =

∑n
i=1(xivi), where vi is the i-th column of A; D 2.26: Kernel: Ker(T ) := {x ∈ Rn : T (x) = 0} ⊆ Rn;

Image: Im(t) := {T (x) : x ∈ Rn} ⊆ Rm;

3 Solving Linear Equations
Put the system of linear equation’s factors (i.e. for a linear equation ax+ by+ cz = u, we would put a, b, c into the
matrix and u into the vector) into a matrix, where each row is an equation and the result into a vector b. Then,
we solve Ax = b by Gauss elimination.

Gauss elimination: Transform matrix A into upper triangle matrix by performing row transformations (adding,
adding scalar multiples, multiplying by scalar) on it. All operations performed on A have to also be performed on
b. Typically, write down both as a matrix with a dividing line between A and b. Then solve by back-substitution.
Gauss elimination succeeds iff A ∈ Rm×m and A’s columns are linearly independent. (Runtime: O

(
m3

)
)

3.1 Inverse
D 3.8: Inverse: Perform Gauss-elimination on a matrix of form

[
A | I

]
until we get

[
I | A−1

]
. A is invertible, iff

det(A) ̸= 0. Alternative: MM−1 = M−1M = I. M has to be square. 0 matrix has no inverse

Inverse for specific sizes: 1× 1 M =
[
a
]
,M−1 =

[
1
a

]
(if a ̸= 0); 2× 2 M =

[
a b
c d

]
M−1 = 1

det(M)

[
d −b
−c a

]
;

L 3.10: Inverse product: (AB)−1 = B−1A−1; L 3.11: (A−1)⊤ = (A⊤)−1; T 3.12: Inverse theorem: A is
invertible ⇔ Ax = b has a unique solution ∀b ∈ Rn ⇔ the columns of A are independent. Diagonal matrix: each
element reciprocal. (Might require proof)

3.2 LU-Decomposition

T 3.14: LU-Decomposition: A = LU . U upper triangle, result of Gauss elimination, L lower triangle, (E1 ×
E2× . . .×En)

−1. Transformation matrices E (E ·A = A1): transformation is a single entry in lower triangle, where
the i and j are the two rows involved and the value of eij is the operation performed on the two. L−1 for size 3:
Diagonal, L−1

1,2 = −L1,2, L−1
2,3 = −L2,3, L−1

1,3 = −L1,3. When multiplying up to three different ones, copies values
to multiplied matrix. If it is impossible to decompose A into LU without row exchanges, we get PA = LU , where
P is a permutation matrix (indicating which rows have been swapped). Time complexity is improved significantly
with this O

(
m2

)
.

D 3.15: Permutations: bijective function π on matrix; Reorders the input structure (i.e. vector or matrix);

D 3.16: Permutation matrix: pij =

{
1 if j = π(i)

0 else
L 3.17: P−1 = P⊤.

T 3.19: LUP-Decomposition: PA = LU , where U = P × LA. Pj = I if no row swaps are performed at
each step and P = Pm × Pm−1 × . . . × P1. Rewriting this as A = P⊤LU , we can simply solve an SLE using
LUP-Decomposition

3.3 Gauss-Jordan-Elimination
Gauss-Jordan-Elimination: Generalization of Gauss elimination to m × n matrices, still works similarly to
Gauss elimination. We aim to find REF or RREF (see 2). To describe, we say REF(j1, j2, . . . , jr) or equivalently
with RREF, where jr is the r-th pivot.

The solution is then in a vector, whose components are either 0 or the r-th component of b. Example:


0 1 0 0 2 0
0 0 1 0 3 0
0 0 0 1 2 0
0 0 0 0 0 1
0 0 0 0 0 0

 ·


0
b1
b2
b3
0
b4

 =


b1
b2
b3
b4
0


If the green marked entry in b were not to be 0, then the SLE would not have a solution.

CR-Decomposition: see 2 for exaplanation. T 3.25: is described there
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4 The four fundamental subspaces
4.1 Vector space
D 4.1: Vector space: Abstract mathematical concept, elements are vectors; Two operations (⊕/+ and ⊙/·

(depending on notation)); Triple (V,+, ·), V is a set of vectors, satisfying the vector space axioms commutativity,
associativity, existance of zero and negative vectors and identity element (1), compatibility of ⊕ with · (in R),
distributivity over ⊕ (λ(v + w) = λv + λw) and distributivity over + (in R) ((λ+ µ)v = λv + µv).

Defining a vector space: We need to define addition and scalar multiplication for the elements in a canonical
way (= according to accepted standard)

D 4.9: Subspaces: Two subset axioms, v+w ∈ U , λv ∈ U , λ ∈ R (closed under addition & scalar multiplcation),
where U ⊆ V , L 4.10: at least always contains the zero vector (0 ∈ U); C(A) = {Ax : x ∈ Rn} is a subspace of
Rm, if A ∈ Rm×n; L 4.13: U is also a vector space with the same + and · as V ; U ∩W is subspace, U ∪W not;

Prove of vector space / subspace : Use the axioms and prove each and every one of them, then, if that is

successful, conclude that is subspace / vector space. D 4.16: Span(G): Set of all linear combinations of G,
G ⊆ V . Set is linearly independent if no vector v ∈ G is a linear combination of G\{v}. Vectors are not linearly
independent if non-trivial linear combination of them is 0-vector

D 4.17: Basis: Set of vectors that are linearly independent and span B (number equals dimension of space),
subspace of V . For Rm, the set of unit vectors is a basis. For a matrix, all linearly independent columns form a
basis of the column space C(A). Every set of m linearly independent vectors is a basis of Rm. Calculating: If we
have a matrix with full column / row rank, then the basis are all column / row vectors.

L 4.20: Steiniz exchange lemma: Let F ⊆ V be a finite set of linearly independent vectors, G ⊆ V a finite
set of vectors with Span(G) = V . Then: |F | ≤ |G|, ∃ subset E ⊆ G of size |G| − |F | s.t. Span(F ∪ E) = V .
T 4.21: B,B′ ⊆ V , finite bases of V , then |B| = |B′|; D 4.22: Finitely generated vector space: ∃G ⊆ V

with Span(G) = V . T 4.23: If V finitely generated, then V has a basis B ⊆ G.

D 4.24: Dimension: V finitely generated, then d = dim(V ) is the size of any basis B of V . L 4.25: Let F ⊆ V
be a set of d linearly independent vectors, then F is basis of V . Let G be a set of d vectors with Span(G) = V ,
then G is a basis of V

4.2 Computing the fundamental subspaces
Let M be an invertible m×m matrix.

Column Space: Set of all linearly indep. columns (C(A) = {Ax : x ∈ Rn} ⊆ Rm. T 4.26: The number of pivots
in REF form of matrix A is the rank(A) = dim(C(A)). The column vectors at the pivots form the basis of A;

Row Space: R(A) = C(A⊤) ⊆ Rn. L 4.28: R(A) = R(MA). T 4.29: dim(R(A)) = rank(A) T 4.30: rank(A) =
rank(A⊤); The rows in RREF form a basis of A;

D 4.32: Null Space: N(A) = Ker(A) = {x ∈ Rn : Ax = 0}. L 4.33: N(A) ⊆ Rn. L 4.34: N(A) = N(MA).
Can be easily obtained from RREF by setting b = 0 in Rx = b. If there are any free variables, choose any real (or
complex) number satisfying the condition. To find basis, we can rewrite and apply below Lemma

Rx = 0 ⇔ I · x(I) +Q · x(Q) = 0, e.g. for R =

[
1 2 0 3
0 0 1 −2

]
to I

[
x1

x3

]
+

[
2 3
0 −2

] [
x2

x4

]
= 0 ⇔ x(I) = −Q · x(Q)

We may then freely choose the free variables x(Q), then find basic variables x(I) using the above, typically choose
e1, . . . , ek for x(Q) to get the k-the vec of basis (k = num cols of Q). Finally combine the vectors into one.

L 4.35: N(R) = N(A). The vectors obtained from the above procedure form a basis of N(R)

T 4.36: dim(N(A)) = n− rank(A);

D 4.37: Left Nullspace: LN(A) := N(A⊤). L 4.38: LN(A) ⊆ Rm. T 4.39: dim(LN(A)) = m− rank(A)

D 4.40: Solution space: Set of all solutions of Ax = b, thus Sol(A, b) := {x ∈ Rn : Ax = b} ⊆ Rn. T 4.41: Let
s be some solution of Ax = b, then Sol(A, b) = {s + x : x ∈ N(A)}. This means, we can also compute Sol(A, b)
despite it not being a subspace. To describe all solutions, we simply need some solutions.

L 4.42: Let A ∈ Rm×n. If rank(A) = m, Ax = b has a solution for every b ∈ Rm
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5 Orthogonality

5.1 Definition
D 5.1: Orthogonality: Two vectors are orthogonal, if the their scalar product is 0, i.e. v⊤w =

∑n
i=1 viwi = 0.

L 5.2: Two subspaces are orthogonal to each other if for each v ∈ V and w ∈ W , v and w are orthogonal.
L 5.3: As a consequence, if that is true, all these vectors are linearly independent. C 5.4: V ∩W = {0} and their

union is V ∪W = {λv+µw : λ, µ ∈ R, v ∈ V,w ∈ W}. If dim(V ) = k and dim(W ) = l, then dim(V ∪W ) = k+l ≤ n,
for V,W ⊆ Rn;

D 5.5: Orthogonal complement: V ⊥ := {w ∈ Rn : w⊤v = 0,∀v ∈ V }. T 5.6: N(A) = C(A⊤)⊥ = R(A)⊥

and C(A⊤) = N(A)⊥. T 5.7: The following is equivalent for orthogonal subspaces of Rn: W = V ⊥ ⇔ dim(V ) +

dim(W ) = n ⇔ u = v + w∀u ∈ Rn with unique vectors v ∈ V,w ∈ W . L 5.8: V = (V ⊥)⊥. C 5.9: N(A) =

C(A⊤)⊥ and C(A⊤) = N(A)⊥ T 5.10: {x ∈ Rn : Ax = b} = x1 + N(A), where x1 ∈ R(A) such that Ax1 = b

C 5.11: N(A) = N(A⊤A) and C(A⊤) = C(A⊤A)

5.2 Projections

D 5.1: Projection: Projecting a vector onto a subspace is done with projS(b) = argminp∈S ||b − p|| and yields

the closest point (or vector) in the new subspace S L 5.2: 1-Dimensional: projS(b) =
aa⊤

a⊤a
b, where we project

b ∈ Rm on S = {λa : λ ∈ R} = C(a) where a ∈ Rm\{0}. We note that (b − projS(b)) ⊥ projS(b), i.e. the
“error-vector” is perpendicular to a.

L 5.3: General case: PREFER 5.2.6! S is a subspace in Rm with dim(S) = n. Let a1, a2, . . . , an be a basis
of S, i.e. S = Span(a1, . . . , an) = C(A) = {Aλ : λ ∈ Rn} where A is a matrix with column vectors a1, . . . , an.
We project b ∈ Rm onto the subspace S, then projS(b) = Ax̂, where x̂ satisfies A⊤Ax̂ = A⊤b. L 5.4: A⊤A is
invertible ⇔ A has linearly independent columns ⇒ C 5.5: A⊤A is square, invertible and symmetric.

T 5.6: Projection in terms of projection matrix P = A(A⊤A)−1A⊤: projS(b) = Pb, A is the matrix of task

5.3 Least squares, Linear regression
Least squares: Approximate a solution to System of equations. Concept min

x̂∈Rn
||Ax̂ − b||2. Using the normal

equations, we get A⊤Ax̂ = A⊤b. Using the definition of x̂ = (A⊤A)−1A⊤b to solve the least squares problem
borders insanity, so use A⊤Ax̂ = A⊤b to solve.

Least squares Usage

(i) Calculate M = A⊤A (matrix)
(ii) Calculate b′ = A⊤b (vector)
(iii) Solve resulting System of Equations Mx̂ = b′ normally

Linear regression: Application of least squares problem, problem is to find A and b such that we can solve the

system. We define a matrix A =

1 t1
...

...
1 tn

 and a result vector b =

b1...
bn

 where n is the total number of data points

and ti is the slope of the i-th function, where bi is its output. The first column is all 1s because the constant
element has no scalar, for obvious reasons. This comes from the following concept: f(t) = α0 + α1t, so if the first
data point is (1, 2), we get α+ α1 · 1 = 2, which we will then transform into a SLE with other equations.

L 5.3: The columns in A are linearly dependent ⇔ ti = tj ∀i ̸= j

5.4 Gram Schmidt
D 5.1: Orthonormal vector: Orthogonal and norm is 1. Alternatively: q⊤i qj = δij , Kronecker delta δij ={
0 if i ̸= j

1 if i = j
; D 5.4: Orthogonal matrix: If Q⊤Q = I, QQ⊤ = I (if Q square), so Q−1 = Q⊤, columns of Q
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form orthonormal basis for Rn. Ex 5.5: Rotation & permutation matrices. P 5.7: Orthogonal matrices preserve
norm and inner product of vectors. If Q ∈ Rn×n, then ∀x, y ∈ Rn, ||Qx|| = ||x|| and (Qx)⊤(Qy) = x⊤y; Product
of any two orthogonal matrices is orthogonal; For Q orthogonal, we want a · b+ c · d = 0

Projections with orthonormal bases: Much simpler, because A⊤A = I if A has orthonormal columns.
P 5.8: The least squares solution to Qx = b, where Q is the matrix whose columns are the vectors forming

the orthonormal base of S ⊆ Rm, is given by x̂ = Q⊤b and the projection matrix is given by QQ⊤;

D 5.10: Gram-Schmidt: Used to construct orthonormal bases. We have linearly independent vectors a1, . . . , an
that span a subspace S, then Gram-Schmidt constructs q1, . . . , qn by setting q1 = a1

||a1|| and for k = 2, . . . , n,

q′k = ak −
∑k−1

i=1 (a
⊤
k qi)qi then setting qk =

q′k
||q′k||

;

D 5.12: QR-Decomposition: A = QR, where R = Q⊤A and Q is obtained from the Gram-Schmidt process,
it is made up of the vectors qi as columns. L 5.13: R is upper triangle and invertible. QQ⊤A = A, meaning
A = QR is well-defined. F 5.14: This greatly simplifies calculations involving projections and least squares, since
C(A) = C(Q), so projC(A)(b) = QQ⊤b and for least squares, we have Rx̂ = Q⊤b. This can efficiently be solved
because R is triangular using back-substitution.

5.5 Pseudoinverse
Pseudoinverse: A+ = (A⊤A)−1A⊤; rank(A) = rank(A+)

Let A ∈ Rm×n; D 5.1: Full column rank: rank(A) = n. A+ = (A⊤A)−1A⊤. P 5.2: A full column rank,
A+A = In (left inverse); D 5.3: Full row rank: rank(A) = m. A+ = AA⊤(AA⊤)−1. L 5.4: A full row rank,
AA+ = Im; L 5.5: For any matrix A and vector b ∈ C(A), the unique solution for the least squares problem is
given by vector x̂ ∈ C(A⊤) and satisfies Ax̂ = b. P 5.6: For a full row rank matrix A, the solution is given by
x̂ = A+b with Ax̂ = b; D 5.7: General case: A+ = R+C+ = R⊤(C⊤AR⊤)−1C⊤. We can use any full-rank
factorization, not just CR, i.e. P 5.10: let S ∈ Rm×r and T ∈ Rr×n s.t. A = ST , then A+ = T+S+.

T 5.12: Properties of Pseudoinverse: AA+A = A, A+AA+ = A+, AA+ is symmetric, it is the projection
matrix for projections on C(A). A+A is symmetric, and is the projection matrix on C(A⊤). (A⊤)+ = (A+)⊤;

5.6 Farka’s Lemma & Projections of sets

T 5.8: Farka’s Lemma Let A ∈ Qm×m, b ∈ Qm. There either:

• exists a vector x ∈ Rn such that Ax ≤ b or

• there exists a vector y ∈ Rm such that y ≥ 0, y⊤A = 0 and y⊤b < 0
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6 Determinant

Determinant Definition

The determinant can be understood as a number that corresponds to how much the associated linear
transformation inflates space, it corresponds to the area of the unit cube, which can be scaled by a matrix
operation.

2× 2 matrices Let A =

[
a b
c d

]
, then det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

n× n matrices Can be solved using the Triangle rule, Cramer’s Rule, Co-Factors or LU-Decomposition (det(A) =
det(LU) = det(L) · det(U), whereas L and U are triangle matrices, so det(U) is just the product of all entries on
the main diagonal, see properties below)

Determinant Properties

(I) P 6.9: Matrix T ∈ Rn×n is triangular, det(T ) =
∏n

k=1 Tkk, in particular, det(I) = 1

(II) T 6.10: Matrix A ∈ Rn×n then det(A) = det(A⊤)

(III) P 6.11: Matrix Q ∈ Rn×n orthogonal ⇔ det(Q) = 1 or det(Q) = −1

(IV) P 6.12: Matrix A ∈ Rn×n invertible ⇔ det(A) ̸= 0

(V) P 6.13: Matrices A,B ∈ Rn×n, then det(AB) = det(A) · det(B), in particular, det(An) = det(A)n

(VI) P 6.14: Matrix A ∈ Rn×n, then det(A−1) =
1

det(A)
(VII) det(2A) = 2n det(A)

Ex 6.15: Triangle rule: Number of permutations: n!. Use diagonals to calculate:

det(A) =

A11

A22

A33

+

 A13

A21

A23

+

 A12

A23

A31

 and A =

A11 A12 A13

A21 A22 A23

A31 A32 A33


and the same the oposite direction (instead of top left to bottom right, top right to bottom left) and subtract that.
Don’t forget brackets. Written out, we have

det(A) = A11A22A33 +A13A21A23 +A12A23A31 − (A13A22A31 +A12A21A33 +A11A23A32)

D 6.16: Co-Factors: Cij = (−1)i+j det(Aij), where A is the (n − 1) × (n − 1) matrix that is obtained when
removing the i-th row and j-th column from A. Or more simple: In a 3× 3 matrix, the co-factor are the entries on
its first row, Aij the matrix obtained from A without the first row and column j (i.e. the one on which the current

co-factor is) P 6.17: Using this, det(A) =

n∑
j=1

AijCij .

P 6.18: What we had found as the inverse for A ∈ R2×2 (see 3.1) has a form in Rn×n, where A−1 = 1
det(A)C

⊤,
where C is an n× n matrix containing the co-factors of A as entries. This can be rewritten as AC⊤ = det(A)I;

P 6.20: Cramer’s Rule: The idea here is that we solve a linear system of type Ax = b, then using that the
detminant is multiplicative, we get det(A)x1 = det(B1), where B is the matrix obtained from A by replacing the

first column with b. So, the solution x ∈ Rn for Ax = b is given by xj =
det(Bj)

det(A)
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7 Eigenvalues and Eigenvectors

7.0 Complex numbers
Operations: i2 = −1 (NOT i =

√
−1 bc. otherwise 1 = −1). Complex number zj = aj+bji. Addition, Subtraction

(a1 ± a2) + (b1 ± b2)i. Multiplication (a1a2 − b1b2) + (a1b2 + a2b1)i. Division
a1b1 + a2b2
b21 + b22

+
a2b1 − a1b2

b21b
2
2

i;

Parts: R(a + bi) := a (Real part), I(a + bi) := b (imaginary part), |z| :=
√
a2 + b2 (modulus), a+ bi := a − bi

(complex conjugate); F 7.3: Polar coordinates: a+ bi (normal form), r ·eiϕ (polar form). Transformation polar
→ normal: r · cos(ϕ) + r · sin(ϕ)i. Transformation normal → polar: |z| · ei·arcsin(

b
|z| ); Conjugate Transpose:

A∗ = A
⊤

(also knows as hermitian transpose);

T 7.4: Fundamental Theorem of Algebra: Any polynomial of degree n ≥ 1 has a zero λ ∈ C s.t. P (λ) = 0,
precisely, n zeros (=roots). The number of times a certain λ appears is called the algebraic multiplicity.

Complex valued matrices and vectors: Works very similar to with real numbers, but the transpose has to be
replaced by the conjugate transpose.

7.1 Eigenvalues & Eigenvectors

Eigenvalues & Eigenvectors Definition 7.1

We call λ ∈ C an eigenvalue of A ∈ Rn×n and v ∈ Cn\{0} an eigenvector of A if Av = λv. The two are
then called an eigenvalue-eigenvector pair and if λ ∈ R, then it is a real eigenvalue and we have a real
eigenvalue-eigenvector pair. λ2

1, . . . , λ
2
n eigenvalues of A2 for λ1, . . . , λn eigenvalues of A

To find an Eigenvalue and Eigenvector of a matrix M ∈ Rn×n, simply calculate the eigenvalues first, using the
zeros of the polynomial obtained from calculating det(M − λI), which is obtained from P 7.2: det(M − λI) = 0.
This means, we simply need to calculate the determinant of M − λI, which is fairly straight forward. We can then
try to find eigenvectors v such that Mv = λv, or in other words a non-zero element of N(M −λI)\{0}, i.e. the null
space of M − λI. This means we try to find a solution such that 0 = (M − λI)v, where v is not the zero vector.

P 7.3: Characteristic polynomial: (−1)n det(A−zI) = det(zI−A) = (z−λ1)(z−λ2) . . . (z−λn). The coefficient
of the λn term is (−1)n. Usually determined from det(M − λI). T 7.4: From this, the fundamental theorem of
algebra implies that every matrix has an eigenvalue λ ∈ C.

Eigenvalues & Eigenvectors Properties

(I) P 7.7: λ, v eigenvalue-eigenvector pair of matrix A, then λk and v are eigenvalue-eigenvector pair of
matrix Ak for k ≥ 1

(II) P 7.8: λ, v eigenvalue-eigenvector pair of matrix A, then 1
λ and v are eigenvalue-eigenvector pair of

matrix A−1

(III) P 7.9: If λ1, . . . , λk are all distinct, the corresponding eigenvectors v1, . . . , vk are all linearly inde-
pendent.

(IV) T 7.10: If matrix A ∈ Rn×n has n distinct eigenvalues, then there is a basis of Rn, v1, . . . , vn made
up of eigenvectors of A.

(V) P 7.11: The eigenvalues of A are the same as for A⊤ (but not the eigenvectors)
(VI) D 7.12: The trace (see 2) P 7.13: Tr(A) =

∑n
i=1 λi and det(A) =

∏n
i=1 λi, when the eigenvalues

λ1, . . . , λn are the n eigenvalues of A ∈ Rn×n as they show up in the characteristic polynomial.
(VII) L 7.15: We have for matrices A,B,C ∈ Rn×n:

(i) Tr(AB) = Tr(BA)
(ii) Tr(ABC) = Tr(BCA) = Tr(CAB)

(VIII) P 7.18: If λ ∈ C is an eigenvalue of Q ∈ Rn×n (Q orthogonal), then |λ| = 1

(IX) D 7.21: A matrix has a complete set of real eigenvectors, if we can build a basis of Rn from them.
(X) P 7.22: A projection matrix on the subspace U ⊆ Rn has eigenvalues 0 and 1 and a complete set of

real eigenvectors.
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Properties

(XI) D 7.23: geometric multiplicity is the dimension of N(A− λI)

(XII) Ex 7.24: For a diagonal matrix D, the eigenvalues of D are the diagonal entries. The canonical
basis e1, . . . , en is a set of eigenvectors of D.

(XIII) AB and BA have the same eigenvalues (follows from P7.1.12 and L7.1.14)

7.2 Change of basis
What impress uses to project the original coordinate system onto the camera’s coordinate system. We have a linear
transformation L : Rn → Rm (given by e.g. x ∈ Rn → Ax ∈ Rm), for which we want to find a matrix B that maps
it from a basis u1, . . . , un to another one v1, . . . , vn. Now that B helps us map a vector α to a vector β, which has
the different basis. We now define U as the matrix whose columns are the first basis and V as the matrix whose
columns are the second basis. Now, if L(x) = V β and x = Uα, so β = V −1AUα, now B = V −1AU .

7.3 Diagonalization

T 7.1: A = V ΛV −1, where V ’s columns are its eigenvectors and Λ is a diagonal matrix with Λii = λi and all
other entries 0. A ∈ Rn×n and has to have a complet set of real eigenvectors.

D 7.2: Diagonalizable matrix: A matrix is diagonalizable if there exists an invertible matrix V such that
V −1AV = Λ where Λ is a diagonal matrix.

D 7.3: Similar matrix: Two matrices are similar if there exists and invertible matrix S such that B = S−1AS.
P 7.4: Similar matrices have the same eigenvalues.

7.4 Spectral Theorem and symmetric matrices

T 7.1: Spectral theorem: Any symmetric matrix A ∈ Rn×n has n real eigenvalues and an orthonormal basis
made of eigenvectors of A. C 7.2: There also exists an orthogonal matrix V ∈ Rn×n (whose columns are the
eigenvectors of A) such that A = V ΛV ⊤, where Λ ∈ Rn×n is diagonal with the diagonal entries being the eigenvalues
of A and V ⊤V = I. This decomposition is called the eigendecomposition . C 7.5: rank(A) is the number of
non-zero eigenvalues (including/counting repetitions repetitions).

For general n× n matrices, the rank is n− dim(N(M)), i.e. the geometric multiplicity of λ = 0.

P 7.7: A ∈ Rn×n, v1, . . . , vn orthonormal basis of of eigenvectors of A and λ1, . . . , λn the associated eigenvectors,

then A =

n∑
k=1

λiviv
⊤
i λ ∈ R if A is real symmetric and λ is an eigenvalue of A. C 7.9: Every real symmetric

matrix has a real eigenvalue λ;

P 7.11: Rayleigh Quotient: Let A ∈ Rn×n be symmetric, then R(x) =
x⊤Ax

x⊤x
. The minimum of it is at

R(vmax) = λmax and the minimum correspondingly at the smallest eigenvalue;

D 7.12: Positive Semidefinite (PSD): all eigenvalues λi ≥ 0 for all eigenvalues of A ∈ Rn×n (symmetric),
Positive Definite (PD): all eigenvalues λi > 0 for all eigenvalues of A ∈ Rn×n (symmetric);

F 7.14: If A and B PSD or PD, then also A+B; A is PSD ⇔ x⊤Ax ≥ 0 for all x ∈ Rn;

D 7.15: Gram Matrix: Gij = v⊤i vj , where v1, . . . , vn ∈ Rm. We have i, j ≤ n, because G ∈ Rn×n. If
V ∈ Rm×n’s columns are the n vectors, then G = V ⊤V . Abuse of notation: AA⊤ is also sometimes called a gram

matrix of A. If a1, . . . , an ∈ Rm are the columns of A, then AA⊤ is an m × m matrix and AA⊤ =

n∑
i=1

aia
⊤
i .

P 7.17: The non-zero eigenvalues of A⊤A ∈ Rn×n and AA⊤ ∈ Rm×m are the same for a matrix A ∈ Rm×n.

P 7.18: Cholesky decomposition: Every symmetric positive semidefinite matrix M is a gram matrix of an
upper triangular matrix C, so M = C⊤C (Cholesky decomposition).
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8 Singular Value Decomposition

8.1 Calculating

D 8.1: SVD Normal form: A = UΣV ⊤; Compact Form: If A has rank r, we can write SVD as A = UrΣrV
⊤
r

SVD Usage

We can use remark 8.1.3 from the lecture notes to calculate the SVD. One of the two will be beneficial if
m ̸= n for A (smaller dimension = easier determinant):

AA⊤ = U(ΣΣ⊤)U⊤ and A⊤A = V (Σ⊤Σ)V ⊤

to more easily calculate the SVD, because the left signular vectors of A (cols of U) are the eigenvectors of
AA⊤ and analogously for the right hand side, the eigenvectors of A⊤A. The singular values are the square-
root of the eigenvalues of AA⊤ and A⊤A respectively, which then are put (sorted in ascending order) into
Σ (diagonal matrix) and if m > n(for A ∈ Rm×n, (or n > m if using A⊤A) the not determined eigenvalues
are to filled with 0
=⇒ Important: Take √

. . .!

8.2 Show that SVD is valid
To show that a given V , U and Σ form an SVD, we need to show that V and U are orthogonal (calculate V ⊤V

and U⊤U and check if it is the identitiy), then check if A = UΣT⊤. Quick & dirty: Σ should only contain
entries ≥ 0, due to square root, check that U, V orthogonal & “normalized” (= common factors extracted) and
verify dimensions of the matrices (s.t. matrix multiplication works)

SVD of A−1: V Σ−1U⊤. Requires proof: AA−1 = I = A⊤A
·⇔ AV Σ−1U⊤ = UΣV ⊤V Σ−1U⊤ = I

SVD Properties

1. Theorem 8.6: Every matrix A ∈ Rm×n has an SVD

2. D 8.2: Frobenius norm : ||A||F =

√√√√ m∑
i=1

n∑
j=1

A2
ij

3. D 8.2: Spectral / Operator norm : ||A||op = max
x∈Rn

||Ax|| s.t. ||x|| = 1

4. Special cases: σ1 ≥ . . . ≥ σmin{m,n} are eigenvalues of A ∈ Rm×n

(a) ||A||2F = Tr(A⊤A)

(b) ||A||2F =

min{m,n}∑
i=1

σ2
i

(c) ||A||op = σ1

(d) ||A||op ≤ ||A||F ≤
√
min{m,n}||A||op

Good Luck!
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9 Exercise tricks

sin, cos, tan values (+π ⇔ x · (−1)) (to the right)

IMPORTANT: For the multiple-choice exercises, try
to come up with a short proof for each option

Non-Trivial null-space ⇒ rank(A) < n if A ∈ Rn×n

A ∈ R2×2 for which A⊤ = −A ⇔
[
0 a
−a 0

]

° rad sin(ξ) cos(ξ) tan(ξ)
0° 0 0 1 1

30° π
6

1
2

√
3
2

√
3
2

45° π
4

√
2
2

√
2
2 1

60° π
3

√
3
3

1
2

√
3

90° π
2 1 0 ∅

120° 2π
3

√
3
2 − 1

2 −
√
3

135° 3π
4

√
2
2 −

√
2
2 −1

150° 5π
6

1
2 −

√
3
2 −

√
3
2

180° π 0 −1 0

9.1 Vector product

a× b =

ax
ay
az

×

bx
by
bz

 =

aybz − azby
azbx − axbz
axby − aybx

 = c gives us a vector c for which c ⊥ a and c ⊥ b

9.2 Basics
Squares of numbers: 14 : 196, 15 : 225, 16 : 256, 17 : 289, 18 : 324, 19 : 361, 21 : 441, 22 : 484, 23 : 529, 24 : 576

Long multiplication: a · b, for n = len(a),m = len(b) we have
n−1∑
i=0

m−1∑
j=0

a[i] · b[j] ∗ 10m−1−j

 · 10n−1−i

9.3 Proof patterns

(I) Composition of Implication: If S ⇒ T and T ⇒ U are both true, then S ⇒ U is true.

(II) Direct proof of Implication: Prove S ⇒ T assuming S and then proving S under that assumption.

(III) Indirect proof of Implication: Prove S ⇒ T by assuming ¬T and proving ¬S under that assumption.

(IV) Case distinction: Prove S by finding a list of R1, . . . , Rn (cases) proving at least one Ri, then showing
that Ri ⇒ S for all Ri.

(V) Proof by contradiction : Prove S by assuming it to be false, deriving statements from it until reaching a
contradiction.

(VI) Existence proof: Prove S is true for at least one value

(VII) Proof by Induction : Prove P (0) (base case), then prove for any k that P (k) → P (k+1) is true (Induction
step). Using an induction hypothesis can be helpful

9.4 Proving bijection
We need to prove surjectivity and injectivity separately.

Surjectivity Given a function f : X → Y , it is surjective, iff ∀y ∈ Y, ∃x ∈ X : f(x) = y (continuous function)

Injectivity x1 ̸= x2 ⇒ f(x1) ̸= f(x2)

9.5 Subspace of matrix vector space

Example 9.1: U = {A ∈ R2×2 : Tr(A) = 0}. Prove dim(U) = 3. U ⊆ R2×2:

Claim that the standard basis of R2×2 form a basis of U , thus implying dim(U) = 3. These are B1 =

[
0 1
0 0

]
, B2 =[

0 0
1 0

]
and B3 =

[
1 0
0 −1

]
. Prove that they are a basis by proving that they span U .
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9.6 Proof of symmetry

Example 9.1: A ∈ Rn×n satisfying AA⊤ = I and A2 = I. Prove that A is symmetric.

A = AI = A(AA⊤) = (AA)A⊤ = (A2)A⊤ = IA⊤ = A⊤ ⇒ A is symmetric

9.7 SVD
Example 9.1: A ∈ Rn×n, A invertible. σ1 largest SV of A, σ′

1 largest SV of A−1. Prove that σ1σ
′
1 ≥ 1

Use SVD of A−1. From this we know that SV of A−1 are given by 1
σ1

≤ . . . ≤ 1
σn

(bc. Σ is diagonal). Thus,
σ′
1 = 1

σn
(largest SV) ⇒ σ1 · σ′

1 = σ1

σn
≥ 1 since σ1 ≥ σn > 0

9.8 Least squares
Least squares is much more versatile than it might seem. It can even be used for optimization problems in multiple
variables or for finding coefficients of quadratic, etc equations. Let’s take ax2 + b as an example. We want to find
a and b. The A matrix is then simply 1s on the first column and x2

1, . . . on the second column. Insert the values
for x1, . . . and compute least squares

9.9 Finding values for which a matrix is an inverse for another

We can interpret a matrix A−1 =

x1 x2 x3

, then solve SLEs, using AA−1 = I, whereas I =

e1 e2 e3

,

where e1 is a standard basis vector. Thus, we get Ax1 = e1, Ax2 = e2, . . .

Solving all these SLE gives us solutions for all the variables in the original matrix A.

9.10 Proving commutativity of matrix operation
For some matrices, the matrix product is commutative. To prove that, prove that both matrices have linearly
independent columns, using the statements from the task and the proof of the first matrix’ linear independence.
Then finally, show commutativity, e.g. if AB = I and BA = I, by showing that A(BA− I) = 0

9.11 Dimensions of subspaces
Simply argue with the size of the basis. Thus: Find basis, then argue that the basis specified is actually a basis (by
showing that all its elements are linearly independent), then count the number of elements, which is the dimension.
U1\U2 can never be a subspace, because 0 is missing!

9.12 Vector combination independence
(Other vectors that also form basis) Given a basis of a vector space, we have n new vectors, formed form a basis.
To decide if the new set forms a basis, try to construct original vectors from the new ones, or to disprove, show
that 0 vector is a linear combination of the vectors with non-zero coefficients.

9.13 CR-Decomposition
Perform row sign-inversion only at the very end, as it can lead to nastiness along the way. R is in RREF, C the
columns with pivot in R

9.14 Eigenvalues
For triangle and diagonal matrices, the eigenvalues are on the diagonals. Matrices of all 0’s are positive semi-definite.

For exercises with a complete set of distinct eigenvalues, we can use the A = V ΛV −1 decomposition, which for An

simplifies to V · ΛnV −1 and then compute Λn, which is simple because Λ is a diagonal matrix (so all entries on
diagonal n) Alternate approach: det(A) =

∏n
i=1 λi and det(An) = det(A)n, then check all determinants

9.15 SVD
The pseudo-inverse using the SVD uses the concepts of the SVD with CR-Decomposition. A = UrΣrV

⊤
r , where

Ur = C and ΣrV
⊤
r = R
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9.16 Quadratic solution formula

- b±
√
b2 − 4ac

2a
, for f(x) = ax2 + bx + c, result R iff b2 − 4ac ≥ 0. Not that it is strictly needed, but there was

still some space. There’s an excellent song to remember it: https://www.youtube.com/watch?v=E2eVZFy9yzk

9.17 Multiplying out with transposes
For vectors, we have (v − u)⊤(v − u) = v⊤v − 2v⊤u+ u⊤u

9.18 Number of Solutions of SLE
System Ax = b has two characteristic numbers, m (number of equations), n (number of variables). For solution
space, we have a third one, r = rank(A). A in REF doesn’t guarantee solution. A in RREF does (in R)!

Number of solutions :
R0 r = n r < n

r = m 1 ∞
r < m 0 / 1 0 / ∞

9.19 Farka’s Lemma
This task is from Assignment 10. Let P1 ⊆ R2, P 2 ⊆ R2 in the plane. Assume P1 ∩P2 = ∅. We want to prove that
there exists a vector v ∈ R2 and a scalar w such that P1 ⊆ {x ∈ R2 : x · v ≤ w} and P2 ⊆ {x ∈ R2 : x · v > w}.
Intuition: We can draw a line to separate the two polyhedra.

The approach to solve this now, is to assume P1 = {x ∈ R2 : A1x ≤ b1} and P2 = {x ∈ R2 : A2x ≤ b2} for some

A1, A2 ∈ Qm×2 and b1, b2 ∈ Qm and m ∈ N. We observe that the system
[
A1

A2

]
x ≤

[
b1
b2

]
has no solution since

P1 ∩ P2 = ∅. Farka’s lemma implies the existence of a vector y ∈ R2m with y ≥ 0, y⊤
[
A1

A2

]
= 0 and y⊤

[
b1
b2

]
< 0.

CHECK FOR SMALL ERRORS!
These errors could be something like a missing minus. Verify all solutions using computations.

Example 1: For Eigenvalues check that det(A− λI) = 0 for all eigenvalues.

Example 2: For Eigenvectors check that Av = λv for all eigenvalue-eigenvector pairs.
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https://www.youtube.com/watch?v=E2eVZFy9yzk
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