1 Linear Algebra

Relevant definitions used throughout Analysis Il.

Def Euclidian Norm ||z|| :=

Used to generalize |x| in many Analysis | definitions
Lem. Properties of ||z||

i) l=l[=0

i) ||zl &= =0

iii) o] = o [|]]

w) ||z +yll <lz][ +[lyll  (Triangle Inequality)

—~ Y~~~

Ve,y € R", a€eR

2 Differential Equations
Def Differential Equation (DE)
Equation relating unknown f to derivatives f(*) at same z.

Def Ordinary Differential Equation (ODE)
DE s.t. f:I — R is in one variable.

Def Partial Differential Equation (PDE)
DE s.t. f:I% — R is in multiple variables.

Notation f(*) or y(*) instead of f(*)(z) for brevity.
Def Order ord(F) := m>ag<{z' | f@ e F, £ #£0}

Remark Any F's.t. ord(F') > 2 can be reduced to ord(F”) =

1, but using functions of higher dimensions.
Solutions to ODEs

VF :R? - R s.t. Fis cont. diff. and o, yo € R:

If: IR
st. Yz eI : f'(z) = F(z, f(x)) and f(x0) = yo

s.t. I is open and maximal.

Intuition: Solutions always exist (locally!) for nice enough equations.

2.1 Linear Differential Equations
Def Linear Differential Equation (LDE)

y ™ +apy®Y ot ay +agy =
ICRisopen, k>1, Vi<k:a;:I—C

Def Homogeneity of LDEs

def
Homogeneous £ h=0

Inhomogeneous Ly #0
Remark D(y) :=y*) + ... 4 agy is a linear operation:
D(z1f1 + 22f2) = 21D(f1) + 22D(f2)

Vz1,22 € C,  f1, fo k-times differentiable

Def Homogeneous Solution Space
S(F):={f:I— C| f solves F, f is k-times diff.}

Remark S(F) is the Nullspace of a lin. map: f to D(f):
D(f) = 21D(f1) + 22D(f2) =0

Vz1,22 € C, ,/.l s /_) esS

Solutions for complex homogeneous LDEs

F s.t. ap, ... ,ap_1 continuous and complex-valued
1. S is a complex vector space, dim(S) = k
2. S'is a subspace of {f | f: I — C}
3. Voo € I, (yo,...,yx_1) € C* a unique sol. exists

Solutions for real homogeneous LDEs

F s.t. ag, ... ,ap_1 continuous and real-valued
1. Sis a real vector space, dim(S) = k
2. S'is a subspace of {f | f: I — R}
3. Vzo € I, (Y0, - - -,yr—1) € R¥ a unique sol. exists

Def Inhomogeneous Solution Space
So(F):={f+ fo| f€SF), foisa particular sol.}

Note: This is only a vector space if b = 0, where S, = S.

Solutions for real inhomogeneous LDEs

F s.t. ag, ... ,ap_1 continuous, b: I — C
1. Voo € I, (yo, - -,yx—_1) € C* a unique sol. exists
2. If b, a; are real-valued, a real-valued sol. exists.

Remark Applications of Linearity
If f1 solves F for by, and fy for by: f1 + fo solves by + bs.
Follows from: D(f1) + D(f2) = by + bo.



2.2 Linear Solutions: First Order

ICR, a,b:1—-R
Form:

y +ay=">
Approach:

1. Hom. Solution f; for: ¢/ +ay =0

Note that S has dim(S) 1, so f1 # 0 is a Basis for S

2. Part. Solution fq for oy +ay =b

Solutions: fy+z2f; forzeC

Explicit Homogeneous Solution
A(z) is a primitive of a, f(z0) = yo
fi(z) = z - exp(=A(z))
fi(x) = yo - exp(A(zo) — a())
Variation of Constants: Treating z as z(z) yields:
Explicit Inhomogeneous Solution

A(z) is a primitive of a

Method Educated Guess
Usually, y has a similar form to b:

b(x) Guess

a-e*” b-e*®

a - sin(Bx) esin(Bx) + d cos(Px)

b - cos(fx) csin(Bzx) + d cos(Bx)

ae®® - sin(fBx) e** (esin(fBz) + d cos(fzx))

be™* - cos(fr) T (esin(Bz) + d cos(Bz))
P,(x)-e** (x) e

P, (x) - sin(Bzx)  e*® (R, (x)sin(Bx) + Sp(x) cos(Bx))
P, (z) - e* cos(Bx) €T (Ry(x)sin(fz) + Sy (z) cos(Bz))

Remark If a, 8 are roots of P(X) with multiplicity j, mul-

tiply guess with a P;(x).

2.3 Linear Solutions: Constant Coefficients

Form:

Y 4 iy +ay=b

€ C are constants, b(x) is continuous.

2.3.1 Homogeneous Equations
The idea is to find a Basis of S:
Def Characteristic Polynomial P(X) =

[T, (X — a)

Remark The unique roots ag, ..., «a; form a Basis:

span(S) = {xfe™® | i <1, 0<j <}

U1y vi are the Multiplicities of o, .. ., g

Remark If a; = 8+ ~i € Cis a root, q;
To get a real-valued solution, apply:

Bx

€% = eP* (cos(yx) + isin(yx))

Explicit Homogeneous Solution

Using aq, ...

k
=1

Multiple roots: same scheme, using the basis vectors of S

o from P(X) sit. a; # oy, z; € C arbitrary

k
with f(j)(””) = Hzl . afeo"‘r

i=1

Solutions exist VZ = (z1,..., z}) since that system’s det(My) # 0.

= f — i is too.

2.3.2 Inhomogeneous Equations
Method Undetermined Coefficients: An educated guess.

L b(z) = ca? - e*® = f,(z) = Q(z)e™”
deg(Q) < d + va, where v, is a's multiplicity in P(X)

b(z) = cx? - cos(ax)

2. ] } fp = Qi(x) cos(ax)+Q2(x) sin(ax

b(z) = cx? - sin(ax)
deg(Q1,2) < d+ va, where v, is a's multiplicity in P(X)
Remark Applying Linearity
Ifb(x) = >_7_; bi(z), Asolution for b(z) is f(z) =

Sometimes called Superposition Principle in this context

2im fil®)

2.4 Other Methods

Method Change of Variable
If f(z)is replaced by h(y) = f(g(y)), then h is a sol. too.

Changes like h(t) = f(e') may lead to useful properties.

Separation of Variables

Form:
y' =a(y) b(z)
Solve using:
/ Ly / b(z) dz +
—— dy = z)dx+c
a(y)
Usually / 1/a(y) dy can be solved directly for In|a(y)| + c.

2.5 Method Overview

Method Use case

Variation of constants LDE with ord(F) =1

Characteristic Polynomial | Hom. LDE w/ const. coeff.
Undetermined Coefficients | Inhom. LDE w/ const. coeff.
ODE s.t. ¢ = a(y) - b(x)

eg. y = flax +by+c)

Separation of Variables

Change of Variables



3 Differential Calculus in R”

Treating functions f : X C R® — R/C/R™, m,n >1

Notation f(x) for f: I C R™ — R™ means:

x=(21,...,2,), flx)= f(fl(x),...,fm(x))

3.1 Multivariate functions
Def Linear map f: R" — R™

In other words: f(x) = Az, A € C™*"
Linear Maps are continuous

Def Affine Linear map f(z) — Az +c
Def Quadratic form @ : R™ — R

In other words: Q(z) = 321" 5 227" (ai,jzi%;)

Def Monomials M (z) : R" — R — az{" -
For example: f(z,y,z) = 1622y2°

Def deg(M):=e=5>",d;

For example: deg(16z2y2°) =8

Def Polynomials P(x) := """ M;(x)

For example: P(z,y,z) = 3 + 2522y%2 + xy

Polynomials are continuous.

Def deg(P) := d > max{deg(M;) | M; in P}

For example: deg(z3 + 2522yS%2 + xy) = 9

Visualisations for some function types:

Def Graph G;:= {(z,y,2) € R® | z = f(z,y)}

Only for f : R? — R. Visually, this is a surface in R3

Def Vector Plots for f : R? — R?

Points in (x,y) € R? are displayed as vectors f(z,y)

3.2 Sequences in R"

Def Sequences in R”
(a;‘k)kzl s.t. 2 € R™ where z;, = (mk,l, S ka)

Def Convergence in R"

lim (xk> —y = VYe>0IN>1:VE>N: |lop—yl| <e
— 00

Using this definition preserves many familiar results:

Lem. Equivalent conditions to Convergence
(i) Vist.1<i<n: lim (ack) =y

k—oc0
(@) lim ka - y” —0
k—o0
Def Continuity in R"
f continuous at g € X & e > 0,30 >0:

Hx — :cOH <) = ||f(x) — f(:vo)H <e
f continuous & vrex: f continuous at x
X CR", f:X —Rm™

Lem. Continuitiy using Sequences
f continuous at zg if and only if:

V(zg)k>1 klgglo(xk> =z = klggo(f(fk)) = f(zo)
X CR", f:X—>Rm
Def Limits at points

lim (f(x)) =y &5 ve>0,3>0:

THLTH—T0

VacséxoeX:Hx—x0H<5 = Hf(a:)—y”<e

XCR", f:X—=R™ zy€X, yecR™
The sequence test for Continuity works for point-limits too.

Lem. Continuity of Compositions
f: X =Y, g:Y — RP continuous = go f continuous
XCR?, YCR™, p>1

Lem. Continuity using Coordinate Functions
f:R™ - R™ continuous <= Vi < m : f; continuous

3.3 Subsets of R"

Def Bounded
X € R" bounded <% {||z] | € X} C R bounded.

Example: The open disc D = {z € R" | ||z — zo|| < r} is bounded.
Def Closed
def. .
X CR” closed <% V(z)ps1 € X lim (mk> €Xx
- Tr—r00
Example: (), R™ are closed.
Def Compact if closed and bounded.
Example: The closed Disc A = {z € R" H:r — [I‘uH < r} is compact.

Lem. The Cartesian Product preserves these properties.
Lem. Continous functions preserve closedness
Vclosed Y : f7'(Y)={zeR"| f(z) €Y} is closed.
f:R™ — R™ is continuous, Y C R™

Min-Max Theorem

For compact, non-empty X C R™, continuous f : X — R:

3z, 12 € X f(w1) = supf(x), f(r2)= inf f(x)
zeX x€EX

3.4 Partial Derivatives
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