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1 Linear Algebra

Relevant definitions used throughout Analysis II.

Def Euclidian Norm ||x|| :=

√√√√ n∑
i=1

x2
i

Used to generalize |x| in many Analysis I definitions

Lem. Properties of ||x||

(i) ||x|| ≥ 0

(ii) ||x|| ⇐⇒ x = 0

(iii) ||αx|| = α · ||x||
(iv) ||x+ y|| ≤ ||x||+ ||y|| (Triangle Inequality)

∀x, y ∈ Rn, α ∈ R

2 Differential Equations

Def Differential Equation (DE)
Equation relating unknown f to derivatives f (i) at same x.

Def Ordinary Differential Equation (ODE)
DE s.t. f : I → R is in one variable.

Def Partial Differential Equation (PDE)
DE s.t. f : Id → R is in multiple variables.

Notation f (i) or y(i) instead of f (i)(x) for brevity.

Def Order ord(F ) := max
i≥0

{i | f (i) ∈ F, f (i) ̸= 0}

Remark Any F s.t. ord(F ) ≥ 2 can be reduced to ord(F ′) =
1, but using functions of higher dimensions.

Solutions to ODEs

∀F : R2 → R s.t. F is cont. diff. and x0, y0 ∈ R:

∃f : I → R
s.t. ∀x ∈ I : f ′(x) = F (x, f(x)) and f(x0) = y0

s.t. I is open and maximal.

Intuition: Solutions always exist (locally!) for nice enough equations.

2.1 Linear Differential Equations

Def Linear Differential Equation (LDE)

y(k) + ak−1y
(k−1) + . . .+ a1y

′ + a0y = b

I ⊂ R is open, k ≥ 1, ∀i < k : ai : I → C

Def Homogeneity of LDEs

Homogeneous
def⇐⇒ b = 0

Inhomogeneous
def⇐⇒ b ̸= 0

Remark D(y) := y(k) + . . .+ a0y is a linear operation:

D(z1f1 + z2f2) = z1D(f1) + z2D(f2)

∀z1, z2 ∈ C, f1, f2 k-times differentiable

Def Homogeneous Solution Space
S(F ) := {f : I → C | f solves F, f is k-times diff.}

Remark S(F ) is the Nullspace of a lin. map: f to D(f):

D(f) = z1D(f1) + z2D(f2) = 0

∀z1, z2 ∈ C, f1, f2 ∈ S

Solutions for complex homogeneous LDEs

F s.t. a0, . . . , ak−1 continuous and complex-valued

1. S is a complex vector space, dim(S) = k

2. S is a subspace of {f | f : I → C}
3. ∀x0 ∈ I, (y0, . . . , yk−1) ∈ Ck a unique sol. exists

Solutions for real homogeneous LDEs

F s.t. a0, . . . , ak−1 continuous and real-valued

1. S is a real vector space, dim(S) = k

2. S is a subspace of {f | f : I → R}
3. ∀x0 ∈ I, (y0, . . . , yk−1) ∈ Rk a unique sol. exists

Def Inhomogeneous Solution Space
Sb(F ) := {f + f0 | f ∈ S(F ), f0 is a particular sol.}
Note: This is only a vector space if b = 0, where Sb = S.

Solutions for real inhomogeneous LDEs

F s.t. a0, . . . , ak−1 continuous, b : I → C
1. ∀x0 ∈ I, (y0, . . . , yk−1) ∈ Ck a unique sol. exists

2. If b, ai are real-valued, a real-valued sol. exists.

Remark Applications of Linearity
If f1 solves F for b1, and f2 for b2: f1 + f2 solves b1 + b2.
Follows from: D(f1) +D(f2) = b1 + b2.
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2.2 Linear Solutions: First Order

I ⊂ R, a, b : I → R

Form:
y′ + ay = b

Approach:

1. Hom. Solution f1 for: y′ + ay = 0
Note that S has dim(S) = 1, so f1 ̸= 0 is a Basis for S

2. Part. Solution f0 for y′ + ay = b

Solutions: f0 + zf1 for z ∈ C

Explicit Homogeneous Solution

A(x) is a primitive of a, f(x0) = y0

f1(x) = z · exp(−A(x))

f1(x) = y0 · exp(A(x0)− a(x))

Variation of Constants: Treating z as z(x) yields:

Explicit Inhomogeneous Solution

A(x) is a primitive of a

f0(x) =

(∫
b(x) · exp(A(x))

)
︸ ︷︷ ︸

z(x)

· exp (−A(x))

Method Educated Guess
Usually, y has a similar form to b:

b(x) Guess

a · eαx b · eαx

a · sin(βx) c sin(βx) + d cos(βx)

b · cos(βx) c sin(βx) + d cos(βx)

aeαx · sin(βx) eαx (c sin(βx) + d cos(βx))

beαx · cos(βx) eαx (c sin(βx) + d cos(βx))

Pn(x) · eαx Rn(x) · eαx

Pn(x) · eαx sin(βx) eαx (Rn(x) sin(βx) + Sn(x) cos(βx))

Pn(x) · eαx cos(βx) eαx (Rn(x) sin(βx) + Sn(x) cos(βx))

Remark If α, β are roots of P (X) with multiplicity j, mul-
tiply guess with a Pj(x).

2.3 Linear Solutions: Constant Coefficients

Form:

y(k) + ak−1y
(k−1) + . . .+ a1y

′ + a0y = b

Where a0, . . . , ak−1 ∈ C are constants, b(x) is continuous.

2.3.1 Homogeneous Equations

The idea is to find a Basis of S:

Def Characteristic Polynomial P (X) =
∏k

i=1(X − αi)

Remark The unique roots α1, . . . , αl form a Basis:

span(S) = {xjeαix | i ≤ l, 0 ≤ j ≤ vi}

v1, . . . , vk are the Multiplicities of α1, . . . , αk

Remark If αj = β + γi ∈ C is a root, ᾱj = β − γi is too.
To get a real-valued solution, apply:

eαjx = eβx (cos(γx) + i sin(γx))

Explicit Homogeneous Solution

Using α1, . . . , αk from P (X) s.t. αi ̸= αj , zi ∈ C arbitrary

f(x) =

k∏
i=1

zi · eαix with f (j)(x) =

k∏
i=1

zi · αj
i e

αix

Multiple roots: same scheme, using the basis vectors of S

Solutions exist ∀Z = (z1, . . . , zk) since that system’s det(MZ) ̸= 0.

2.3.2 Inhomogeneous Equations

Method Undetermined Coefficients: An educated guess.

1. b(x) = cxd · eαx =⇒ fp(x) = Q(x)eαx

deg(Q) ≤ d+ vα, where vα is α’s multiplicity in P (X)

2.
b(x) = cxd · cos(αx)
b(x) = cxd · sin(αx)

}
fp = Q1(x) cos(αx)+Q2(x) sin(αx)

deg(Q1,2) ≤ d+ vα, where vα is α’s multiplicity in P (X)

Remark Applying Linearity
If b(x) =

∑n
i=1 bi(x), A solution for b(x) is f(x) =

∑n
i=1 fi(x)

Sometimes called Superposition Principle in this context

2.4 Other Methods

Method Change of Variable
If f(x) is replaced by h(y) = f(g(y)), then h is a sol. too.
Changes like h(t) = f(et) may lead to useful properties.

Separation of Variables

Form:
y′ = a(y) · b(x)

Solve using: ∫
1

a(y)
dy =

∫
b(x) dx+ c

Usually
∫
1/a(y) dy can be solved directly for ln |a(y)|+ c.

2.5 Method Overview

Method Use case

Variation of constants LDE with ord(F ) = 1

Characteristic Polynomial Hom. LDE w/ const. coeff.

Undetermined Coefficients Inhom. LDE w/ const. coeff.

Separation of Variables ODE s.t. y′ = a(y) · b(x)
Change of Variables e.g. y′ = f(ax+ by + c)
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3 Differential Calculus in Rn

Treating functions f : X ⊂ Rn → R/C/Rm, m, n ≥ 1

Notation f(x) for f : I ⊂ Rn → Rm means:
x = (x1, . . . , xn), f(x) = f

(
f1(x), . . . , fm(x)

)
3.1 Multivariate functions

Def Linear map f : Rn → Rm

In other words: f(x) = Ax, A ∈ Cm×n

Linear Maps are continuous

Def Affine Linear map f(x) 7→ Ax+ c

Def Quadratic form Q : Rn → R
In other words: Q(x) =

∑n
i=0

∑m
j=0 (ai,jxixj)

Def Monomials M(x) : Rn → R 7→ αxd1
1 · · ·xdn

n

For example: f(x, y, z) = 16x2yz5

Def deg(M) := e =
∑n

i=1 di
For example: deg(16x2yz5) = 8

Def Polynomials P (x) :=
∑n

i=0 Mi(x)
For example: P (x, y, z) = x3 + 25x2y6z + xy

Polynomials are continuous.

Def deg(P ) := d ≥ max{deg(Mi) | Mi in P}
For example: deg(x3 + 25x2y6z + xy) = 9

Visualisations for some function types:

Def Graph Gf := {(x, y, z) ∈ R3 | z = f(x, y)}
Only for f : R2 → R. Visually, this is a surface in R3

Def Vector Plots for f : R2 → R2

Points in (x, y) ∈ R2 are displayed as vectors f(x, y)

3.2 Sequences in Rn

Def Sequences in Rn

(xk)k≥1 s.t. xk ∈ Rn where xk =
(
xk,1, . . . xk,n

)
Def Convergence in Rn

lim
k→∞

(
xk

)
= y ⇐⇒ ∀ϵ > 0,∃N ≥ 1 : ∀k ≥ N : ||xk−y|| < ϵ

Using this definition preserves many familiar results:

Lem. Equivalent conditions to Convergence

(i) ∀i s.t. 1 ≤ i ≤ n : lim
k→∞

(
xk,i

)
= yi

(ii) lim
k→∞

∥∥∥xk − y
∥∥∥ = 0

Def Continuity in Rn

f continuous at x0 ∈ X
def⇐⇒ ∀ϵ > 0,∃δ > 0 :∥∥x− x0

∥∥ < δ =⇒
∥∥f(x)− f(x0)

∥∥ < ϵ

f continuous
def⇐⇒ ∀x ∈ X : f continuous at x

X ⊂ Rn, f : X → Rm

Lem. Continuitiy using Sequences
f continuous at x0 if and only if:

∀(xk)k≥1 : lim
k→∞

(
xk

)
= x0 =⇒ lim

k→∞

(
f(xk)

)
= f(x0)

X ⊂ Rn, f : X → Rm

Def Limits at points

lim
x ̸=x0→x0

(
f(x)

)
= y

def⇐⇒ ∀ϵ > 0,∃δ > 0 :

∀x ̸= x0 ∈ X :
∥∥x− x0

∥∥ < δ =⇒
∥∥f(x)− y

∥∥ < ϵ

X ⊂ Rn, f : X → Rm, x0 ∈ X, y ∈ Rm

The sequence test for Continuity works for point-limits too.

Lem. Continuity of Compositions
f : X → Y, g : Y → Rp continuous =⇒ g ◦ f continuous
X ⊂ Rn, Y ⊂ Rm, p ≥ 1

Lem. Continuity using Coordinate Functions
f : Rn → Rm continuous ⇐⇒ ∀i ≤ m : fi continuous

3.3 Subsets of Rn

Def Bounded

X ⊂ Rn bounded
def⇐⇒

{∥∥x∥∥ | x ∈ X
}
⊂ R bounded.

Example: The open disc D = {x ∈ Rn |
∥∥x− x0

∥∥ < r} is bounded.

Def Closed

X ⊂ Rn closed
def⇐⇒ ∀(xk)k≥1 ∈ X : lim

x→∞

(
xk

)
∈ X

Example: ∅, Rn are closed.

Def Compact if closed and bounded.
Example: The closed Disc Λ = {x ∈ Rn |

∥∥x−x0

∥∥ ≤ r} is compact.

Lem. The Cartesian Product preserves these properties.

Lem. Continous functions preserve closedness

∀ closed Y : f−1(Y ) =
{
x ∈ Rn | f(x) ∈ Y

}
is closed.

f : Rn → Rm is continuous, Y ⊂ Rm

Min-Max Theorem

For compact, non-empty X ⊂ Rn, continuous f : X → R:

∃x1, x2 ∈ X : f(x1) = sup
x∈X

f(x), f(x2) = inf
x∈X

f(x)

3.4 Partial Derivatives
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