
Theoretische Informatik
Formelsammlung

Contents
2 Formale Sprachen 1

2.1 Algorithmische Probleme 1
2.2 Kolmogorov Komplexität 1

3 Endliche Automaten (EA) 2
3.1 Irregularität beweisen 2
3.2 Nicht-deterministische endliche Automaten (NEA) . . 2

4 Turing-Maschinen 3
4.1 Mehrband Turing-Maschinen 3
4.2 Nicht-deterministische TMs 3
4.3 Sprach-Klassen . 3

5 Berechenbarkeit 4
5.1 Diagonalisierung . 4
5.2 Reduktion . 4
5.3 Rice . 4
5.4 Kolmogorov . 4

6 Komplexität 5
6.1 Zeit & Speicher . 5
6.2 O-Notation . 5
6.3 Komplexitätsklassen 5
6.4 Nicht-deterministische Komplexität 5
6.5 NP-Vollständigkeit 6
6.6 Klausel-Formeln . 6

Anmerkung: Unterkapitel-Nummern entsprechen nicht dem Buch

Einleitung
Der Sinn dieses Dokuments ist, alle Resultate und Definitionen schnell auffindbar an einem Ort zu haben, z.B. für Hausaufgaben.
Dieses Dokument ist keine Zusammenfassung, enthält aber einige Kommentare und Intuitive Erläuterungen (Text in grau).
Gute ausführliche Zusammenfassungen existieren bereits: z.B. die von Nicolas Wehrli, auf Community Solutions.

Wie immer: Keine Garantie auf Komplettheit oder Korrektheit.

Robin Bacher

ETH Zürich, HS25
Basierend auf:
Theoretische Informatik, J. Hromkovic

2 Formale Sprachen

Def: Alphabet Σ def⇐⇒ Σ endlich und Σ ̸= ∅
x ∈ Σ heisst Buchstabe, Zeichen, Symbol.

Def: Wort w über Σ def⇐⇒ w = (x1, . . . , xn) endlich, xi ∈ Σ.
Σ∗ := {w | w ist Wort über Σ}
λ := w s.d. |w| = 0 (Leeres Wort)
Σ+ := Σ∗ \ {λ}

Teilwort v von w
def⇐⇒ ∃x, y ∈ Σ∗ : w = xvy

Präfix v von w
def⇐⇒ ∃y ∈ Σ∗ : w = vy

Suffix v von w
def⇐⇒ ∃x ∈ Σ∗ : w = xv

Note: Notation: x1x2 . . . xn = (x1, x2, . . . , xn)

Nummer(x) :=
∑n

i=1 xi · 2n−i.
Bin(m) := kürzeste Binärkodierung von m in ΣBool.
Bin(0) := 0

Def: Konkatenation Kon(x, y) = x · y = xy
∀w : λ · w = w
Kon ist assoziativ

Def: Reversal Für a ∈ Σ∗: aR := anan−1 . . . a1

Def: Iteration Für x ∈ Σ∗: x0 := λ, x1 := x, xi := xxi−1

Def: Vorkommen von a in w ∈ Σ∗: |w|a := |{i | wi = a}|

Def: Kanonische Ordnung von Σ∗: Sei < eine Ordnung über Σ. u, v ∈ Σ∗. x, u′, v′ ∈ Σ∗ und i < j.

u < v ⇐⇒ |u| < |v| ∨ |u| = |v| ∧ u = x · si · u′ ∧ v = x · sj · v′

(Das ist die lexikographische Ordnung bekannt aus DM)

Def: Sprache L über Σ def⇐⇒ L ⊂ Σ∗

Def: Komplement LC := Σ∗ \ L

Def: Konkatenation von L1, L2: L0 := Lλ, Li := Li−1 · L

Def: Kleene’scher Stern L∗ :=
⋃

i≥0
Li, L+ := L∗ \ {λ}

Lemma: ∪ ist distributiv über Sprachen:
L1L2 ∪ L1L3 = L1(L2 ∪ L3)

2.1 Algorithmische Probleme
2.2 Kolmogorov Komplexität
Ziel: Komprimierung von Wörtern, Schliessen auf Informationsdichte basierend auf Komprimierbarkeits-schwierigkeit.

Def: Kolmogorov Komplexität ∀x ∈ Σ∗
bool : K(x) := kürzestes Pascal-Programm für x.

Vermeidet die Festlegung auf einen spezifischen Komprimieralgorithmus. Buch beweist ebenfalls, dass Pascal hier keine Einschränkung ist.

Def: K(x) von Natürlichen Zahlen: K(n) := K(Bin(n))

Bin(|x|) hat Länge ⌈log2(|x| + 1)⌉

Lemma: ∃d ∀x ∈ Σ∗
bool : K(x) ≤ |x| + d

Lemma: ∀n ≥ 1 ∃wn ∈ Σn
bool : K(wn) ≥ |wn| = n

Intuitiv: Es existieren unkomprimierbare w jeder Länge.

Formalisierung der Zufälligkeit

Def: Zufällig def⇐⇒ x ∈ Σ∗
bool erfüllt K(x) ≥ |x|

n ≥ 0 ist zufällig def⇐⇒ K(n) = K(Bin(n)) ≥ ⌈log2(n + 1)⌉ − 1
Diese Definition hat nichts mit dem Zufallsbegriff aus der Wahrscheinlichkeit zu tun, hier geht es um den Informationsgehalt.

Verbindung: Entscheidungsprobleme und Komplexität
Theorem: (2.2) ∃ Programmm AL welches (Σbool, L) löst =⇒ ∀n ≥ 1 : K(zn) ≤ ⌈log2(n + 1)⌉ + c

L ⊂ Σ∗
bool. zn := n-tes Wort bzgl. kan. Ordnung. (Σbool, L) ist ein Entscheidungsproblem.

Primzahlverteilung
Theorem: lim

n→∞
Prim(n)
n/ ln(n) = 1

Prim(x) := Anzahl Primzahlen kleiner x. Intuitiv: Anzahl Primzahlen wächst gleich schnell wie Anzahl Zahlen.

1

3 Endliche Automaten (EA)
Def: Endlicher Automat M := (Q, Σ, δ, q0, F)

Zustände Q (endlich)
Eingabealphabet Σ (Alphabet)
Anfangszustand q0 ∈ Q
Akzeptierende Zustände F ⊆ Q
Übergangsfunktion δ : Q × Σ → Q

δ(q, a) = p =⇒ im Zustand q bei Eingabe a, gehe zu p.

Darstellungsformen: goto-Programm, gerichteter Graph

Def: Konfiguration von M : (q, w) ∈ Q × Σ∗

Intuitiv: M hat Zustand q und liest noch den Suffix w

(q, w) Endkonfiguration def⇐⇒ (q, w) ∈ Q × {λ}

Def: Schritt := M ⊆ (Q × Σ∗) × (Q × Σ∗)
wobei (q, w) M (p, x) def⇐⇒ w = ax ∧ a ∈ Σ ∧ δ(q, a) = p
Intuitiv: Übergangsfunktion auf M im Zustand q anwenden, bei a.

Def: Berechnung C := C0, . . . , Cn s.d. Ci Konfiguration
wobei ∀i ≤ n − 1 : Ci M Ci+1 gilt

Def: Akzeptierte Sprache L(M) := {w ∈ Σ∗ | δ̂(q0, w) ∈
F}
Intuitiv: Menge aller Wörter, die M akzeptiert

Klasse regulärer Sprachen: LEA := {L(M) | M ist EA}

Def: Klasse Kl[p] := {w ∈ Σ∗ | δ̂(q0, w) = p}
Klassen bilden eine Partition von Σ∗. Ähnlich zu Äquivalenzklassen aus
DM.

Lemma: L(M) =
⋃

p∈F

Kl[p]

Def: Relationen bzgl. endlichen Automaten

(q, w) M

∗ (p, u) def⇐⇒ ∃ Berechnung in M von (q, w) zu (p, u).
Die formelle Definition ist sehr lang. (S.54)

δ̂(q, w) = p
def⇐⇒ (q, w) M

∗ (p, λ)
Intuitiv: Wenn M in Zustand q Wort w liest, endet M in p

Lemma: ∀⊙ ∈ {∪, ∩, −} ∃M : L(M) = L(M1) ⊙ L(M2)
Für alle EA M1, M2 über Σ
Wegen diesem Lemma ist es möglich, EAs aus Teilautomaten zu bauen

3.1 Irregularität beweisen
Einige Ansätze um Aussagen der Art L /∈ LEA zu beweisen:

Lemma: (Direkt via Zustände) Sei A = (Q, Σ, δA, q0, F), x ̸= y ∈ Σ∗:

∃p ∈ Q : (q0, x) A

∗ (p, λ) ∧ (q0, y) A

∗ (p, λ)︸ ︷︷ ︸
δ̂A(q0,x) = δ̂A(q0,y) = p und x,y ∈ Kl[p]

=⇒ ∀z ∈ Σ∗, ∃r ∈ Q : xz ∈ L(A) ⇐⇒ yz ∈ L(A)

Intuitiv: Wenn man für zwei (auch unterschiedliche!) Eingaben die selbe Konfiguration erreicht, ist der weitere Verlauf identisch. Dieses Lemma
formalisiert die intuitiv klare "Gedächtnislosigkeit" von EAs, d.h. dass ein EA keinen Speicher (ausser dem aktuellen Zustand) besitzt.

Lemma: (Pumping) für L ∈ LEA: ∃n0 ∈ N s.d. ∀w ∈ Σ∗ mit |w| ≥ n0 : ∃x, y, z : w = yxz und:

(i) |yx| ≤ n0 (ii) |x| ≥ 1
(iii) {yxkz | k ∈ N} ∈ L oder {yxkz | k ∈ N} ∩ L = ∅

Intuitiv: Alle Wörter länger als n0 lassen sich als w = yxz zerlegen: wenn w (nicht) akzeptiert wird müssen alle anderen wk = yxkz auch (nicht)
akzeptiert werden. Ein n0 welches diese Zerlegung erlaubt existiert immer, wenn L regulär ist.

Theorem: (Kolmogorov) Sei L ⊆ (Σbool)∗ regulär. Sei Lx = {y ∈ (Σbool)∗ | xy ∈ L}, yn das n-te Wort in Lx

∃c ∀x, y ∈ (Σbool)∗ : K(yn) ≤ ⌈log2(n + 1)⌉ + c

Intuitiv: Suffixe von Wörtern einer regulären Sprache besitzen eine kleine Kolmogorov-Komplexität. Man versucht meistens eine unendliche Menge
unterschiedlicher y1 zu finden, was dann einen Widerspruch bildet zu diesem Satz.

3.2 Nicht-deterministische endliche Automaten (NEA)

Def: NEA M = (Q, Σ, δ, q0, F)

Übergangsfunktion δ : Q × Σ → P(Q)
Intuitiv: δ gibt alle möglichen Zustände, statt nur Einen.

Def: Relationen bzgl. NEAs

δ̂(q, λ) := {q} ∀q ∈ Q

δ̂(q, wa) := {p ∈ Q | ∃r ∈ δ̂(q, w) : p ∈ δ(r, a)}
Intuitiv: δ̂ gibt alle möglichen Endzustände, statt nur Einen.

Def: Akzeptierte Sprache in NEAs

L(MNEA) := {w ∈ Σ∗ | δ̂(q, w) ∩ F ̸= ∅}
Intuitiv: Alle Wörter mit möglichen Berechnungsweg zu q ∈ F .
D.h. Akzeptierte Wörter müssen nicht immer akzeptiert werden.

Theorem: (3.2) Potenzmengen Konstruktion
LEA = LNEA

Intuitiv: Für jeden NEA gibt es einen äquivalenten EA.

2

4 Turing-Maschinen
Eine Formalisierung des Begriffs "Algorithmus".

Def: Turing Maschine M := (Q, Σ, Γ, δ, q0, qaccept, qreject)

Zustände Q (endlich)
Eingabealphabet Σ (Alphabet)
Arbeitsalphabet Γ s.d. Σ ⊂ Γ, Γ ∩ Q = ∅
Anfangszustand q0 ∈ Q
Akzeptierende Zustände F ⊆ Q
Übergangsfunktion δ : Q × Σ → Q

Def: Konf(M) := {¢} · Γ∗ · Q · Γ+ ∪ Q · {¢} · Γ∗

Beispiel: ¢w1qaw2 ∈ Konf(M) heisst:
M in Zustand q, hat Kopf bei |w1| + 1 auf a. Bandinhalt: ¢w1aw2

Def: Äquivalenz TMs A, B s.d. ΣA = ΣB :

1. x ∈ L(A) ⇐⇒ x ∈ L(B)

2. A hält nicht auf x ⇐⇒ B hält nicht auf x

D.h. ¬(L(A) = L(B) =⇒ A, B äquivalent).

4.1 Mehrband Turing-Maschinen

Def: Mehrband TMs

1. Endliche Kontroll-logik

2. Endliches Eingabeband

3. k nach rechts unendliche Arbeitsbänder

Die Formelle Definition im Skript ist sehr lang.
Intuitiv bleiben alle Definitionen gleich, akzeptieren aber nun k Bänder.

Lemma: ∀ TM A : ∃ MTM B s.d. A, B äquivalent.
Lemma: ∀ MTM B : ∃ TM A s.d. A, B äquivalent.

Theorem: TMs und MTMs sind äquivalente Modelle.
D.h. es existiert immer eine äquivalente Maschine im jeweils anderen Mod-
ell.

4.2 Nicht-deterministische TMs
Theorem: ∀ NTM M : ∃ TM A s.d.

1. L(M) = L(A)

2. A hält immer falls M keine unendlichen Berechnungen hat

D.h. auch NTMs sind konzeptuell äquivalent zu regulären TMs.

4.3 Sprach-Klassen
Def: Rekursiv aufzählbar LRE := {L(M) | M ist TM }

Def: Rekursiv entscheidbar LR := {L(M) | M ist TM, hält immer }

3

5 Berechenbarkeit
Methoden zur Klassifizierung Algorithmischer Lösbarkeit.

5.1 Diagonalisierung

Def: Mächtigkeit

|A| ≤ |B| def⇐⇒ ∃f : A → B injektiv
|A| = |B| def⇐⇒ |A| ≤ |B| ∧ |B| ≤ |A|
|A| < |B| def⇐⇒ |A| ≤ |B| ∧ ¬|B| ≤ |A|

Lemma: A ⊂ B =⇒ |A| ≤ |B|

Lemma: ≤ ist Transitiv.

Def: Abzählbarkeit def⇐⇒ |A| = |N| ∨ A endlich

Lemma: ∀Σ : Σ∗ ist abzählbar
Intuitiv: Da Σ endlich ist.

Weitere abzählbare Mengen: Z,Nk,Q, KodTM

Überabzählbare Mengen: R, [0, 1], P((Σbool)∗)

Theorem: |KodTM| ≤ P((Σbool)∗)
D.h. existieren unendliche viele nicht rekursiv aufzählbare Sprachen.

5.2 Reduktion
Ansatz für Beweise von Aussagen der Form L ∈ LR oder L /∈ LR.

Def: Rekursive Reduzierbarkeit
L1 ≤R L2

def⇐⇒ L2 ∈ LR =⇒ L1 ∈ LR
D.h. L2 zu lösen, bedeuted auch L1 zu lösen.

Def: Eingabe-zu-Eingabe Reduzierbarkeit
L1 ≤EE L2

def⇐⇒ ∃M (TM) : ∃fM : Σ∗
1 → Σ∗

2 s.d. x ∈ L1 ⇐⇒ fM (x) ∈ L2
D.h. Es existiert eine TM M , die eine Abbildung fM darstellt, mit welcher man L1 via L2 direkt bestimmen kann.

Lemma: L1 ≤EE L2 =⇒ L1 ≤R L2

Lemma: ≤EE ist Transitiv.

Lemma: ∀L ⊆ Σ∗ : L ≤R LC ∧ LC ≤R L

Lemma: LR ⊊ LRE

Def: Universelle Sprache

LU := {Kod(M)#w | w ∈ Σ∗
bool ∧ w ∈ L(M)}

Theorem: LU ∈ LRE aber LU /∈ LR

Def: Halteproblem

LH := {Kod(M)#x | x ∈ Σ∗
bool ∧ M hält auf x}

Theorem: LH /∈ LR
D.h. man kann nie wissen, ob eine Turingmaschine anhalten wird.

Def: LEmpty := {Kod(M) | L(M) = ∅}

Theorem: (LEmpty)C ∈ LRE aber (LEmpty)C /∈ LR

Def: Äquivalenzproblem

LEQ = {Kod(M)#Kod(M) | L(M) = L(M)}

Theorem: LEQ /∈ LR
D.h. man kann nicht 2 TMs auf Äquivalenz prüfen, in endlicher Zeit.

TODO: reformat Def, Theorems as a table for languages

5.3 Rice
Ansatz für Beweise von Aussagen der Form L /∈ LR, für L ⊆ KodTM.

Def: Semantisch nicht-triviales Entscheidungsproblem über TMs

L ⊆ KodTM : (∃ TM M1 : Kod(M1) ∈ L)︸ ︷︷ ︸
L ̸=∅

∧ (∃ TM M2 : Kod(M2) /∈ L)︸ ︷︷ ︸
L̸=KodTM

∧ (∀ TM A, B : L(A) = L(B) =⇒ (A ∈ L ⇐⇒ B ∈ L))︸ ︷︷ ︸
L behandelt semantisch gleiche TMs gleich

Def: LH, λ := {Kod(M) | M hält auf λ} Theorem: LH,λ /∈ LR

Theorem: Satz von Rice: Alle sem. nicht-triv. Probleme L sind unentscheidbar. (L /∈ LR)
D.h. es reicht aus zu zeigen, dass L ⊆ KodTM die Bedingungen oben erfüllt, um L /∈ LR zu zeigen.

5.4 Kolmogorov
Theorem: Unlösbarkeit von Kolmogorov: Das Problem, ∀x ∈ (Σbool)∗ die Komplexität K(x) zu berechnen, ist unlösbar.

Ein Alternativer Ansatz um Unlösbarkeit zu zeigen, unabhängig von Diagonalisierung.

4

6 Komplexität
Eine Formalisierung der "Schwierigkeit" von Algorithmisch lösbaren Problemen.

6.1 Zeit & Speicher
Def: TimeM(x) := k − 1

Def: TimeM(n) := max{TimeM(x) | x ∈ Σn}
Intuitiv: Die Komplexität im Schlechtesten Fall einer Eingabe der Länge n

Wobei: M immer hält, x ∈ Σ∗ und D = C1C2 . . . Ck Die Berechnung von M auf x

Def: SpaceM(C) := max{|αi| | i = 1, . . . , k}
Intuitiv: Die Länge des längsten Arbeitsbandes in M , bei der Konfiguration C.

Def: SpaceM(x) := max{SpaceM (Ci) | i = 1, . . . , l}

Def: SpaceM(n) := max{SpaceM (x) | x ∈ Σn}

Wobei M eine k-Band MTM, C = (q, x, i, α1, i1 . . . , αk, ik) eine Konfiguration.

Lemma: ∀ k-MTM A : ∃ äquivalente 1-MTM B : SpaceB(n) ≤ SpaceA(n)

Lemma: ∀ k-MTM A : ∃ äquivalente k-MTM B : SpaceB(n) ≤ SpaceA(n)
2 + 2

Intuitiv: Die Speicherkomplexität von M lässt sich für jedes d ∈ N um den Faktor d verkleinern. Das selbe gilt für TimeM (n).

Theorem: ∃(L, Σbool) ∀ MTM A s.d. L(A) = L: ∃ MTM B s.d. L(B) = L und TimeB(n) ≤ log2(TimeA(n))
Intuitiv: Es gibt Probleme, wobei wir einen Lösungsalgorithmus unendlich oft signifikant verbessern können. D.h. macht es keinen Sinn allgemein von
einem "Besten Algorithmus" für ein Problem zu reden.

6.2 O-Notation
Def: O(f(n)) := {r : N → R+ | ∃n0 ∈ N, ∃c ∈ N s.d. ∀n ≥ n0 : r(n) ≤ c · f(n)}
Def: Ω(f(n)) := {r : N → R+ | ∃n0 ∈ N, ∃c ∈ N s.d. ∀n ≥ n0 : r(n) ≥ 1

c · f(n)}
Def: Θ(f(n)) := O(f(n)) ∩ Ω(f(n))
Def: o(f(n)) := {r : N → R+ | lim

n→∞
r(n)
f(n) = 0}

Intuitiv: f wächst asymptotisch schneller als r.

6.3 Komplexitätsklassen
f, g : N → R+

Def: TIME(f) := {L(M) | M s.d. TimeM (n) ∈ O(f(n))}
Def: SPACE(f) := {L(M) | M s.d SpaceM (n) ∈ O(f(n)))}
Def: P :=

⋃
c∈N

TIME(nc)

Def: PSPACE :=
⋃

c∈N
SPACE(nc)

Def: EXPTIME :=
⋃

d∈N
TIME(2nd)

Lemma: ∀t : N → R+ : TIME(t(n)) ⊆ SPACE(t(n)) Lemma: DLOG ⊆ P ⊆ PSPACE ⊆ EXPTIME

TODO: Konstruierbarkeit

6.4 Nicht-deterministische Komplexität
M := Nicht deterministische (M)TM. C = C1 . . . Cm ist eine akzeptierende Berechnung auf x.

Def: TimeM (x) := Länge kürzester akzept. Berechnung für x.
Def: TimeM (n) := max({TimeM (x) | x ∈ L(M) ∧ |x| = n} ∪ {0})

Def: SpaceM (C) := max{SpaceM (Ci) | i ≤ m}
Def: SpaceM (x) := min{C | C akzeptiert x}
Def: SpaceM (n) := max({x ∈ L(M) ∧ |x| = n} ∪ {0})

Def: Kompelxitätsklassen: NTIME, NSPACE, NLOG, NP, NSPACE analog zur detereministischen Definition.

5

6.5 NP-Vollständigkeit
Unter der Annahme: P ⊊ NP , kann man Beweise der Form L /∈ P machen.

Def: Polynomielle Reduzierbarkeit
L1 ≤p L2

def⇐⇒ ∃ polynomielle M s.d. ∀x ∈ (Σ1)∗ : x ∈ L1 ⇐⇒ M(x) ∈ L2
Intuitiv: EE-Reduktion, muss aber polynomielle Zeitkomplexität haben.

Def: NP-Schwer L s.d. ∀L′ ∈ NP : L′ ≤p L
L NP-Schwer bedeutet nicht, dass L in NP ist.

Def: NP-Vollständigkeit L s.d. L ∈ NP und NP-Schwer

Lemma: ∃L : L ∈ P ∧ NP-Schwer =⇒ P = NP
Ein NP-Schweres Problem polynomiell zu lösen beutet alle NP-Probleme polynomiell zu lösen.

Lemma: L1 ≤p L2 =⇒ (L1 NP-schwer =⇒ L2 NP-schwer)
D.h. Mit P-Reduktionen kann man beweisen, dass L2 NP-Schwer ist.

Def: SAT := {x ∈ (Σlogic)∗ | x kodiert erfüllbare Formel in KNF}

Theorem: (Cook) SAT ist NP-vollständig.
Der Beweis ist sehr lang. Im Endeffekt bedeutet dies, Boole’sche Formeln sind enorm ausdrucksstark.

6.6 Klausel-Formeln
Nützliche Gleichungen für Beweise mit KNF-Formeln

6

	Formale Sprachen
	Algorithmische Probleme
	Kolmogorov Komplexität

	Endliche Automaten (EA)
	Irregularität beweisen
	Nicht-deterministische endliche Automaten (NEA)

	Turing-Maschinen
	Mehrband Turing-Maschinen
	Nicht-deterministische TMs
	Sprach-Klassen

	Berechenbarkeit
	Diagonalisierung
	Reduktion
	Rice
	Kolmogorov

	Komplexität
	Zeit & Speicher
	O-Notation
	Komplexitätsklassen
	Nicht-deterministische Komplexität
	NP-Vollständigkeit
	Klausel-Formeln

