Theoretical Computer Science - Compact Janis Hutz

Theoretical Computer Science -
Compact

Janis Hutz
https://janishutz.com

December 2, 2025

TITLE PAGE COMING SOON

“Sie konnen also alle C' Programme in Kanonischer Ordnung aufzahlen. Sollten
Sie dies tun. Wahrscheinlich nicht. Was aber zahlt ist, sie konnen es tun”

- Prof. Dr. Dennis Komm, 2025

HS2025, ETHZ

Compact Summary of the book | Theoretische Informatik |

by Prof. Dr. Juraj Hromkovic

December 2, 2025 1/8

https://janishutz.com
https://link.springer.com/book/10.1007/978-3-658-06433-4

Theoretical Computer Science - Compact Janis Hutz

1 Introduction 2
2 Alphabets, Words, etc 3
2.2 Alphabets, Words, Languages 3
2.4 Kolmogorov-Complexity 3
3 Finite Automata 4
3.2 Representation Lo e e e e e e 4
3.4 Proofs of nonexistence 5
3.5 Non-determinism L e e e e e 6
4 Turing Machines 7
4.3 Representationo L e 7
4.4 Multi-tape TM and Church’s Thesis o 7
4.5 Non-Deterministic Turing Machines 7
5 Computability 8
5.2 Diagonalization e 8
5.3 Reductions e 8
5.4 Rice’s Theorem L L e e e e 8

1 Introduction

This summary aims to provide a simple, easy to understand and short overview over the topics covered, with
approaches for proofs, important theorems and lemmas, as well as definitions.

It does not aim to serve as a full replacement for the book or my main summary, but as a supplement to both of
them.

It also lacks some formalism and is only intended to give some intuition, six pages are really not enough for a
formal and complete overview of the topic.

As general recommendations, try to substitute possibly “weird” definitions in multiple choice to see a definition
from the book.

December 2, 2025 2/8

Theoretical Computer Science - Compact Janis Hutz

2 Alphabets, Words, etc
2.2 Alphabets, Words, Languages

Definition 2.1: (Alphabet) Set ¥. Important alphabets: Ypoo1, ias (all latin chars), Yxeyboara (all chars on
keyboard), %,, (m-ary numbers)

Definition 2.2:] (Word) Possibly empty (denoted A) sequences of characters from X. |w| is the length, 3* is the
set of all words and X7 = ¥* — {)\}

Definition 2.3: (Konkatenation) Kon(z,y) = zy, (so like string concat). (xy)™ is n-times repeated concat.
Definition 2.4: (Reversal) a't, simply read the word backwards.

Definition 2.6: (Prefiz, Suffiz, Subword) v in w = vy; s in w = xzs; Subword « in w = zuy; x, y possibly A
Definition 2.7: (Appearance) |x|, is the number of times a € 3 appears in z

Definition 2.8:] (Canonical ordering) Ordered by length and then by first non-common letter:
u<v<=|ul <|v|V(ul = Au=2 s - Av==x-s;) for any z,u' ;v € E* and i < j

Definition 2.9: (Language) L C ¥*, and we define LY = ¥* — L as the complement, with Ly being the empty
language, whereas Ly is the language with just the empty word in it.

Concatenation: Ly - Lo = {vwjv € Ly Aw € Ly} and Lt = L. L Vi € N.
Cleen Star: L* = |J,cy L' and Lt = L - L*

Of note is that there are irregular languages whose Cleen Star is regular, most notably, the language L = {w €
{0}* | |Jw| is prime}’s Cleen Star is regular, due to the fact that the prime factorization is regular

Lemma 2.1: 1L, U L{Ly = Ly (LQ U Lg) Lemma 2.2: Ll(KQ n Lg) CLiLoNLiLs

For multiple choice questions, really think of how the sets would look to determine if they fulfill a requirement.

2.4 Kolmogorov-Complexity

Definition 2.17: (Kolmogorov-Complezity) K (x) for € (Zpoo1)* is the minimum of all binary lengths of Pascal
programs that output x, where the Program doesn’t have to compile, i.e. we can describe processes informally

Lemma 2.4: For each word z exists constant d s.t. K(x) < |z| + d, for which we can use a program that simply
includes a write(x) command

Definition 2.18: (Of natural number) K(n) = K(Bin(z)) with |Bin(x)| = [logy(z + 1)]

Lemma 2.5: For each n € NJw,, € (Zpo01)" s.t. K(wy,) > |wy,| =n, i.e. exists a non-compressible word.
Theorem 2.1: Kolmogorov-Complexity doesn’t depend on programming language. It only differs in constant
Definition 2.19: (Randomness) x € (Xpoo1)* random if K (z) > |z|, thus for n € N, K(n) > [logy(n+1)] —1
Prime(n)

ln?n)

Theorem 2.3: (Prime number) lim

= 1 with Prime(n) the number of prime numbers on [0,n] C N
n—roo

- Proofs in which we need to show a lower bound for Kolmogorov-Complexity (almost) always work as
follows: Assume for contradiction that there are no words with K(w) > f for all w € W. We count the number
m of words in W and the number n of programs of length < f (f being the given, lower bound). We will have
m —n > 0, which means, there are more different words than there are Programs with Kolmogorov-Complexity
< f, which is a contradiction to our assumption.

There are L%J + 1 numbers divisible by k in the set {0,1,...,n}.
Laws of logarithm

¢ loga(x) + loga(y) = 1Oga(x . y) hd yloga(x) = 1Oga(xy) [] 1Oga(1) =0
o log,(z) —log,(y) =log,(z+y) e log,(z) = &)

December 2, 2025 3/8

Theoretical Computer Science - Compact Janis Hutz

3 Finite Automata

3.2 Representation

We can note the automata using graphical notation similar to graphs or as a series of instructions like this:

select input = a; goto i

nput = ap goto ik

Definition 3.1: (Finite Automaton) A = (Q,%, 6, qo, F') with

e () set of states ® (o initial state
e 3 input alphabet e [C () accepting states
e 0(q,a) = p transition from ¢ on reading a to p o L4 regular languages (accepted by FA)

g(qo, w) = p is the end state reached when we process word w from state qo, and (g, w) lﬁ (p, A) is the formal
definition, with lﬁ representing any number of steps lﬁ executed (transitive hull).

The class Cl[g;] represents all possible words for which the FA is in this state. Be cautious when defining them,
make sure that no extra words from other classes could appear in the current class, if this is not intended.

Sometimes, we need to combine two (or more) FA to form one larger one. We can do this easily with product
automata. To create one from two automata M; (states ¢;) and M (states p;) we do the following steps:
1. Write down the states as tuples of the form (g;,p;) (i.e. form a grid by writing down one of the automata
vertically and the other horizontally)
2. From each state, the automata on the horizontal axis decides for the input symbol if we move left or right,
whereas the automata on the vertical axis decides if we move up or down.

For the automata

(b) Module to compute w contains sub. ba and ends in a.
(a) Module to compute |w|y, = |w|(mod 3). States ¢ € Q. States p € Qs

Figure 3.1: Graphical representation of the Finite Automaton of Task 9 in 2025

December 2, 2025 4/8

Theoretical Computer Science - Compact Janis Hutz

3.4 Proofs of nonexistence

We have three approaches to prove non-regularity of words. Below is an informal guide as to how to do proofs
using each of the methods and possible pitfalls.

For all of them start by assuming that L is regular.

Regular words

Let A be a FA over ¥ and let z # y € ¥*, such that 5a (go,x) = g(qo, y). Then for each z € ¥* there exists
an r € @, such that zz,yz € Cl[r], and we thus have

2z € L(A) <= yz € L(A)

Pick a FA A over ¥ and say that L(A) =L
Pick |Q| + 1 words z such that zy = w € L with |y| > 0.
State that via pigeonhole principle there exists w.l.o.gi < j € {1,...,|Q| + 1}, s.t. B\A(qo, x;) = 5a (g0, ;).
Build contradiction by picking z such that x;z € L.
5. Then, if z was picked properly, since i < j, we have that =,z ¢ L, since the lengths do not match
That is a contradiction, which concludes our proof

W =

Pumping-Lemma fiir regulare Sprachen

Let L be regular. Then there exists a constant ng € N, such that each word w € ¥* with |w| > ng can be
decomposed into w = yxz, with
(1) |yz| < ng (iii) For X = {ya*2|k € N} either X C L or
(ii) |z| > 1 X N L =0 applies

1. State that according to Lemma 3.4 there exists a constant ng such that |w| > ny.

2. Choose a word w € L that is sufficiently long to enable a sensible decomposition for the next step.

3. Choose a decomposition, such that |yz| = ng (makes it quite easy later). Specify y and z in such a way that
for |y| =1 and |z| = m we have | + m < ng

4. According to Lemma 3.4 (ii), m > 1 and thus |z| > 1. Fix z to be the suffix of w = yx=z

5. Then according to Lemma 3.4 (iii), fill in for X = {yz*z | k € N} we have X C L.

6. This will lead to a contradiction commonly when setting k = 0, as for a language like 01", we have
0(ro—m)+kmino a5 the word (with ng —m = 1), which for k = 0 is u = 0"~™1" and since m > 1, u ¢ L and
thus by Lemma 3.4, X N L = @), but that is also not true, as the intersection is not empty (for k = 1)

1. We first need to choose an x such that L, = {y | vy € L}. If not immediately apparent, choosing z = a®*!
for a € ¥ and « being the exponent of the exponent of the words in the language after a variable rename.
For example, for {0"°+2" | n € N}, a(m) = m2 + 2m. Another common way to do this is for languages of the
form {a"b" | n € N} to use x = a™ and Lom = {y | 0™y € L} = {071™*J | j € N}.

2. Find the first word y1 € L,. In the first example, this word would be y; = 0(m+D*2(m+1)—m?2m+1 o iy
general (Mt —a(m)+1 For the second example, the word would be y; = 1, i.e. with j =0

3. According to Theorem 3.1, there exists constant ¢ such that K(yx) < [logy(k 4+ 1)] + ¢. We often choose
k=1, so we have K(y1) < [logo(1+1)]+c=1+cand withd=1+¢, K(y1) <d

4. This however leads to a contradiction, since the number of programs with length < d is at most 2¢ and thus
finite, but our set L, is infinite.

December 2, 2025 5/8

Theoretical Computer Science - Compact Janis Hutz

To show that a language needs at least n states, use Lemma 3.3 and n words. We thus again do a proof by
contradiction:

1. Assume that there exists FA with |Q| < n. We now choose n words (as short as possible), as we would for
non-regularity proofs using Lemma 3.3 (i.e. find some prefixes). It is usually beneficial to choose prefixes with
|w] small (consider just one letter, A, then two and more letter words). An “easy” way to find the prefixes is
to construct a finite automaton and then picking a prefix from each class

2. Construct a table for the suffixes using the n chosen words such that one of the words at entry x;; is in the
language and the other is not. (n x n matrix, see below in example)

3. Conclude that we have reached a contradiction as every field z;; contains a suffix such that one of the two
words is in the language and the other one is not.

Example 3.1: Let L = {zly |2 € (Zpool)*,y € {0,1}?}. Show that any FA that accepts L needs at least four
states.

Assume for contradiction that there exists EA A = (Q, Yoo, 94,40, F) with |Q| < 4. Let’s take the 4 words
00,01, 10,11. Then according to Lemma 3.3, there needs to exist a z such that xz € L(A) <= yz € L(A) with

SA(qO,x) = SA(qo,y) for ,y € {00,01,10,11}.

This however is a contradiction, as we can find a z for each of the pairs (z,y), such that xz € L(A), but yz ¢ L(A).
See for reference the below table (it contains suffixes z fulfilling prior condition):

|00 01 10 11

00| - 00 0 O
01 -0 0
10 - 00
11 -

Thus, all four words have to lay in pairwise distinct states and we thus need at least 4 states to detect this language.

3.5 Non-determinism

The most notable differences between deterministic and non-deterministic FA is that the transition function is
different: ¢ : Q@ x ¥ — P(Q). Le., there can be any number of transitions for one symbol of ¥ for each state. This
is (in graphical notation) represented by arrows that have the same label going to different nodes.

It is also possible for there to not be a transition function for a certain element of the input alphabet. In that case,
regardless of state, the NFA rejects, as it “gets stuck” in a state and can’t finish processing.

Additionally, the NFA accepts x if it has at least one accepting calculation on z.

Theorem 3.2: For every NFA M there exists a FA A such that L(M) = L(A). They are then called equivalent

_ States are no now sets of states of the NFA in which the NFA could be in after

processing the preceding input elements and we have a special state called ggrash-

o~

For each state, the set of states P = d(qo, 2) for |z| = n represents all possible states that the NFA could be in
after doing the first n calculations.

Correspondingly, we add new states if there is no other state that is in the same branch of the calculation tree
By (z). So, in other words, we execute BFS on the calculation tree.

December 2, 2025 6/8

Theoretical Computer Science - Compact Janis Hutz

4 Turing Machines

4.3 Representation

Turing machines are much more capable than FA and NFA. A full definition of them can be found in the book on
pages 96 - 98 (= pages 110 - 112 in the PDF).

For example, to detect a recursive language like {0"1" | n € N} we simply replace the left and rightmost symbol
with a different one and repeat until we only have the new symbol, at which point we accept, or there are no more
0s or 1s, at which point we reject.

The Turing Machines have an accepting gaccept and a rejecting state greject and a configuration is an element of
{{¢}-T*-Q-TTUQ-{¢} - T} with - being the concatenation and ¢ the marker of the start of the band.

4.4 Multi-tape TM and Church’s Thesis

k-Tape Turing machines have k extra tapes that can be written to and read from, called memory tapes. They
cannot write to the input tape. Initially the memory tapes are empty and we are in state go. All read/write-heads
of the memory tapes can move in either direction, granted they have not reached the far left end, marked with ¢.

As with normal TMs, the Turing Machine M accepts w if and only if M reaches the state gaccept and rejects if it
does not terminate or reaches the state grejoct

Lemma 4.1: There exists an equivalent 1-Tape-TM for every TM.

Lemma 4.2: There exists an equivalent TM for each Multi-tape TM.

Church’s Thesis states that the Turing Machines are a formalization of the term “Algorithm”. It is the only axiom
specific to Computer Science.

All the words that can be accepted by a Turing Machine are elements of Lrg and are called recursively enu-
merable.

4.5 Non-Deterministic Turing Machines

The same ideas as with NFA apply here. The transition function also maps into the power set:

d: (Q - {Qaccepta Qreject}) xI'— P(Q x I x {L, R,N})
Again, when constructing a normal TM from a NTM (which is not required at the Midterm, or any other exam

for that matter in this course), we again apply BFS to the NTM’s calculation tree.

Theorem 4.2: For an NTM M exists a TM A s.t. L(M) = L(A) and if M doesn’t contain infinite calculations
on words of (L(M))Y, then A always stops.

December 2, 2025 7/8

Theoretical Computer Science - Compact Janis Hutz

5 Computability

5.2 Diagonalization

The set of binary encodings of all TMs is denoted KodTM and KodTM C (Xp01)* and the upper bound of
the cardinality is |(Zpoo1)*|, as there are infinitely many TMs.

Below is a list of countable objects. They all have corresponding Lemmas in the script, but omitted here:
e X* for any X e KodTM e NxN o QF
The following objects are uncountable: [0, 1], R, P((Zpoo1)*)

Corollary 5.1: [KodTM| < |P((Zboo1)*)| and thus there exist infinitely many not recursively enumerable lan-
guages over 2ol

Proving that a language is recursively enumerable is as difficult as providing a Turing Machine that accepts it.

Proving that a language is not recursively enumerable is likely easier. For it, let d;; = 1 <= M, accepts w;.
Example 5.1: Assume towards contradiction that Lgiag € LrE. Let
Laiag = {w € (Xboo1)” | w = w; for an i € N — {0} and M; does not accept w; }
={w € (Zpoo1)" | w = w; for an i € N — {0} and d;; =0}
Thus assume that, Lgiag = L(M) for a Turing Machine M. Since M is a Turing Machine in the canonical ordering
of all Turing Machines, so there exists an ¢ € N — {0}, such that M = M.
This however leads to a contradiction, as w; € Laiag <= dii = 0 <= w; ¢ L(M;).

In other words, w; is in Lgjag if and only if w; is not in L(M;), which contradicts our statement above, in which
we assumed that Lging € LrE

In other, more different, words, w; being in Lgias implies (from the definition) that d;; = 0, which from its definition
implies that w; ¢ L(M;)

Theorem 5.3: Lging ¢ LrE

5.3 Reductions
This is the start of the topics that are part of the endterm.

First off, a list of important languages for this and the next section:
o Ly = {Kod(M)#w | w € (Zpoo1)* and TM M accepts w} (€ Lrg, but ¢ Lg)
o Ly ={Kod(M)#z |z € (Xboo1)* and TM M halts on z} (€ Lrg, but ¢ Lg)
Laiag = {w € (Epoo1)* | w = w; for an i € N — {0} and M; does not accept w;} (¢ Lrg and thus ¢ Lg)
(Ldiag)© (€ LrE, but & Lg)
Lpg = {Kod(M)#Kod(M) | L(M) = L(M)} (€ LrE, but ¢ Lg)
Lempty = {Kod(M) | L(M) = 0} (€ Lrg, but ¢ Lg)
(Lempty)© = {z € (Shoo)* | ¢ Kod(M)V TM M or z = Kod(M) and L(M) # 0} (€ Lrr, but ¢ Lg)
o Ly ={Kod(M)| M halts on \} (¢ Lrg, but ¢ Lg)

Theorem 5.6: (Universal TM) A TM U, such that L(U) = Ly

5.4 Rice’s Theorem
Theorem 5.9: (Rice’s Theorem)

December 2, 2025 8/8

	Introduction
	Alphabets, Words, etc
	Alphabets, Words, Languages
	Kolmogorov-Complexity

	Finite Automata
	Representation
	Proofs of nonexistence
	Non-determinism

	Turing Machines
	Representation
	Multi-tape TM and Church's Thesis
	Non-Deterministic Turing Machines

	Computability
	Diagonalization
	Reductions
	Rice's Theorem

