
Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Numerical Methods for Computer Science
Robin Bacher, Janis Hutz

https://github.com/janishutz/eth-summaries

29. Dezember 2025

TITLE PAGE COMING SOON

“Wenn ich keine Lust habe, das zu berechnen, dann wende ich einfach Gewalt an”
- Vasile Gradinaru, 2025

HS2025, ETHZ
Summary of the Script and Lectures

29. Dezember 2025 1 / 57

https://github.com/janishutz/eth-summaries

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Inhaltsverzeichnis
0 Introduction 4

1 Einführung 5
1.1 Rundungsfehler . 5
1.2 Rechenaufwand . 6
1.3 Rechnen mit Matrizen . 7

2 Polynominterpolation 9
2.1 Interpolation und Polynome . 9

2.1.1 Monombasis . 9
2.2 Newton Basis . 10

2.2.1 Koeffizienten . 10
2.2.2 Auswertung . 11
2.2.3 Fehler . 11

2.3 Lagrange- und Baryzentrische Interpolationsformeln . 12
2.3.1 Fehler . 14

2.4 Chebyshev Interpolation . 15
2.4.1 Fehler . 16

3 Trigonometrische Interpolation 18
3.1 Fourier-Reihen . 18
3.2 Diskrete Fourier Transformation . 20

3.2.1 Motivation . 20
3.2.2 Konstruktion . 20
3.2.3 DFT in Numpy . 21
3.2.4 DFT & Lineare Algebra . 22

3.3 Schnelle Fourier Transformation . 23
3.4 Trigonometrische Interpolation . 24

3.4.1 Von Approximation zur Interpolation . 24
3.4.2 Zero-Padding-Auswertung . 25

3.5 Fehlerabschätzungen . 26
3.6 DFT und Chebyshev-Interpolation . 29

4 Stückweise Polynomiale Interpolation 30
4.1 Stückweise Lineare Interpolation . 30
4.2 Kubische Hermite-Interpolation . 30
4.3 Splines . 31

5 Numerische Quadratur 33
5.3 Grundbegriffe und -Ideen . 33
5.4 Äquidistante Punkte . 35

5.4.1 Summierte Quadratur . 35
5.4.2 Romberg Schema . 36
5.4.3 Anwendung . 36

5.5 Nicht äquidistante Stützstellen . 37
5.5.1 Gauss Quadratur . 37
5.5.2 Clenshaw-Curtis Quadraturformel . 38

5.6 Adaptive Quadratur . 39
5.7 Quadratur in Rd und dünne Gitter . 39
5.8 Monte-Carlo Quadratur . 40
5.9 Methoden zur Reduktion der Varianz . 42

5.9.1 Control Variates . 42
5.9.2 Importance Sampling . 42
5.9.3 Quasi-Monte-Carlo . 42

6 Nullstellensuche 43
6.1 Iterative Verfahren . 43

29. Dezember 2025 2 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

6.2 Abbruchkriterien . 44
6.3 Fixpunktiteration . 44
6.4 Intervallhalbierungsverfahren . 45
6.5 Newtonverfahren in 1D . 45
6.6 Sekantenverfahren . 45
6.7 Newton-Verfahren in n Dimensionen . 45
6.8 Gedämpftes Newton-Verfahren . 46
6.9 Quasi-Newton-Verfahren . 46

7 Intermezzo: Lineare Algebra 47
7.1 Grundlagen . 47

7.1.1 Gauss Elimination / LU Zerlegung . 48
7.1.2 QR-Zerlegung . 48
7.1.3 Singulärwertzerlegung . 51

8 Ausgleichsrechnung 53
8.1 Lineare Ausgleichsrechnung . 53

8.1.1 Normalengleichung . 53
8.1.2 Lösung mittels orthogonaler Transformation . 53
8.1.3 Totale Ausgleichsrechnung . 54

8.2 Nichtlineare Ausgleichsrechnung . 55
8.2.1 Newton-Verfahren . 55
8.2.2 Gauss-Newton Verfahren . 55
8.2.3 Weitere Methoden: BFGS, GD, SGC, CG, LM, ADAM 57

29. Dezember 2025 3 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

0 Introduction
This summary is intended to give you a broad overview of the topics relevant for the exam and is not intended to serve
as a full on replacement for the script. We have decided to write it in German, as is the new script and for some of the
topics that are poorly explained in the script, we have added further explanations.
The numbering should match the script’s numbering exactly (apart from the cases where two definitions were combined
due to being closely related and short), making it easier for you to look up the relevant definitions, theorems, etc in
context in the script.
Many of the figures in this summary were taken directly from the Script or Lecture notes created by Professor Vasile
Gradinaru.
We have also taken some explanations and code examples from the slides of our TA, Nils Müller, whose slides can be
found here

29. Dezember 2025 4 / 57

https://n.ethz.ch/~muellerni/courses/numcs25.php

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

1 Einführung
1.1 Rundungsfehler

Absoluter & Relativer Fehler Definition 1.1.1

• Absoluter Fehler : ||x̃− x|| • Relativer Fehler : ||x̃− x||
||x||

für ||x|| ̸= 0

wobei x̃ eine Approximation an x ∈ R ist

Rundungsfehler entstehen durch die (verhältnismässig) geringe Präzision die man mit der Darstellung von Zahlen auf
Computern erreichen kann. Zusätzlich kommt hinzu, dass durch Unterläufe (in diesem Kurs ist dies eine Zahl die zwischen
0 und der kleinsten darstellbaren, positiven Zahl liegt) Präzision verloren gehen kann.
Überläufe hingegen sind konventionell definiert, also eine Zahl, die zu gross ist und nicht mehr dargestellt werden kann.

Auslöschung Bemerkung 1.1.9

Bei der Subtraktion von zwei ähnlich grossen Zahlen kann es zu einer Addition der Fehler der beiden Zahlen
kommen, was dann den relativen Fehler um einen sehr grossen Faktor vergrössert. Die Subtraktion selbst hat
einen vernachlässigbaren Fehler

Beispiel 1.1.18: (Ableitung mit imaginärem Schritt) Als Referenz in Graphen wird hier oftmals die Implementation
des Differenzialquotienten verwendet.
Der Trick hier ist, dass wir mit Komplexen Zahlen in der Taylor-Approximation einer glatten Funktion in x0 einen rein
imaginären Schritt durchführen können:

f(x0 + ih) = f(x0) + f ′(x0)ih− 1
2f

′′(x0)h2 − iC · h3 für h ∈ R und h→ 0

Da f(x0) und f ′′(x0)h2 reell sind, verschwinden die Terme, wenn wir nur den Imaginärteil des Ausdruckes weiterver-
wenden. Nach weiteren Vereinfachungen und Umwandlungen erhalten wir

f ′(x0) ≈ Im(f(x0 + ih))
h

Falls jedoch hier die Auswertung von Im(f(x0 + ih)) nicht exakt ist, so kann der Fehler beträchtlich sein.

Beispiel 1.1.20: (Konvergenzbeschleunigung nach Richardson)

yf ′(x) = yd

(
h

2

)
+ 1

6f
′′′(x)h2 + 1

480f
(s)h4 + . . .− f ′(x)

= −d(h)− 1
6f

′′′(x)h2 + 1
120f

(s)(x)hn ⇔ 3f ′(x)

= 4d
(
h

2

)
d(h) +O

(
h4)⇔

Schema

d(h) = f(x+ h)− f(x− h)
2h

wobei im Schema dann

Rl,0 = d

(
h

2l

)

29. Dezember 2025 5 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

und

Rl,k = 4k ·Rl,k−1 −Rl−1,k−1

4k − 1

und f ′(x) = Rl,k + C ·
(

h
2l

)2k+2

1.2 Rechenaufwand
In NumCS wird die Anzahl elementarer Operationen wie Addition, Multiplikation, etc benutzt, um den Rechenaufwand
zu beschreiben. Wie in Algorithmen und * ist auch hier wieder O (. . .) der Worst Case. Teilweise werden auch andere
Funktionen wie sin, cos,√. . ., . . . dazu gezählt.
Die Basic Linear Algebra Subprograms (= BLAS), also grundlegende Operationen der Linearen Algebra, wurden be-
reits stark optimiert und sollten wann immer möglich verwendet werden und man sollte auf keinen Fall diese selbst
implementieren.
Dieser Kurs verwendet numpy, scipy, sympy (collection of implementations for symbolic computations) und matplotlib.
Dieses Ecosystem ist eine der Stärken von Python und ist interessanterweise zu einem Grossteil nicht in Python geschrie-
ben, da dies sehr langsam wäre.

29. Dezember 2025 6 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

1.3 Rechnen mit Matrizen
Wie in Lineare Algebra besprochen, ist das Resultat der Multiplikation einer Matrix A ∈ Cm×n und einer Matrix
B ∈ Cn×p ist eine Matrix AB =∈ Cm×p

In numpy haben wir folgende Funktionen:

• b @ a (oder np.dot(b, a) oder np.einsum('i,i', b, a) für das Skalarprodukt
• A @ B (oder np.einsum('ik,kj->ij',)) für das Matrixprodukt
• A @ x (oder np.einsum('ij,j->i', A, x)) für Matrix × Vektor
• A.T für die Transponierung
• A.conj() für die komplexe Konjugation (kombiniert mit .T = Hermitian Transpose)
• np.kron(A, B) für das Kroneker Produkt
• b = np.array([4.j, 5.j]) um einen Array mit komplexen Zahlen zu erstellen (j ist die imaginäre Einheit, aber

es muss eine Zahl direkt daran geschrieben werden)

Bemerkung 1.3.4: (Rang der Matrixmultiplikation) Rang(AX) = min(Rang(A),Rang(X))

Bemerkung 1.3.7: (Multiplikation mit Diagonalmatrix D) D×A skaliert die Zeilen von A während A×D die Spalten
skaliert
Beispiel 1.3.8: D @ A braucht O

(
n3) Operationen, wenn wir jedoch D.diagonal()[:, np.newaxis] * A verwen-

den, so haben wir nur noch O
(
n2) Operationen, da wir die vorige Bemerkung Nutzen und also nur noch eine Skalierung

vornehmen. So können wir also eine ganze Menge an Speicherzugriffen sparen, was das Ganze bedeutend effizienter
macht
Bemerkung 1.3.14: Wir können bestimmte Zeilen oder Spalten einer Matrix skalieren, in dem wir einer Identitätsmatrix

im unteren Dreieck ein Element hinzufügen. Wenn wir nun diese Matrix E (wie die in der LU -Zerlegung) linksseitig mit
der Matrix A multiplizieren (bspw. E(2,1)A), dann wird die zugehörige Zeile skaliert. Falls wir aber AE(2,1) berechnen,
so skalieren wir die Spalte

Bemerkung 1.3.15: (Blockweise Berechnung) Man kann das Matrixprodukt auch Blockweise berechnen. Dazu benut-
zen wir eine Matrix, deren Elemente andere Matrizen sind, um grössere Matrizen zu generieren. Die Matrixmultiplikation
funktioniert dann genau gleich, nur dass wir für die Elemente Matrizen und nicht Skalare haben.

Untenstehend eine Tabelle zum Vergleich der Operationen auf Matrizen

Name Operation Mult Add Komplexität
Skalarprodukt xHy n n− 1 O (n)
Tensorprodukt xyH nm 0 O (mn)
Matrix × Vektor Ax mn (n− 1)m O (mn)
Matrixprodukt AB mnp (n− 1)mp O (mnp)

Bemerkung 1.3.16: Das Matrixprodukt kann mit Strassen’s Algorithmus mithilfe der Block-Partitionierung inO
(
nlog2(7)) ≈

O
(
n2.81) berechnet werden.

Bemerkung 1.3.17: (Rang 1 Matrizen) Können als Tensorprodukt von zwei Vektoren geschrieben werden. Dies ist
beispielsweise hierzu nützlich:
Sei A = ab⊤. Dann gilt y = Ax ⇔ y = a(b⊤x), was dasselbe Resultat ergibt, aber nur O (m+ n) Operationen und
nicht O (mn) benötigt wie links.

Beispiel 1.3.18: Für zwei Matrizen A,B ∈ Rn×p mit geringem Rang p ≪ n, dann kann mithilfe eines Tricks die
Rechenzeit von np.triu(A @ B.T) @ x von O

(
pn2) auf O (pn) reduziert werden. Die hier beschriebene Operation

berechnet Upper(AB⊤)x wobei Upper(X) das obere Dreieck der Matrix X zurück gibt. Wir nennen diese Matrix hier
R. In numpy können wir den folgenden Ansatz verwenden, um die Laufzeit zu verringern: Da die Matrix R eine
obere Dreiecksmatrix ist, ist das Ergebnis die Teilsummen von unserem Umgekehrten Vektor x, also können wir mit

29. Dezember 2025 7 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

np.cumsum(x[::-1], axis=0)[::-1] die Kummulative Summe berechnen. Das [::-1] dient hier lediglich dazu, den
Vektor x umzudrehen, sodass das richtige Resultat entsteht. Die vollständige Implementation sieht so aus:

1 def low_rank_matrix_vector_product(A: np.ndarray, B: np.ndarray, x: np.ndarray):
2 n, _ = A.shape
3 y = np.zeros(n)
4

5 # Compute B * x with broadcasting (x needs to be reshaped to 2D)
6 v = B * x[:, None]
7

8 # s is defined as the reverse cummulative sum of our vector
9 # (and we need it reversed again for the final calculation to be correct)

10 s = np.cumsum(v[::-1], axis=0)[::-1]
11

12 y = np.sum(A * s)

Definition 1.3.21: (Kronecker-Produkt) Das Kronecker-Produkt ist eine (ml) × (nk)-Matrix, für A ∈ Rm×n und
B ∈ Rl×k.
In numpy können wir dieses einfach mit np.kron(A, B) berechnen (ist jedoch nicht immer ideal):

A⊗B :=


(A)1,1B (A)1,2B (A)1,nB
(A)2,1B (A)2,2B (A)2,nB

...
...

(A)m,1B (A)m,2B (A)m,nB


Beispiel 1.3.22: (Multiplikation des Kronecker-Produkts mit Vektor) Wenn man A⊗B ·x berechnet, so ist die Laufzeit
O (m× n× l × k), aber wenn wir den Vektor x in n gleich grosse Blöcke aufteilen (was man je nach gewünschter
nachfolgender Operation in NumPy in O (1) machen kann mit x.reshape(n, x.shape[0] / n)), dann ist es möglich
das Ganze in O (m · l · k) zu berechnen.
Die vollständige Implementation ist auch hier nicht schwer und sieht folgendermassen aus:

1 def fast_kron_vector_product(A: np.ndarray, B: np.ndarray, x: np.ndarray):
2 # First multiply Bx_i, (and define x_i as a reshaped numpy array to save cost (as that

will create a valid array))↪→

3 # This will actually crash if x.shape[0] is not divisible by A.shape[0]
4 bx = B * x.reshape(A.shape[0], round(x.shape[0] / A.shape[0]))
5 # Then multiply a with the resulting vector
6 y = A @ bx

Um die oben erwähnte Laufzeit zu erreichen muss erst ein neuer Vektor berechnet werden, oben im Code bx genannt,
der eine Multiplikation von Bx_i als Einträge hat.

29. Dezember 2025 8 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

2 Polynominterpolation
2.1 Interpolation und Polynome
Bei der Interpolation versuchen wir eine Funktion f̃ durch eine Menge an Datenpunkten einer Funktion f zu finden.
Die xi heissen Stützstellen/Knoten, für welche f̃(xi) = yi gelten soll. (Interpolationsbedingung)[

x0 x1 . . . xn

y0 y1 . . . yn

]
, xi, yi ∈ R

Normalerweise stellt f eine echte Messung dar, d.h. macht es Sinn anzunehmen dass f glatt ist.
Die informelle Problemstellung oben lässt sich durch Vektorräume formalisieren:
f ∈ V, wobei V ein Vektorraum mit dim(V) =∞ ist.
Wir suchen d.h. f̃ in einem Unterraum Vn mit endlicher dim(Vn) = n. Sei Bn = {b1, . . . , bn} eine Basis für Vn. Dann
lässt sich der Bezug zwischen f und f̃ = fn(x) so ausdrücken:

f(x) ≈ fn(x) =
n∑

j=1
αjbj(x)

Bemerkung 2.1.1: Unterräume Vn existieren nicht nur für Polynome, wir beschränken uns aber auf bj(x) = xi−1.
Andere Möglichkeiten: bj = cos((j − 1) cos− 1(x)) (Chebyshev) oder bj = ei2πjx (Trigonometrisch)

Satz 2.1.2: (Peano) f stetig =⇒ ∃p(x) welches f in || · ||∞ beliebig gut approximiert.

Definition 2.1.5: (Raum der Polynome) Pk := {x 7→
∑k

j=0 αjx
j} Definition 2.1.6: (Monom) f : x 7→ xk

Satz 2.1.7: (Eigenschaft von Pk) Pk ist ein Vektorraum mit dim(Pk) = k + 1.

2.1.1 Monombasis

Satz 2.1.8: (Eindeutigkeit) p(x) ∈ (P)k ist durch k + 1 Punkte yi = p(xi) eindeutig bestimmt.
Dieser Satz kann direkt angewendet werden zur Interpolation, in dem man p(x) als Gleichungssystem schreibt.

pn(x) = αnx
n + · · ·+ α0x

0 ⇐⇒


1 x0 · · · xn

0
1 x1 · · · xn

1
...

...
1 xn · · · xn

n


︸ ︷︷ ︸

Vandermonde Matrix


α0
α1
...
αn

 =


y0
y1
...
yn



Um αi zu finden ist die Vandermonde Matrix unbrauchbar, da die Matrix schlecht konditioniert ist.
Zur Auswertung von p(x) kann man direkt die Matrix-darstellung nutzen, oder effizienter:

Definition 2.1.9: (Horner Schema) p(x) = (x . . . x(x(αnx+ αn−1) + . . .+ α1) + α0)

In numpy liefert polyfit die direkte Auswertung, polyval wertet Polynome via Horner-Schema aus. (Gemäss Script,
in der Praxis sind diese Funktionen deprecated)

29. Dezember 2025 9 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

2.2 Newton Basis
Die Newton-Basis hat den Vorteil, dass sie leichter erweiterbar als die Monombasis ist.
Die Konstruktion verläuft iterativ, und vorherige Datenpunkte müssen nicht neuberechnet werden.

p0(x) = y0 (Anfang: triviales Polynom)

p1(x) = p0(x) + (x− x0) (y1 − y0)
(x1 − x0) (Addition des zweiten Datenpunktes)

p2(x) = p1(x) +
(y2−y1)
(x2−x1) −

(y1−y0)
x1−x0

x2 − x0
(x− x0)(x− x1) (Schema lässt sich beliebig weiterführen)

p3(x) = p2(x) + . . .

Satz 2.2.2: (Newton-Basis) {N0, . . . , Nn} ist eine Basis von Pn

N0(x) := 1 N1(x) := x− x0 N2(x) := (x− x0)(x− x1) . . .

Nn(x) :=
n−1∏
i=0

(x− xi)

2.2.1 Koeffizienten

Wegen Satz 2.2.3 lässt sich jedes pn ∈ Pn als pn(x) =
n∑

i=0
βiNi(x) darstellen. Ein Gleichungssystem liefert alle βi:

1 0 · · · 0
1 N0 · · · 0
...

...
1 N0 · · · Nn



β0
β1
...
βn

 =


y0
y1
...
yn


Die Matrixmultiplikation in O(n3) ist aber nicht nötig: Es gibt ein effizienteres System.

Definition 2.2.4: (Dividierte Differenzen)

y[xi] := yi

y[xi, . . . , xi+k] Rec.:= y[xi+1, . . . , xi+k]− y[xi, . . . , xi+k−1]
xi+k − xi

x0 y[x0]
> y[x0, x1]

x1 y[x1] > y[x0, x1, x2]
> y[x1, x2]

x2 y[x2] > y[x1, x2, x3]
> y[x2, x3]

x3 y[x3]

Bemerkung 2.2.5: (Äquidistante Stellen)

Falls xj = x0 + j · h︸︷︷︸
:=∆j

gilt vereinfacht sich einiges:

y[x0, x1] = 1
h

∆y0

y[x0, x1, x2] = 1
2!h∆2y0

y[x0, . . . , xn] = 1
n!hn

∆ny0

Satz 2.2.8: (Newton) Falls βj = y[x0, . . . , xj] geht das resultierende Polynom durch alle (xi, yi).
(D.h. die dividierten Differenzen sind korrekt.)

Beispiel 2.2.9: (Runge-Funktion) Die Runge-Funktion kann am Rand des gewählten Intervalls starke Oszillationen in
der Interpolation verursachen, wenn bspw. die Stützstellen nicht gut gewählt sind oder das Polynom einen zu hohen
Grad hat. Sie ist definiert durch f(x) = 1

1 + x2

29. Dezember 2025 10 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Matrixmultiplikation in O(n3), Speicher O(n2)

1 # Slow matrix approach
2 def divdiff_slow(x,y):
3 n = y.size
4 T = np.zeros((n,n))
5 T[:,0] = y
6

7 for l in range(1,n):
8 for i in range(n-l):
9 T[i, l] = (T[i+1,l-1] - T[i, l-1])

10 T[i, l] /= (x[i+l] - x[i])
11

12 return T[0,:]

Vektorisierter Ansatz in O(n2), Speicher O(n)

1 # Fast vectorized approach
2 def divdiff_fast(x,y):
3 n = y.shape[0]
4

5 for k in range(1, n):
6 y[k:] = (y[k:] - y[(k-1):n-1])
7 y[k:] /= (x[k:] - x[0:n-k])
8

9 return y

2.2.2 Auswertung

Auswertung eines Newton-Polynoms funktioniert in O(n) durch ein modifiziertes Horner-Schema:

p0 := βn

p1 := (x− xn−1)p0 + βn−1

p2 := (x− xn−2)p1 + βn−2

...
pn = p(x)

1 def evalNewton(x_data, beta, x):
2 p = np.zeros(x.shape[0])
3 p += beta[beta.shape[0]-1]
4

5 for i in range(1, n+1):
6 p = (x - x_data[n-i])*p + beta[n-i]
7

8 return p

2.2.3 Fehler

Satz 2.2.10: f n-mal diff.-bar, yi = f(xi) =⇒ ∃ξ ∈ (mini xi,maxi xi) s.d. y[x0, x1, . . . , xn] = f(n)(ξ)
(n+1)!

Satz 2.2.11: (Fehler) f : [a, b]→ R ist (n+ 1)-mal diff.-bar, p ist das Polynom zu f in x0, . . . , xn ∈ [a, b].

∀x ∈ [a, b] ∃ξ ∈ (a, b) : f(x)− p(x)︸ ︷︷ ︸
Fehler

=
n∏

i=0
(x− xi) ·

f (n+1)(ξ)
(n+ 1)!

Man bemerke: Die Wahl der Stützpunkte hat direkten Einfluss auf den Fehler.

29. Dezember 2025 11 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

2.3 Lagrange- und Baryzentrische Interpolationsformeln

Lagrange Polynome Definition 2.3.1

Für Knoten (auch gennannt Stützstellen) x0, x1, . . . , xn ∈ R definieren wir die Lagrange-Polynome für n =
Anzahl Stützstellen, also haben wir n− 1 Brüche, da wir eine Iteration überspringen, weil bei dieser j = i ist:

li(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

Falls j = i im Produkt, so überspringt j diese Zahl.

Beispiel 2.3.2: Seien x0, x1, x2 die Stützstellen für die Lagrange-Polynome (mit n = 2):

l0(x) = x− x1

x0 − x1
· x− x2

x0 − x2
l1(x) = x− x0

x1 − x0
· x− x2

x1 − x2
l2(x) = x− x0

x2 − x0
· x− x1

x2 − x1

Lagrange-Interpolationsformel Satz 2.3.3

Die Lagrange-Polynome li zu den Stützstellen (x0, y0), . . . , (xn, yn) bilden eine Basis der Polynome Pn und es
gilt:

p(x) =
n∑

i=0
yili(x) mit li(x) =

∏
j ̸=i

x− xj

xi − xj

Bemerkung 2.3.4: (Eigenschaften der Lagrange-Polynome)
1. li(xj) = 0 ∀j ̸= i

2. li(xi) = 1 ∀i

3. deg(li) = n ∀i

4.
∑n

k=0 lk(x) = 1 und
∑n

k=0 l
(m)
k (x) = 0 für m > 0

Da eine Implementation, welche direkt auf den Lagrange-Polynomen basiert, eine Laufzeit von O
(
n3) hätte, suchte man

nach einer besseren Methode. Mit der baryzentrischen Interpolationsformel wird zuerst ein Pre-Computing auf Teilen
der Lagrange-Polynome durchgeführt, was dann dazu führt, dass die Laufzeit auf O

(
n2) sinkt (O (n) für die Auswertung

der Formel und O
(
n2) für die Berechnung der λk). Man berechnet die baryzentrischen Gewichte λk folgendermassen:

λk =
∏
j ̸=k

1
xk − xj

oder das ganze mithilfe von Numpy:

1 def barycentric_weights(x: np.ndarray) -> np.ndarray:
2 n = len(x)
3 # Initialize to zeros
4 barweight = np.ones(n)
5 for k in range(n):
6 # Vectorized differences between xk and all xs
7 differences = x[k] - x
8 # Remove the k-th element (and handle edge cases for k = 0 and k = n− 1)
9 if k < n - 1 and k > 0:

10 diff_processed = np.concatenate((differences[:k], differences[(k + 1) :]))
11 barweight[k] = 1 / np.prod(diff_processed)
12 elif k == 0:
13 barweight[k] = 1 / np.prod(differences[1:])
14 else:
15 barweight[k] = 1 / np.prod(differences[:k])
16 return barweight

29. Dezember 2025 12 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Gleiche funktion, etwas kürzer:

1 def barycentric_weights(x: np.ndarray) -> np.ndarray:
2 n = len(x)
3 w = np.ones(n) # = barweight
4 # Compute the (non-inverted) product, avoiding case (x[i] - x[i]) = 0
5 for i in range(0, n, 1):
6 if (i-1 > 0): w[0:(i-1)] *= (x[0:(i-1)] - x[i])
7 if (i+1 < n): w[i+1:n] *= (x[i+1:n] - x[i])
8 # Invert all at once
9 return 1/w

Mit dem können wir dann ein Polynom mit der baryzentrischen Interpolationsformel interpolieren:

Baryzentrische Interpolationsformel Formel

p(x) =

n∑
k=0

λk

x− xk
yk

n∑
k=0

λk

x− xk

Falls wir die Stützstellen als (n + 1) Chebyshev-Abszissen xk = cos
(
kπ

n

)
wählen, so sind alle λk gegeben durch

λk = (−1)kδk mit δ0 = δn = 0.5 und δi = 1.
Mit anderen λk eröffnet die baryzentrische Formel einen Weg zur Verallgemeinerung der Interpolation mittels rationaler
Funktionen und ist entsprechend kein Polynom mehr.
Eine weitere Anwendung der Formel ist als Ausganspunkt für die Spektralmethode für Differenzialgleichungen.

1 def interp_barycentric(
2 data_point_x: np.ndarray,
3 data_point_y: np.ndarray,
4 barweight: np.ndarray,
5 x: np.ndarray
6):
7 p_x = np.zeros_like(x)
8 n = data_point_x.shape[0]
9

10 for i in range(x.shape[0]):
11 # Separate sums to divide in the end
12 upper_sum = 0
13 lower_sum = 0
14 for k in range(n):
15 frac = barweight[k] / (x[i] - data_point_x[k])
16 upper_sum += frac * data_point_y[k]
17 lower_sum += frac
18 p_x[i] = upper_sum / lower_sum
19

20 return p_x

29. Dezember 2025 13 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

2.3.1 Fehler

Falls an den Stützstellen xi durch beispielsweise ungenaue Messungen unpräzise Werte ỹi haben, so entsteht logischer-
weise auch ein unpräzises Polynom p̃(x). Verglichen in der Lagrange-Basis zum korrekten Interpolationspolynom p(x)
ergibt sich folgender Fehler:

|p(x)− p̃(x)| =

∣∣∣∣∣
n∑

i=0
(yi − ỹi)li(x)

∣∣∣∣∣ ≤ max
i=0,...,n

|yi − ỹi| ·
n∑

i=0
|li(x)|

Definition 2.3.5: (Lebesgue-Konstante) Zu den Stützstellen x0, . . . , xn im Intervall [a, b] ist sie definiert durch

Λn = max
x∈[a,b]

n∑
i=0
|li(x)|

Satz 2.3.7: (Auswirkung von Messfehlern) Es gilt (wenn Λn die beste Lebesgue-Konstante für die Ungleichung ist):
max

x∈[a,b]
|p(x)− p̃(x)| ≤ Λn max

i=0,...,n
|yi − ỹi|

Fehler Satz 2.3.8

Sei f : [a, b]→ R und p das Interpolationspolynom zu f . Seien x0, . . . , xn die Stützstellen, dann gilt:
||f(x)− p(x)||∞ = max

x∈[a,b]
|f(x)− p(x)| ≤ (1 + Λn) min

q∈Pn

max
x∈[a,b]

|f(x)− q(x)|

Bemerkung 2.3.10: Für gleichmässig auf I verteilte Stützstellen gilt Λn ≈
2n+1

en log(n)

Wichtig: Niemals gleichmässig verteilte Stützstellen verwenden für die Interpolation von Polynomen hohen
Grades

Präzisere Interpolationen lassen sich beispielsweise durch Unterteilen des Intervalls in kleinere Intervalle finden, indem
man für jedes Intervall ein separates Polynom berechnet, oder indem eine ideale Verteilung der Stützstellen wählt (was
wiederum nicht einfach zu erzielen ist, siehe nächstes Kapitel).

29. Dezember 2025 14 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

2.4 Chebyshev Interpolation

Chebyshev-Polynome Definition 2.4.1

Erster Art

Tn(x) = cos(n arccos(x)), x ∈ [−1, 1]

Zweiter Art

Un(x) = sin((n+ 1) arccos(x))
sin(arccos(x)) , x ∈ [−1, 1]

Tn(x) scheint erst nicht ein Polynom zu sein, aber wir haben einen arccos in einem cos. Zudem:

Satz 2.4.3: (Eigenschaften) Das n-te Chebyshev-Polynom ist ein Polynom von Grad n und für x ∈ [−1, 1] gilt:

1. T0(x) = 1, T1(x) = x,
Tn+1(x) = 2xTn(x)− Tn−1(x)

2. |Tn(x)| ≤ 1

3. Tn

(
cos
(

kπ
n

))
= (−1)k für k = 0, . . . , n

4. Tn

(
cos
(

(2k+1)π
2n

))
= 0 für k = 0, . . . , n− 1

Definition 2.4.4: (Chebyshev-Knoten) Die (n+1) Chebyshev-Knoten x0, . . . , xn im Intervall [−1, 1] sind die Nullstellen
von Tn+1(x)

Bemerkung 2.4.5: (Chebyshev-Knoten für beliebiges Intervall) Für I = [a, b] sind die Chebyshev-Knoten:

xk = a+ 1
2(b− a)

(
cos
(

2k + 1
2(n+ 1)π

)
+ 1
)

k = 0, . . . , n

Definition 2.4.6: (Chebyshev-Abszissen) Die (n − 1) Chebyshev-Abszissen x0, . . . , xn−2 im Intervall [−1, 1] sind die
Extrema des Chebyshev-Polynoms Tn(x) und zeitgleich die Nullstellen von Un−1(x). Je nach Kontext nimmt man noch
die Grenzen des Intervalls (1 und −1) hinzu und hat dann (n+ 1) Abszissen.
Die Baryzentrischen Gewichte sind dann viel einfacher zu berechnen: λk = (−1)k (siehe Bemerkung unterhalb der
Baryzentrischen Interpolationsformel, Kapitel 2.3)

Bemerkung 2.4.7: (Chebyshev-Abszissen für beliebiges Intervall) Für I = [a, b] sind die Chebyshev-Abszissen:

xk = a+ 1
2(b− a)

(
cos
(
k

n
π

)
+ 1
)

k = 0, . . . , n

Oder k = 1, . . . , n− 1 bei ausgeschlossenen Endpunkten a und b

Bemerkung 2.4.8: Gegen die Ränder des Intervalls werden die Chebyshev-Knoten dichter.

Orthogonalität Satz 2.4.9

Die Chebyshev-Polynome sind orthogonal bezüglich des Skalarprodukts

⟨f, g⟩ =
∫ 1

−1
f(x)g(x) 1√

1− x2
dx

Sie (T0, . . . , Tn) sind zudem orthogonal bezüglich des diskreten Skalarprodukts im Raum der Polynome von Grad
≤ n

(f, g) =
n∑

l=0
f(xl)g(xl)

wobei (x0, . . . , xn) die Nullstellen von Tn+1 sind.

29. Dezember 2025 15 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

2.4.1 Fehler

Was hat die neue Verteilung für einen Einfluss auf den Fehler?

Fehlerabschätzung Satz 2.4.11

Unter allen (x0, . . . , xn) mit xi ∈ R wird (wobei xk die Nullstellen von Tn+1 sind)

max
x∈[−1,1]

|(x− x0) · . . . · (x− xn)| minimal für xk = cos
(

2k + 1
2(n+ 1)π

)

Folglich sind also die Nullstellen der Chebyshev-Polynome Tn die bestmögliche Wahl für die Stützstellen. Da die Abszissen
mit FFT einfacher zu berechnen sind, werden diese oft bevorzugt berechnet. Dies, da die Nullstellen von Tn in den
Extrema von T2n enthalten sind, während zudem zwischen zwei nebeneinanderliegenden Chebyshev-Abszissen jeweils
eine Nullstelle von T2n liegt

Satz 2.4.13: (Lebesgue-Konstante) Für die Chebyshev-Interpolation: Λn ≈
2
π

log(n) für n→∞

Interpolationspolynom Satz 2.4.15

Das Interpolationspolynom p zu f mit Chebyshev-Knoten gleich der Nullstellen von Tn+1 ist gegeben durch

p(x) = c0 + c1T1(x) + . . .+ cnTn(x)

wobei für die ck gilt:

ck = 2
n+ 1

n∑
l=0

f

cos
(

2l + 1
n+ 1

π

2

)
︸ ︷︷ ︸

=xi(Knoten)

 cos
(
k

2l + 1
n+ 1

π

2

)
für k = 1, . . . , n

ck = 1
n+ 1

n∑
l=0

f

cos
(

2l + 1
n+ 1

π

2

)
︸ ︷︷ ︸

=xi(Knoten)

 cos
(
k

2l + 1
n+ 1

π

2

)
für k = 0

Für n ≥ 15 berechnet man ck mit der Schnellen Fourier Transformation (FFT).

Bemerkung 2.4.16: (Laufzeit) Für die Interpolation ergibt sich folgender Aufwand:

Direkte Berechnung der ck O
(
(n+ 1)2) Operationen

Dividierte Differenzen O
(

n(n+1)
2

)
Operationen (zum Vergleich)

ck mittels FFT O (n log(n)) Operationen

Satz 2.4.17: (Clenshaw-Algorithmus) Seien dn+2 = dn+1 = 0. Sei dk = ck + (2x)dk+1 − dk+2 für k = n, . . . , 0
Dann gilt: p(x) = 1

2 (d0−d2) und man kann das Interpolationspolynom p(x) mit Hilfe einer Rückwärtsrekursion berechnen
Der Clenshaw-Algorithmus ist sehr stabil, auch wenn er mit (oft) unstabilen Rekursionen implementiert ist.
Auf der nächsten Seite findet sich eine saubere, effiziente Implementation des Clenshaw-Algorithmus:

29. Dezember 2025 16 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

1 def clenshaw(coeffs: np.ndarray, x: np.ndarray):
2 n = len(coeffs) - 1
3 # initialise temporary variables
4 d_prev_prev, d_prev, d_curr = (
5 np.zeros_like(x),
6 np.zeros_like(x),
7 np.zeros_like(x),
8)
9

10 for k in range(n, -1, -1): # backward recursion
11 d_curr = coeffs[k] + 2 * x * d_prev - d_prev_prev
12 d_prev_prev, d_prev = d_prev, d_curr
13

14 return d_prev - x * d_prev_prev

In numpy kann man mit np.polynomial.chebyshev.chebfit ein polyfit für Chebyshev-Polynome durchführen und
mit np.polynomial.chebyshev.chebder die Ableitungen der Approximation berechnen. Die chebder-Funktion nimmt
die normalen Chebyshev-Koeffizienten als Argument, die man einfach mit folgendem Code berechnen kann:

1 def get_cheb_coeffs(abscissa: np.ndarray)
2 n = len(abscissa) - 1
3 dct_vals = scipy.fft.dct(abscissa, type=1)
4

5 coeffs = dct_vals / n
6 coeffs[0] /= 2
7 self.coeffs = coeffs

29. Dezember 2025 17 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

3 Trigonometrische Interpolation
3.1 Fourier-Reihen
Eine Anwendung der (Schnellen) Fourier-Transformation (FFT) ist die Komprimierung eines Bildes und sie wird im
JPEG-Format verwendet.
Intuition: Wir haben eine Datenmenge D, die die y-Werte einer Frequenzmessung an N äquidistanten Punkten enthält.

Die Fourier-Transformation dieser Datenmenge ergibt eine neue Datenmenge, nennen wir sie F , die, wenn geplottet,
einem Plot der Frequenzanalyse entsprechen. Dies ist auch korrekt, denn die Fourier-Transformation macht (verein-
facht) genau das; Sie macht einen Basiswechsel auf der Datenmenge D, so dass die Frequenz auf der x-Achse und die
“Häufigkeit” deren auf der y-Achse aufgetragen werden, oder formaler, so dass wir statt einer Funktion der Zeit eine
Funktion der Frequenz haben.
Das Inverse davon nimmt eine Funktion der Frequenz und transformiert diese in eine Funktion der Zeit

Definition 3.1.1: (Trigonometrisches Polynom von Grad ≤ m) Die Funktion:

pm(t) := t 7→
m∑

j=−m

γje
2πijt wobei γj ∈ C und t ∈ R

Bemerkung 3.1.2: pm : R→ C ist periodisch mit Periode 1. Falls γ−j = γj für alle j, dann ist pm reellwertig und pm

kann folgendermassen dargestellt werden (a0 = 2γ0, aj = 2Re(γj) und bj = −2Im(γj)):

pm(t) = a0

2 +
m∑

j=1
(aj cos(2πjt) + bj sin(2πjt))

L2-Funktionen Definition 3.1.3

Wir definieren die L2-Funktionen auf dem Intervall (0, 1) als
L2(0, 1) := {f : (0, 1)→ C | ||f ||L2(0,1) <∞}

während die L2-Norm (= Euklidische Norm, also die normale Vektornorm) auf (0, 1) durch das Skalarprodukt

⟨g, f⟩L2(0,1) :=
∫ 1

0
g(x)f(x) dx

über ||f ||L2(0,1) =
√
⟨f, f⟩L2(0,1) induziert wird

Bemerkung 3.1.4: L2(a, b) lässt sich analog definieren mit

⟨g, f⟩L2(a,b) :=
∫ b

a

g(x)f(x) dx

= (b− a)
∫ 1

0
g(a+ (b− a)t)f(a+ (b− a)t) dt

In Anwendungen findet sich oft das Intervall
[
−T

2 ,
T
2
]
. Dann verwandeln sich die Integrale in die Form 1

T

∫ − T
2

T
2

(. . .) dt
und exp(2πijt) durch exp(i 2πj

T t) ersetzt wird.

Bemerkung 3.1.6: Die Funktionen φk(x) = exp(2πikx) sind orthogonal bezüglich des L2(0, 1)-Skalarprodukts, bilden
also eine Basis für den Unterraum der trigonometrischen polynome.

Definition 3.1.7: Eine Funktion f ist der L2-Grenzwert von Funktionenfolgen fn ∈ L2(0, 1), wenn für n → ∞ gilt,
dass ||f − fn||L2(0,1) → 0

29. Dezember 2025 18 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Fourier-Reihe Satz 3.1.8

Jede Funktion f ∈ L2(0, 1) ist der Grenzwert ihrer Fourier-Reihe:

f(t) =
∞∑

k=−∞

f̂(k)e2πikt

wobei die Fourier-Koeffizienten

f̂(k) =
∫ 1

0
f(t)e−2πikt dt k ∈ Z

definiert sind. Es gilt die Parseval’sche Gleichung:
∞∑

k=−∞

|f̂(k)|2 = ||f ||2L2(0,1)

Bemerkung 3.1.9: Oder viel einfacher und kürzer: Die Funktionen φk(x) bilden eine vollständige Orthonormalbasis in
L2(0, 1).

Bemerkung 3.1.14: Die Parseval’sche Gleichung beschreibt einfach gesagt einen “schnellen” Abfall der f̂(k). Genauer
gesagt, klingen die Koeffizienten schneller als 1√

k
ab. Sie sagt zudem aus, dass die L2-Norm der Funktion aus einer

Summe berechnet werden kann (nicht nur als Integral). Wenn wir die Fourier-Reihe nach t ableiten, erhalten wir

f ′(t) =
∞∑

k=−∞

2πikf̂(k)e2πikt

Fourier-Reihe Satz 3.1.15

Seien f und f ′ integrierbar auf (0, 1), dann gilt f̂ ′(k) = 2πikf̂(k) für k ∈ Z.
Falls die Operationen erlaubt sind, dann gilt zudem:

f̂ (n) = (2πik)nf̂(k) und ||f (n)||2L2 = (2π)2n
∞∑

k=−∞

k2n|f̂(k)|2

Satz 3.1.16: Wenn
∫ 1

0
|f (n)(t)| dt <∞, dann ist f̂(k) = O (k−n)

Falls die Funktion jedoch nicht glatt ist, dann entstehen Überschwingungen an den Sprungstellen, die näher und näher
an die Sprünge herankommen, aber nicht kleiner werden, wenn wir mehr Terme der Fourier-Reihe aufsummieren. Das
Phänomen wird das Gibbs-Phänomen gennant und wir haben L2-Konvergenz, aber keine punktweise Konvergenz an
der Sprungstelle.

Bemerkung 3.1.17: Diese Überschwingungen entstehen durch die Definition der Fourier-Reihe und sind in der un-
tenstehenden Abbildung 3.1.18 aus dem Skript sehr gut ersichtlich. Die dargestellte Funktion ist die Fourier-Reihe der
charakteristischen Funktion des Intervalls [a, b] ⊆]0, 1[, welche sich folgendermassen analytisch berechnen lässt:

b− a+ 1
π

∑
k ̸=0

e−ikc sin(kd)
k

ei2πkt, t ∈ [0, 1]

Mit c = π(a+ b) und d = π(b− a)

Bemerkung 3.1.19: Meist ist es nicht möglich (oder nicht sinnvoll) die Fourier-Koeffizienten analytisch zu berechnen,
weshalb man wieder zur Numerik und der Trapezformel greift, die folgendermassen definiert ist für tl = l

N , wobei
l = 0, 1 . . . , N − 1 und N die Anzahl der Intervalle ist:

f̂N (k) := 1
N

N−1∑
l=0

f(tl)e−2πiktl ≈ f̂(k)

29. Dezember 2025 19 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Abbildung 3.1.18: Überschwingungen der Fourier-Reihe der charakteristischen Funktion des Intervalls [a, b] ⊆]0, 1[. (Ab-
bildung aus dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 69)

3.2 Diskrete Fourier Transformation
3.2.1 Motivation

Nutzen wir die Trapezregel um approximativ die Fourierkoeffizienten f̂N (k) auf äquidistanten Punkten lt = l
N (0 ≤ l ≤

N − 1) zu bestimmen, erhalten wir tatsächlich ein Polynom pN−1 welches die Interpolationsbedingung erfüllt:

pN−1(t) =
N
2 −1∑

k=− N
2

f̂N (k)e2πikt

Der Beweis hierfür ist im Skript auf p. 71. Die N -te Einheitswurzel wird hier definiert:

Definition 3.2.1: (N -te Einheitswurzel) ωN := exp(−2πi
N)

Bemerkung 3.2.2: (Eigenschaften von ωN)

∀j, k ∈ Z : ωk+jN
N = ωk

N

∀k ∈ Z, t ∈ R : ωt+kN
N = ωt

N

ωN
N = 1

ω
N/2
N = −1

N−1∑
k=0

ωkj
N =

{
N, j ≡N 0
0, sonst

3.2.2 Konstruktion

Wir definieren die Trigonometrische Basis. Den Basiswechsel zu dieser Basis nennen wir diskrete Fourier Transformation.

Definition 3.2.3: (Trigonometrische Basis)

{v0, . . . , vN−1} ist eine Basis von CN , wobei vk =


ω0·k

N

ω1·k
N
...

ω
(N−1)·k
N

 ∈ CN

Die symmetrische, nicht hermitesche Matrix V = [v0, . . . , vN−1] ist eine orthogonale Basis für CN : V HV = N · IN .
Ebenfalls ist V die Basiswechsel Matrix Trigonometrische Basis (z) 7→ Standardbasis (y).
An Hand von V definieren wir gleich die Fourier-Matrix FN .

y = V z =⇒ z = V −1y = 1
N
V Hy = 1

N
FN︸︷︷︸

:=V H

y

Der Eintrag yl enstspricht einem Glied der Fourier-Reihe ausgewertet in l
N ∈ [0, 1).

Die diskreten Fourier-Koeffizienten γk sind eine Umsortierung der Koeffizienten der trigonometrischen Basis.

29. Dezember 2025 20 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

y =
N−1∑
k=0

ykek+1︸ ︷︷ ︸
y in Komponenten

=
N−1∑
k=0

zkvk︸ ︷︷ ︸
in Trig. Basis

=
N−1∑
k=0

zk


ω0·k

N

ω1·k
N

ω2·k
N
...

ω
(N−1)·k
N

 yl =
N−1∑
k=0

zkω
l·k
N

S. 75=
N/2−1∑

k=−N/2

γk · exp(2πi
N
lk)

wobei γk =
{
zk, 0 < k ≤ N

2 − 1
zk +N, −N

2 ≤ k < 0

Definition 3.2.4: (Fourier-Matrix)

FN := V H = [v0, . . . , vN−1]H =


ω0

N ω0
N · · · ω0

N

ω0
N ω1

N · · · ωN−1
N

ω0
N ω2

N · · · ω
2(N−1)
N

...
...

...
ω0

N ωN−1
N · · · ω

(N−1)2

N

 =
[
ωjk

N

]N−1
j,k=0 ∈ CN×N

Die skalierte Fourier-Matrix 1√
N
FN hat einige besondere Eigenschaften.

Satz 3.2.6: Die skalierte Fourier-Matrix 1√
N
FN ist unitär: F−1

N = 1
N F

H
N = 1

N FN

Bemerkung 3.2.7: (Eigenwerte von 1√
N
FN) Die λ von 1√

N
FN liegen in {1,−1, i,−i}.

Die diskrete Fourier-Transformation ist nun einfach die Anwendung der Basiswechsel-Matrix FN .

Definition 3.2.5: (Diskrete Fourier-Transformation) FN : C→ C s.d. FN (y) = FNy

Für c = FN (y) gilt: ck =
N−1∑
j=0

yjω
kj
N

c lässt sich als Repräsentation von y im Frequenzbereich interpetieren. Durch die DFT können wir nun jederzeit zwischen
der normalen und der Frequenz-perspektive wechseln. Das ermöglicht einige interessante Anwendungen.

3.2.3 DFT in Numpy

Sei y in der Standardbasis, und c = FN (y), also y in der trig. Basis.

c = FN × y = fft(y) (DFT in numpy)y = 1
N
FH

N c = ifft(c) (Inverse DFT in numpy)

Um zur ursprünglichen Darstellung des trig. Polynoms zurück zu kommen, müssen wir die Koeffizienten umsortieren:
Seien z = 1

N FNy und ζ = fft.fftshift(z).

f(x) ≈
N/2−1∑

k=−N/2

ζk · e2πikx

︸ ︷︷ ︸
Form des trig. Polynoms

Bemerkung 3.2.13: Man kann mit dieser Approximation einfach die L2-Norm und Ableitungen berechnen:

||f ||2L2 ≈

∥∥∥∥∥∥
N/2−1∑

k=−N/2

ζk · e2πikx

∥∥∥∥∥∥
2

L2

=
N/2−1∑

k=−N/2

|ζk|2 = ∥z∥2
L2

f ′(t) ≈
N/2−1∑

k=−N/2

(2πik)ζk · e2πikx

29. Dezember 2025 21 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

3.2.4 DFT & Lineare Algebra

Definition 3.2.25: (Zirkulant) Für einen vektor c ∈ RN hat der Zirkulant C ∈ RN×N die Form:

C =



c0 cN−1 cN−2 · · · c3 c2 c1
c1 c0 cN−1 · · · c4 c3 c2
c2 c1 c0 · · · c5 c4 c3
...

...
...

...
...

cN−3 cN−4 cN−5 · · · c0 cN−1 cN−2
cN−2 cN−3 cN−4 · · · c1 c0 cN−1
cN−1 cN−2 cN−3 · · · c2 c1 c0


SN =


0 0 · · · · · · 0 1
1 0 · · · · · · 0 0
...

...
...

0 0 · · · · · · 0 0
0 0 · · · · · · 1 0



Die Shift Matrix SN ist der Zirkulant für c = e2. SN ist eine Permutationsmatrix, die alle Einträge nach vorne schiebt.

SN


x0
x1
...

xN−1

 =


xN−1
x0
...

xN−2

 S⊤
N


xN−1
x0
...

xN−2

 =


x0
x1
...

xN−1


Die Shift-Matrix hat einen speziellen Bezug zu den Spaltenvektoren vk von FN , und auch allen anderen Zirkulanten C.

Bemerkung 3.2.26: Der k-te Fourier-Vektor vk ist ein Eigenvektor von SN zu λk = e2πi k
N .

Satz 3.2.27: (Diagonalisierung von Zirkulanten) Die Eigenvektoren von SN diagonalisieren jeden Zirkulanten C, und
sind d.h. auch die Eigenvektoren von C. Die Eigenwerte erhält man aus p(z) = c0z

0 + . . .+ cN−1z
N−1.

Eine Operation mit vielen Anwendungen ist die Faltung. Sie hat einige Beziehungen zur Fourier-Transformation.

Definition 3.2.28: (Faltung) a ∗ b := (ck)k∈Z =
∞∑

n=−∞
anbk−n, wobei (ak)k∈Z, (bk)k∈Z unendliche Folgen sind.

Die Faltung von a = [a0, . . . , aN−1]⊤, b = [b0, . . . , bN−1]⊤ ist leicht: Man erweitert beide Vektoren mit Nullen.

Definition 3.2.29: (Zyklische Faltung) Für N -periodische Folgen oder Vektoren der Länge N :

c = a⊛ b s.d.
N−1∑
n=0

anbk−n ≡N

N−1∑
n=0

bnan−k

Bemerkung 3.2.32: Zyklische Faltungen von Vektoren kann man mit Zirkulanten berechnen.

c = a⊛ b = Ab =

 a0 · · · aN−1
...

aN−1 · · · a0


︸ ︷︷ ︸

Zirkulant von a

b

Bemerkung 3.2.30: Eine Multiplikation von Polynomen g, h entspricht einer Faltung im Frequenzbereich.

FN (g ∗ h︸︷︷︸
Standard Basis

) = FN (g) · FN (h)︸ ︷︷ ︸
Trigonometrische Basis

Im Fall von T -periodischen Funktionen gilt: (g ∗ h)(x) = 1
T

∫ T

0
g(t)h(x− t).

Bemerkung 3.2.31: Da FN jeden Zirkulant C diagonalisiert (Satz 3.4.27), gilt sogar:

c = a⊛ b = Ab = F−1
N p(D)FNb (p(D) ist Diagonalmatrix der λ von C)

Man erhält so letzendlich das Faltungs-Theorem: Die FN -Transformierte einer Faltung ist genau das gleiche wie die
Multiplikation zweier FN -Transormierten. Da die DFT in O(n log(n)) (Kap. 3.3) geht, gilt dies nun auch für die Faltung.

FNc = diag(FNa)FNb

29. Dezember 2025 22 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

3.3 Schnelle Fourier Transformation
Da es viele Anwendungen für die Fourier-Transformation gibt, ist ein Algorithmus mit guter Laufzeit sehr wichtig.
Während eine naive version des DFT-Algorithmus eine Laufzeit von O

(
N2) hat, so hat der Fast Fourier Transform

Algorithmus nur eine Laufzeit von O (N log(N)), was bei N = 1024 bereits eine Laufzeitsverbesserung von 100× mit
sich bringt (O (10 000) vs O (1 000 000) Operationen)! Die untenstehende Abbildung 3.3.3 findet sich, zusammen mit
dem Code, mit der sie produziert wurde im Skript auf Seite 86-88

Abbildung 3.3.3: Vergleich der Laufzeit von verschiedenen Fourier-Transformations-Algorithmen. (Abbildung 3.3.3 aus
dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 88)

Der hier besprochene Cooley-Tukey-Algorithmus wurde ursprünglich von Gauss 1805 entdeckt, dann vergessen und
schliesslich 1965 von Cooley und Tukey wiederentdeckt. Der Algorithmus verwendet einen “Divide and Conquer” Ap-
proach, also ist logischerweise die Idee, dass man die Berechnung einer DFT der Länge n auf die Berechnung vieler DFTs
kleinerer Längen zurückführen kann.
Für den Algorithmus müssen folgende vier Optionen betrachtet werden:

I Vektoren der Länge N = 2m =⇒ Laufzeit gut
II Vektoren der Länge N = 2L =⇒ Laufzeit ideal

III Vektoren der Länge N = pq mit p, q ∈ Z =⇒ Etwas langsamer
IV Vektoren der Länge N , mit N prim =⇒ ca. O

(
N2), besonders für N gross

Wir formen die Fourier-Transformation um für den ersten Fall (N = 2m):

ck =
N−1∑
j=0

yje
− 2πi

N jk

=
m−1∑
j=0

y2je
− 2πi

N 2jk +
m−1∑
j=0

y2j+1e
− 2πi

N (2j+1)k

=
m−1∑
j=0

(
y2je

− 2πi
N÷2 jk

)
+ e− 2π

N k

m−1∑
j=0

y2j+1e
− 2πi

N÷2 jk


Der zweite Fall ist einfach eine rekursive Weiterführung des ersten Falls, bei welchem dann das m kontinuierlich weiter
dividiert wird bis zum Trivialfall mit einer 1× 1-Matrix.
In numpy gibt es die Funktionen np.fft.fft (Vorwärts FFT), np.fft.ifft (Rückwärts FFT). scipy.fft liefert

dieselben Funktionen und sie sind oft etwas schneller als die von numpy

29. Dezember 2025 23 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

3.4 Trigonometrische Interpolation
3.4.1 Von Approximation zur Interpolation

Wir erinnern uns daran, dass wir die Fourier-Approximation durch den Abbruch der unendlichen Fourier-Reihe erhalten,
oder in anderen Worten, wir verkleinern die Limiten der Summe.
Bemerkung 3.4.1: (DFT mit N = 2n Koeffizienten an Punkten l

N für l = 0, 1, . . . , N − 1)

Der Shift ist hier gegeben durch (für k ≥ 0 ist γk = f̂N (k) und für k < 0 ist γk = f̂N (N + k))

fN−1(x) =
n−1∑

k=−n

γke
2πikx =

n−1∑
k=0

γke
2πikx +

−1∑
k=−n

γke
2πikx

⇔ fN−1(x) = 1
N

N−1∑
j=0

(
f

(
j

n

) n−1∑
k=−n

e2πik(x− j
N)
)

Wenn wir die Funktion nun an der Stelle l
N auswerten so erhalten wir:

fN−1

(
l

N

)
= . . . = f

(
l

N

)
was aufgrund der Orthogonalität der diskreten Fourier-Vektoren funktioniert, welche besagt, dass

n−1∑
k=−n

ω
k(j−l)
N = 0, für

alle j ̸= l. Für j = l ergibt die Summe N .
Dies heisst also, dass die Fourier-Approximation die Interpolationsbedingungen an den Punkten l

N erfüllt, also können
wir die Lösung der Interpolationsaufgabe pN−1

(
l

N

)
= f

(
l

N

)
f l = 0, 1, . . . , N − 1 im Raum

TN = span{e2πijt | j = −
⌊
N − 1

2

⌋
, . . . ,

⌊
N

2

⌋
}

folgendermassen finden können:
(1) Mittels Gleichungssystem

∑
j γje

2πijtl = f(tl) für l = 0, . . . , N − 1. Operationen: O
(
N3)

(2) Mittels FFT in O (N log(N)) Operationen, aber nur falls die Punkte äquidistant sind, also tl = l
N . Dann ist die

Matrix des obigen Gleichungssystems F−1
N

Unten findet sich Python code der mit den unterschiedlichen Methoden die Koeffizienten des Trigonometrischen Polynoms
bestimmt.

1 def get_coeff_trig_poly(t: np.ndarray, y: np.ndarray):
2 N = y.shape[0]
3 if N % 2 == 1:
4 n = (N - 1.0) / 2.0
5 M = np.exp(2 * np.pi * 1j * np.outer(t, np.arange(-n, n + 1)))
6 else:
7 n = N / 2.0
8 M = np.exp(2 * np.pi * 1j * np.outer(t, np.arange(-n, n)))
9 c = np.linalg.solve(M, y)

10 return c
11

12 N = 2**12
13 t = np.linspace(0, 1, N, endpoint=False)
14 y = np.random.rand(N)
15 direct = get_coeff_trig_poly(t, y)
16 using_fft = np.fft.fftshift(np.fft.fft(y) / N)
17 using_ifft = np.conj(np.fft.fftshift(np.fft.ifft(y)))

29. Dezember 2025 24 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

3.4.2 Zero-Padding-Auswertung

Ein trigonometrisches Polynom pN−1(t) kann effizient an den äquidistanten Punkten k
M mit M > N ausgewertet werden,

für k = 0, . . . ,M − 1. Dazu muss das Polynom pN−1 ∈ TN ⊆ TM in der trigonometrischen Basis TM neugeschrieben
werden, in dem man Zero-Padding verwendet, also Nullen im Koeffizientenvektor an den Stellen höheren Frequenzen
einfügt.
TODO: Insert cleaned up code from Page 95 (part of exercises)
Die folgende Funktion wird im Script evaliptrig genannt.

1 def evaluate_trigonometric_interpolation_polynomial(y: np.ndarray, N: int):
2 n = len(y)
3 if (n % 2) == 0:
4 c = np.fft.ifft(y) # Fourier coefficients
5 a = np.zeros(N, dtype=complex)
6

7 # Zero padding
8 a[: n // 2] = c[: n // 2]
9 a[N - n // 2 :] = c[n // 2 :]

10 return np.fft.fft(a)
11 else:
12 raise ValueError("odd length")

29. Dezember 2025 25 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

3.5 Fehlerabschätzungen

Konvergenz Definition 3.5.1

Algebraische Konvergenz
Wenn der Fehler E(n) = O

(1
np

)
mit p > 0 ist

Exponentielle Konvergenz
Wenn der Fehler E(n) = O (qn) mit 0 ≤ q < 1

Beispiel: Zur Fehlerbetrachtung verwenden wir drei Funktionen f : [0, 1] → R, welche wir mit trigonometrischer
Interpolation an den Punkten k

N approximieren:

(I) Stufenfunktion (periodische Fortsetzung von f) f : [0, 1]→ R mit f(t) =
{

0 für
∣∣t− 1

2
∣∣ > 1

4
1 für

∣∣t− 1
2
∣∣ ≤ 1

4

(II) Periodische, glatte Funktion h : R→ R mit h(t) = 1√
1 + 1

2 sin(2πt)

(III) Hutfunktion (periodische Fortsetzung von h) g : [0, 1]→ R mit g(t) =
∣∣t− 1

2
∣∣

Die untenstehende Abbildung 3.5.2 beinhaltet einen Plot, auf dem die Konvergenz in Abhängigkeit des Grades des
Interpolationspolynoms aufgetragen ist.

Abbildung 3.5.2: Interpolierungsfehler der Beispiele. Algebraische Konvergenz für (I) und (III), exponentielle für (II).
(Abbildung 3.5.2 aus dem Vorlesungsdokument von Prof. V. Gradinaru, Seite 96)

Auch hier tritt das Gibbs-Phänomen wieder an den Sprungstellen von f(t) auf. Dies verursacht die Verlangsamung der
Konvergenz in den Stellen, in welchen die Funktion nicht glatt ist.

29. Dezember 2025 26 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Beispiel 3.5.4: Sei für α ∈ [0, 1) f(t) = 1√
1− α sin(2πt)

. Die Konvergenz ist exponentiell in n und je kleiner α, desto

schneller ist sie. In der untenstehenden Abbildung 3.5.5 sind einige Beispiele aufgetragen:

Abbildung 3.5.5: Fehler bei der trigonometrischen Interpolation. (Abbildung 3.5.5 aus dem Vorlesungsdokument von
Prof. V. Gradinaru, Seite 98)

Aliasing Satz 3.5.6

Der k-te Fourier-Koeffizient des N -ten trigonometrischen Interpolationspolynoms unterscheidet sich vom k-ten
Fourier-Koeffizienten von f gerade um die Summe aller Fourier-Koeffizienten, die um ganze Vielfache von N
vom k-ten Fourier-Koeffizienten verschoben sind:

p̂N (k)− f̂(k) =
∑

j ̸=0∈Z
f̂(k + jN)

Korollar 3.5.7: Für f ∈ Cp([0, 1]) mit p ≥ 1 und f 1-periodisch, dann gilt: |p̂N (k)− f̂(k)| = O ((N−p)) für |k| ≤ N
2

Das heisst also, dass die Fourier-Koeffizienten von f bei kleinen Frequenzen
(
hier |k| < N

2
)

sehr gut durch die Fourier-
Koeffizienten des trigonometrischen Interpolationspolynoms approximiert werden.

Fehler der trigonometrischen Interpolation Satz 3.5.8

Falls f 1-periodisch ist und die Reihe
∑

k∈Z |f̂(k)| absolut konvergiert, dann ist der Approximationsfehler definiert
als:

|pN (x)− f(x)| ≤ 2
∑

|k|≥ N
2

|f̂(k)| ∀x ∈ R

Da durch diesen Satz die obere Schranke für den Approximationsfehler durch die schwer approximierbaren Fourier-
Koeffizienten f̂(k) gegeben ist, heisst das folgendes für die Approximation von Polynomen von Grad deg(P (x)) < n für
unser Approximationspolynom von Grad deg(PN (x)) = n:

Korollar 3.5.9: (Abtasttheorem) Sei f 1-periodisch mit maximaler Frequenz m, also f̂(k) = 0 ∀|k| > m. Falls
N > 2m, dann gilt pN (x) = f(x) ∀x

Beispiel: Ein Beispiel aus der Musik: Wir haben ein analoges Signal und wollen es digitalisieren. Wir messen die
Spannungswerte in äquidistanten Punkten. Falls wir jedoch die Frequenz der Messung zu niedrig wählen, so kann ein
total falsches Interpolationspolynom entstehen, wie in der untenstehenden Abbildung 3.5.10 zu sehen: Für unser

29. Dezember 2025 27 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Abbildung 3.5.10: Aliasing für f(t) = cos(2π · 19t). (Abbildung 3.5.10 aus dem Vorlesungsdokument von Prof. V.
Gradinaru, Seite 100)

Signal bedeutet das also, dass wir eine Art Verzerrung auf der Aufnahme haben, oder für Autoräder, dass es so scheint,
als würden sich die Räder rückwärts drehen.

Fehlerabschätzung Satz 3.5.11

Sei f (k) ∈ L2(0, 1) ∀k ∈ N, dann gilt:

||f − pN (f)||L2(0,1) ≤
√

1 + ckN
−k||f (k)||L2(0,1) wobei ck = 2

∞∑
l=1

(2l − 1)−2k

Also, je mehr Ableitungen in L2(0, 1) liegen, desto kleiner ist der Fehler.
Im Skript auf Seiten 101 und 102 gibt es einige Abbildungen die eine gewisse Intuition hinter der Approximation und
den entstandenen Fehlern gibt.

29. Dezember 2025 28 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

3.6 DFT und Chebyshev-Interpolation
Mithilfe der DFT können günstig und einfach die Chebyshev-Koeffizienten (ck) berechnet werden. Die Idee basiert auf
dem Satz 2.4.16, durch welchen schon schnell klar wird, dass es eine Verbindung zwischen den Fourier-Koeffizienten und
Chebyshev-Koeffizienten gibt.
Die Chebyshev-Knoten sind folgendermassen definiert:

tk := cos
(

2k + 1
2(n+ 1)π

)
, k = 0, . . . , n

Mit den Hilfsfunktionen g : [−1, 1]→ C, s 7→ f(cos(2πs)) und q : [−1, 1]→ C, s 7→ p(cos(2πs)), können wir folgendes
mit der Interpolationsbedingung f(tk) = p(tk) tun:

f(tk) = p(tk)⇐⇒ g

(
2k + 1

4(n+ 1)

)
= p

(
2k + 1

4(n+ 1)

)
Wir wenden nun die Translation s∗ = s + 1

4n+1 an, die Hilfsfunktionen sind dann g ∗ (s) = g(s∗) und q∗(s) = q(s∗)
und man kann zeigen (Seite 100 im Skript), dass q∗ das trigonometrische Interpolationspolynom von g∗ ist, also kann
man eine Chebyshev-Interpolation durch eine DFT durchführen. Folglich überträgt sich auch die Fehlerabschätzung. Die
Interpolationsbedingungen sind folgendermassen definiert:

q

(
k

2(n+ 1) + 1
4(n+ 1)

)
= zk :=

{
yk für k = 0, . . . , n
y2n+1−k für k = n, . . . , 2n+ 1

Um das ganze zu implementieren ist eine andere Darstellung nützlich:

cos(2πξk) mit ξk = 2k + 1
4(n+ 1)

Durch Umformungen (Seite 101 im Skript) erhalten wir:

zl =
n∑

−n

ζj exp
(

2πijξ̃l

)
mit ξ̃l = l

2n+ 2 für 0, 1, . . . , 2n+ 1

ζj = cj exp
(

2πij
4(n+ 1)

)
für j = −n, . . . ,−1, 0, 1, . . . , n

Und mit weitern Umformungen erhalten wir

F−1
2n+2

[
exp

(
πinl

n+ 1

)
zl

]
= [ζk−n]

Auf Seite 102 im Skript findet sich auch eine effiziente Implementation dessen.

Bemerkung 3.6.2: Die Formel in Satz 2.4.16 (und in der eben erwähnten Implementierung) sind nichts anderes als
eine Version der DCT (Discrete Cosine Transform). Dies ist eine günstigere, aber beschränktere Variante der DFT, mit
der nur reellwertige, gerade Funktionen interpoliert werden können.
In numpy benutzen wir scipy.fft.dct. Dazu müssen die Mesungen in den Punkten xj = cos

(
(j + 0.5) · π

N

)
Bemerkung 3.6.3: Die Chebyshev-Koeffizienten cj können folgendermassen berechnet werden:

cj = 1
π

∫ 2π

0
f(cos(φ)) cos(jφ) dφ

Eine weitere effiziente Interpolation findet sich auf Seiten 104 - 105 im Skript

29. Dezember 2025 29 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

4 Stückweise Polynomiale Interpolation
4.1 Stückweise Lineare Interpolation
Globale Interpolation (also Interpolation auf dem ganzen Intervall]−∞,∞[) funktioniert nur dann gut, wenn:

(a) die gegebenen Interpolationspunkte als Chebyshev-Knoten oder -Abszissen verwendet werden können
(b) die Funktion glatt ist

Es müssen beide obige Eigenschaften zutreffen. Eine Idee um die Einschränkungen zu reduzieren oder komplett zu
entfernen ist es, das Intervall zu unterteilen, oder formaler, das Intervall I = [a, b] in viele kleinere Intervalle zu zerlegen.
Wir haben dann ein Polynom vom Grad n auf jedem Teilintervall mit n+ 1 Punkten, was den Fehler verringert:

|f(x)− s(x)| < hn+1

(n+ 1)! ||f
(n+1)||∞

Seien N + 1 Messpunkte gegeben. Wir verwenden sie als Knoten (im Englischen breakpoints gennant. Die Knoten sind
also nicht dasselbe wie in den vorigen Kapiteln, es gibt aber keinen wirklich sinnvollen Namen im Deutschen) diese
N + 1 Messpunkte. Die Knoten dienen Paarweise als Abgrenzung der neuen, kleinen Intervalle, die wir erstellt haben.
Die linearen Interpolanten für jedes Intervall sind (mit hj = xj − xj−1):

sj(x) = yj−1
xj − x
hj

+ yj
x− xj−1

hj
für x ∈ [xj−1, xj]

Wie man nun zu dieser Formel kommt: Sei χ(t) = t ∀t ∈ [0, 1]. Die Funktion f(t) = y0χ(1 − t) + y1χ(t) hat also die
Interpolationseigenschaften f(0) = y0 und f(1) = y1 und ist linear in t. Die Interpolation sj(x) auf [xj−1, xj] entsteht
dann also aus f mit Variablenwechsel t = x−xj−1

hj
∈ [0, 1]↔ x = xj−1 + hjt, also gilt:

sj(x) = yj−1χ

(
xj − x
hj

)
+ yjχ

(
x− xj−1

hj

)
für x ∈ [xj−1, xj]

Dies ist eine lokale Interpolation und sj ist 0 ausser im definierten Intervall. Die Idee des Variablenwechsel ist es, das
Intervall, auf welchem die Funktion definiert ist von [0, 1] nach [xj−1, xj] zu verschieben.

4.2 Kubische Hermite-Interpolation
Die Kubische Hermite-Interpolation (CHIP) produziert eine auf [a, b] stetig differenzierbare Funktion, welche auf den
Teilintervallen [xj−1, xj] jeweils ein Polynom von Grad 3 ist. Wichtige Eigenschaft von Polynomen n-ten Grades ist, dass
sie n+ 1 Freiheitsgrade haben (da sie n+ 1 freie Variabeln enthalten).
Nutzen wir wieder das Konzept von oben, und wählen eine Funktion φ(t) = t2(3 − 2t) für t ∈ [0, 1], so erfüllt f(t) =
y0φ(1 − t) + y1φ(t) wieder unsere Interpolationseigenschaften f(0) = y0 und f(1) = y1 und wir vollziehen denselben
Variablenwechsel wie oben. So erhalten wir:

pj(x) = yj−1φ

(
xj − x
hj

)
+ yjφ

(
x− xj−1

hj

)
für x ∈ [xj−1, xj]

Wir haben folgende Ableitungen: φ′(t) = 6t(1− t), also sind die Nullstellen dieser Funktion bei t ∈ {0, 1}, weshalb auch
die Ableitungen von pj an den Stellen xj−1 und xj verschwinden.
Für die Ableitungen definieren wir eine zweite Funktion ψ(t) = t2(t−1), welche offensichtlich die Nullstellen an t ∈ {0, 1}
hat und deren Ableitung ψ′(t) = t(3t− 2). Mit demselben Variablenwechsel müssen wir die Kettenregel beachten:

qj(x) = cj−1hjψ

(
x− xj−1

hj

)
− cjhjψ

(
xj − x
hj

)
für x ∈ [xj−1, xj]

Die Interpolationsfunktion ist dann einfach die Summe sj(x) = pj(x) + qj(x) für x ∈ [xj−1, xj]

In numpy verwendet man scipy.interpolate.Akima1DInterpolator oder PchipInterpolator, welcher “former-
haltender” ist, also wenn eine Funktion lokal monoton ist, so ist der Interpolant dort auch monoton. Bei anderen
Interpolationsmethoden ist dies nicht garantiert (so auch nicht beim Akima1DInterpolator)
Wenn man den Parameter method="makima" bei Akima1DInterpolator mitgibt, wird eine neuere modifizierte Variante davon ausgeführt

29. Dezember 2025 30 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Fehler der CHIP Satz 4.2.2

Sei f ∈ C4[a, b] und s der stückweise CHIP mit exakten Werten der Ableitungen s′(xj) = f ′(xj), s(xj) = f(xj)
für j = 0, . . . , N und sei sj ein Polynom vom Grad 3, für j = 1, . . . , N . Dann gilt:

||f (k) − s(k)||L∞ ≤ 1
384h

4−k||f (4)||L∞

mit h = maxj=1,...,N (xj − xj−1) und k = 0, 1

4.3 Splines

Raum der Splines Definition 4.3.1

Sei [a, b] ⊆ R ein Intervall, sei G = {a = x0 < x1 < . . . < xN = b} und sei d ≥ 1 ∈ N. Die Menge

Sd,G = {s ∈ Cd−1[a, b], sj := s|[xj−1,xj]| ist ein polynom von Grad höchstens d}

ist die Menge aller auf [a, b] (d−1) mal stetig ableitbaren Funktionen, die auf G aus stückweisen Polynomen von
Grad höchtens d bestehen und wir der Raum der Splines vom Grad d, oder der Ordnung (d+ 1) genannt

Bemerkung 4.3.2: Obige Definition ist undefiniert für d = 0, aber Sd,G kann als die Menge der stückweise Konstanten
Funktionen betrachtet werden. Im Vergleich zu den Kubischen Hermite-Interpolanten sind die Kubischen-Splines (für
d = 3) zweimal Ableitbar statt nur einmal

Bemerkung 4.3.3: dim(Sd,G) = N + d. Es werden oft kubische Splines in Anwendungen verwendet, also ist
dim(Sd,G) = N + 3, wir haben aber nur N + 1 Funktionswerte, also beleiben noch zwei Freiheitsgrade übrig.
Dies bedeutet, dass wir ein underdeterminiertes lineares Gleichungssystem haben für hj = xj − xj−1:

b0 a1 b1 0 0
0 b1 a2 b2

0
.

...
. . . aN−2 bN−2 0

0 0 bN−2 aN−1 bN−1





c0
c1

...

cN−1
cN


=



3
(

y1−y0
h2

1
+ y2−y1

h2
2

)
...

3
(

yN−1−yN−2
h2

N−1
+ yN −yN−1

h2
N

)


Wobei im Resultatvektor Einträge der Form

3
(
yj − yj−1

h2
j

+ yj+1 − yj

h2
j+1

)

enthalten sind und mit aj := 2
hj

+ 2
hj+1

und bj := 1
hj+1

für j = 0, 1, . . . , N − 1

Wir müssen also zwei weitere Gleichungen finden (oder zwei Freiheitsgrade eliminieren).

Definition 4.3.4: (Vollständige kubische Spline-Interpolation) Falls wir die zusätzlichen Bedingungen s′(x0) = c0 und
s′(xN) = cN mit gegebenen c0 und cN haben. Sie ist auch bekannt als clamped cubic spline. In der obigen Matrix
können dann die erste und letzte Spalte weggelassen werden.

Definition 4.3.5: (Natürliche kubische Spline-Interpolation) Falls wir die zusätzlichen Bedingungen s′′(x0) = 0 und
s′′(xN) = 0 haben. Dann fügen wir obigem SLE zwei Zeilen hinzu (1. und (N + 1)-te), die 2, 1, 0, 0, . . . = y1−y0

h1
und

0, . . . , 0, 1, 2 = yN −yN−1
hN

. Die Matrix ist nun also positive-definite und symmetrisch

Definition 4.3.6: (Periodische kubische Spline-
Interpolation) Falls wir die zusätzlichen Bedingungen
s′(x0) = s′(xN) und s′′(x0) = s′′(xN) haben. Dies macht
nur Sinn, wenn y0 = yN , also nehmen wir das an und wir
haben eine Spalte weniger und eine Reihe mehr, also ist die
Systemmatrix rechts

A :=


a1 b1 0 . . . 0 b0
b1 a2 b2 0

0
.

0
. . . aN−1 bN−1

b0 0 . . . 0 bN−1 a0



29. Dezember 2025 31 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Bemerkung 4.3.7: Die SLE können in O (n) gelöst werden.

Bemerkung 4.3.8: Mit der “not-a-knot”-Bedingung s′′′ ist stetig in x1 und xN−1 braucht man mindestens 4 Knoten.
Da wir kubische Splines betrachten erzwing die Bedingung dass ein Polynom nur in den ersten beiden und ein anderes
in den letzten beiden Subintervallen erscheint, also gilt s1 = s2 und sN−1 = sN

Bemerkung 4.3.9: Der natürliche Spline minimiert die Gesamtkrümmung des Funktionsgraphen:

∫ b

a

|s′′(x)|2 dx ≤
∫ b

a

|g′′(x)|2 dx

für alle Funktionen zweimal stetig differenzierbaren Funktionen g, für welche g(xj) = yj gilt für jedes j = 0, . . . , N

Interpolationsfehler vollständiger kubischer Splines Satz 4.3.10

Wenn f ∈ C4[a, b] und s der vollständige kubische Spline-Interpolation von f auf einem äquidistantem Gitter
mit Gitterweite h ist, dann ist der Fehler für k = 0, 1, 2, 3:

||f (k) − s(k)||L∞ ≤ 5
384h

4−k||f (4)||L∞

In numpy verwendet scipy.interpolate.CubicSpline aktuell die “not-a-knot”-Bedingung. Es ist möglich mithilfe
von bc type beim Instanziieren der Klasse die Art des Splines zu ändern. Folgende (relevante) Optionen stehen laut
Dokumentation zur Verfügung: "not-a-knot" (was der Default ist), "periodic", "clamped" und "natural"

Auf Seite 114-115 im Skript finden sich einige Abbildungen zur Konvergenz der verschiedenen Varianten des CubicSplices

29. Dezember 2025 32 / 57

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

5 Numerische Quadratur
5.3 Grundbegriffe und -Ideen
Es ist oft nicht möglich oder sinnvoll einen Integral analytisch zu berechnen. Mit Methoden der Quadratur können wir
Integrale nummerisch berechnen.
In numpy kann scipy.integrate.quad verwendet werden. Falls man jedoch eine manuelle Implementation erstellen

will, so nutzt man oft die Trapez- oder Simpson-Regel, da sie sowohl einfach zu implementieren, wie auch effizient sind.
In gewissen Anwendungen sind Gauss-Quadratur-Formeln nützlich, welche man durch Spektralmethoden ersetzen kann,
welche die FFT verwenden und effizienter sind.

Quadratur Definition 5.3.1

Ein Integral kann durch eine gewichtete Summe von Funktionswerten der Funktion f an verschiedenen Stellen
cn

i approximiert werden: ∫ b

a

f(x) d ≈ Qn(f ; a, b) :=
n∑

i=1
ωn

i f(cn
i)

wobei ωn
i die Gewichte und cn

i ∈ [a, b] die Knoten der Quadraturformel sind.

Wir wollen natürlich wieder cn
i ∈ [a, b] und wn

i so wählen, dass der Fehler minimiert wird.

Fehler Definition 5.3.2

Der Fehler der Quadratur Qn(f) ist

E(n) =

∣∣∣∣∣
∫ b

a

f(x) d−Qn(f ; a, b)

∣∣∣∣∣
Wir haben algebraische Konvergenz wenn E(n) = O

(1
np

)
mit p > 0 und exponentielle Konvergenz wenn

E(n) = O (qn) mit 0 ≤ q < 1

Die Idee, den Integral einer schweren Funktion zu berechnen, ist diese mit einer einfachen Funktion, die analytisch
integrierbar ist, zu approximieren. Wenn wir diese Funktion geschickt wählen, dann ist es sogar möglich, dass wir nur
eine solche Funktion für alle Funktionen f benötigen.
Wir ersetzen also f durch fn ∈ span{c0, c1, . . . , cn}, wobei die ci eine Basis des Raums der Funktionen auf [a, b] bilden:

∫ b

a

f(x) dx ≈
∫ b

a

fn(x) dx =
∫ b

a

(
n∑

k=0
αkbk(x)

)
dx =

n∑
k=0

αk

∫ b

a

ck(x) dx

Falls wir ck(x) = xk haben (was oft der Fall ist, je nach Funktion aber könnte eine rationale Funktion oder andere Arten
besser geeignet sein), dann erhalten wir: ∫ b

a

ck(x) dx = bk+1 − ak+1

k + 1

Lagrange-Polynome Definition 5.3.3

Für die Knoten x0, x1, . . . , xn ∈ R definieren wir die Polynome

li(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

als die Lagrange-Polynome zu den Stützstellen x0, x1, . . . , xn

Für ein Beispiel verweisen wir auf Beispiel 2.3.2

29. Dezember 2025 33 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Bemerkung 5.3.6: (Eigenschaften der Lagrange-Polynome) Zu den Eigenschaften aus 2.3.4 fügen wir an (die Eigen-
schaften aus Bemerkung 2.3.4 sind hier erneut aufgeführt)

1. li(xj) = 0 ∀j ̸= i

2. li(xi) = 1 ∀i

3. deg(li) = n ∀i

4.
∑n

k=0 lk(x) = 1 ∀x ∈ R

5.
∑n

k=0 l
(m)
k (x) = 0 für m > 0

6. l0, l1, . . . , ln bilden Basis von Pn+1
wobei Pn+1 der Raum der Polynome von Grad maximal n ist.

Bemerkung 5.3.7: (Quadraturgewichte aus den Lagrange-Polynomen) Das Interpolationspolynom ist gegeben durch:

p(x) =
n∑

j=0
f(xj)lj(x)

Durch die Eigenschaften der Lagrange-Polynome haben wir p(xj) = f(xj) und die Konstruktion von p(x) ist eindeutig
in Pn+1. Wir erhalten nun eine Quadraturformel, wenn wir p als Approximation von f verwenden:

wj =
∫ b

a

lj(x), j = 0, 1, . . . , n

Diese Gewichte werden für die Trapez- und Simpson-Regeln verwendet, genau genommen, im Falle der Trapezregel
haben wir w2 und für die Simpsonregel w3, also müssen wir die entsprechenden Lagrange-Polynome integrierenDurch die Konstruktion der Formel ist sie exakt für alle Polynome aus Pn+1 und der Fehler ist:∣∣∣∣∣

∫ b

a

f(x) dx−
∫ b

a

pn(x) dx
∣∣∣∣∣ ≤ 1

n! (b− a)n+1 max |f (n)(z)|

Wir wollen also ein kleines Intervall (oft b − a < 1 da wir so das Integral besser approximieren können) und wir setzen
voraus, dass f glatt ist.
Da wir aber oft ein grösseres Intervall betrachten möchten, ist ein möglicher Ansatz, das grosse Intervall in kleinere
Intervalle zu zerlegen. Wir nehmen ein äquidistantes Gitter, mit xk = x0 + k · h für h = b−a

N und k = 0, . . . , N :∫ b

a

f(x) dx =
N−1∑
k=0

∫ xk+1

xk

f(x) dx

Die obige Formel wird auch die summierte Quadraturformel genannt. Der Fehler ist dann also:∣∣∣∣∣
∫ b

a

f(x) dx−
N−1∑
k=0

Q(f, xk, xk+1)

∣∣∣∣∣ ≤ . . . ≤ Chn

n! (b− a) mit C = max
z∈[a,b]

|f (n)(z)| = ||fn||max

Der obige Ansatz ist gewissermassen “divide and conquer” (zu Deutsch: “Teile und Herrsche”, wir werden aber DnC
verwenden) und wir der lokale Fehler liegt in O

(
hn+1) und mit N = (b − a) ÷ h Intervallen der Grösse h haben wir

einen globalen Fehler in O (hn). Folglich ist also der Fehler kleiner, je kleiner h ist.
Wir benutzen erneut einen Variablenwechsel, um von einem Referenzintervall [−1, 1] auf eines unserer Teilintervalle
[xk, xk+1] zu wechseln. Dies heisst also allgemein für Intervall [a, b] nach [−1, 1]:∫ b

a

f(t) dt = 1
2(b− a)

∫ 1

−1
f̂(τ) dτ mit f̂(τ) := f

(
1
2(1− τ)a+ 1

2(τ + 1)b
)

Für dieses Referenzintervall können wir die Gewichte ŵj und die Knoten ĉj bestimmen.∫ b

a

f(t) dt ≈ 1
2(b− a)

n∑
j=1

ŵj f̂(ĉj) =
n∑

j=1
wjf(cj) mit cj = 1

2 (1− ĉj)a+ 1
2 (1 + ĉj)b

wj = 1
2 (b− a)ŵj

Definition 5.3.8: Die Ordnung einer Quadraturformel ist n wenn sie Polynome vom Grad (n− 1) exakt integriert.
Dies folgt natürlich direkt davon, dass wir ein Polynom n-ten Grades mit n+ 1 Koeffizienten darstellen können.

Definition 5.3.9: (Symmetrie) Eine Quadraturformel auf [−1, 1] heisst symmetrisch, falls ωi = ωn+1−i und
ci = −cn+1−i gilt für die Gewichte ωi und Knoten ci

Bemerkung 5.3.10: Die Mittelpunkts-, Trapez- und Simpson-Regeln aus Abschnitt 5.4 sind symmetrisch

Satz 5.3.11: Die Ordnung einer symmetrischen Quadraturformel ist gerade

Beweis: Kann mittels Induktion bewiesen werden, siehe dazu Seite 123 im Skript

29. Dezember 2025 34 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

5.4 Äquidistante Punkte
Untenstehend eine Liste verschiedener Quadraturverfahren (Reminder: Eine Funktion der Orgnung 2 ist eine exakte
Approximation einer konstanten oder linearen Funktion):

Eigenschaft Mittelpunkt Trapez Simpson
Knoten 1 2 3

Ordnung 2 2 4
Fehler O

(
h2) O

(
h2) O

(
h4)

Symmetrisch Ja Ja Ja

Mittelpunkt-Regel QM (f ; a, b) = (b− a)f
(
a+ b

2

)
. Gewicht: ω = b− a

Trapez-Regel QT (f ; a, b) = b− a
2 (f(a) + f(b)). Fehler: E(n) =

∣∣∣∣− 1
12(b− a)3f (2)(ξ)

∣∣∣∣ mit ξ ∈ [a, b]

Fehlerabschätzung: |En| ≤
(b− a)3

12 ||f ′′||∞. Gewichte: ω1 = ω2 = b−a
2

Simpson-Regel QS(f ; a, b) = b− a
6

(
f(a) + 4f

(
a+ b

2 + f(b)
))

. Fehler: E(n) =
∣∣∣∣− 1

90

(
b− a

2 f (4)
)
f (4)(ξ)

∣∣∣∣
Fehlerabschätzung: |En| ≤

(
b− a

2

)2
f (4)(ξ). Gewichte: b−a

6 , 4(b−a)
6 , b−a

6

Bemerkung 5.4.1: Die Schranken für den Fehler erhält man aus den Lagrange-Polynomen vom Grad n− 1:

f ∈ Cn([a, b])⇒ |f(t) dt−Qn(f)| ≤ 1
n! (b− a)n+1||f (n)||L∞([a,b])

5.4.1 Summierte Quadratur

Mit Anwendung von Divide and Conquer kann die Präzision der Integration verbessert werden, man unterteilt dazu
einfach das Integrationsintervall in viele kleine Intervalle:∫ b

a

f(x) dx =
N−1∑
i=0

∫ xi+1

xi

f(x) dx =
N−1∑
i=0

Qn(f ;xi, xi+1)

Im Folgenden ist h = b−a
N , x0 = a, xi = x0 + ih und xN = b

Summierte Mittelpunkt-Regel I(f ; a, b) ≈
N−1∑
i=0

h · f
(
xi + xi+1

2

)

Summierte Trapez-Regel I(f ; a, b) ≈
N−1∑
i=0

h

2 (f(xi) + f(xi+1)) = h

2

(
f(a) + 2

N−1∑
i=1

f(xi) + f(b)
)

Fehler: E(n) ≤ h2

12(b− a) max
x∈[a,b]

|f ′′(x)|. Ist exakt bei periodischen, unendlich oft differenzierbaren Funktionen. Unten-
stehend eine Implementation der Trapez-Regel in Numpy

1 def trapezoidal(f, a, b, N):
2 x, h = np.linspace(a, b, int(N) + 1, retstep=True)
3 I = h / 2.0 * (f(x[0]) + 2.0 * np.sum(f(x[1:-1])) + f(x[-1]))
4 return I

29. Dezember 2025 35 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Summierte Simpson-Regel

I(f ; a, b) ≈ h

6

(
f(a) + 2

N−1∑
i=1

f(xi) + 4
N∑

i=1
f

(
xi−1 + xi

2

)
+ f(b)

)

= h̃

3

(
f(x̃0) + 2

N−1∑
i=1

f(x̃2i) + 4
N∑

i=1
f(x̃2i−1) + f(x̃2N)

)
mit h̃ = h

2 , x̃2i = xi und x̃2i−1 = xi−1 + xi

2

Untenstehend eine Implementation der Simpson-Regel

1 def simpson(f, a, b, N):
2 x, h = np.linspace(a, b, 2 * int(N) + 1, retstep=True)
3 I = h / 3.0 * (np.sum(f(x[::2])) + 4.0 * np.sum(f(x[1::2])) + f(x[0]) - f(x[-1]))
4 return I

5.4.2 Romberg Schema

Für glatte Funktionen haben wir: T (h) = I[f] + c1h
2 + c2h

4 + . . .+ cph
2p +O

(
h2p+2)

Die Idee des Romberg-Schemas ist es, die führenden Fehlerterme durch Linearkombinationen zu eliminieren

Schritt 1 Berechnung von T (h) und T (h
2):
T (h) = I + c1h

2 + c2h
4 + . . .

T

(
h

2

)
= I + c1

h2

4 + c2
h4

16 + . . .

Schritt 2 Linearkombination zur Elimination des h2-Terms (Ordnung dann 4):

R1,1 = 4T (h/2)− T (h)
3 = I + c′

2h
4 + . . .

Schritt 3 Wiederholen bis zur gewünschten Präzision mit der allgemeinen Rekursionsformel:

Rl,k = 4kRl,k−1 −Rl−1,k−1

4k − 1
Der Einfachheit halber können die Terme auch in das sogenannte “Romberg-Tableau” eingefüllt werden: Das Romberg-

k 0 1 2 3
0 T (h) R0,1
1 T (h/2) R1,1 R1,2
1 T (h/4) R2,1 R2,2 R2,3
1 T (h/8) R3,1 R3,2 R3,3

Schema konvergiert sehr schnell für glatte Funktionen.

5.4.3 Anwendung

In der Praxis keine Newton-Cotes höherer Ordnung mit äquidistanten Stützpunkten

29. Dezember 2025 36 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

5.5 Nicht äquidistante Stützstellen
Alternativ zur Unterteilung des Intervalls können wir andere Quadraturpunkte erlauben

5.5.1 Gauss Quadratur

In diesem Kapitel werden die Gewichte mit b1, b2, . . . , bs und die Knoten auf unserem Referenzintervall, welches hier
[0, 1] ist, mit c1, c2, . . . , cs ∈ [0, 1] bezeichnet.
Wir möchten unsere Gewichte bi und Knoten ci so bestimmen, dass die Quadraturordnung maximal ist.

Wir definieren die Notation ⟨M, g⟩ =
∫ 1

0 M(t)g(t) dt (also das Skalarprodukt).

Ordnung der Quadraturformel Satz 5.5.1

Die Ordnung ist s + m genau dann, wenn ⟨M, g⟩ = 0 für alle Polynome g mit deg(g) ≤ m − 1 und M(t) =
(t− c1) · (t− c2) · . . . · (t− cs) für s. Also steht M senkrecht zu allen g.

Satz 5.5.2: (Maximale Ordnung einer Quadraturformel) Die Ordnung einer Quadraturformel mit s Knoten ist ≤ 2s

Orthogonale Polynome

Für I =]a, b[sei w : I → R eine stetige Gewichtsfunktion mit w(x) > 0 ∀x ∈ I, so dass für alle k = 0, 1, 2, . . .∫ b

a
|x|kw(x) dx existiert.

Orthogonale Polynome Satz 5.5.3

Im Raum V = {f : I → R stetig,
∫ b

a
|f(x)|2w(x) dx existiert} existiert eine eindeutige Folge von Polynomen

p0, p1, . . . mit pk(x) = xk + P (x) mit deg(P (x)) ≤ k − 1 für k ≥ 0, so dass pk ⊥ span{p0, p1, . . . , pk−1}. Sie
können mit der 3-Term-Rekursion gebaut werden:

pk+1(x) = (x− βk+1) · pk(x)− γkpk−1(x)

mit p0(x) = 1, p−1(x) = 0, βk+1 = ⟨x·pk,pk⟩
⟨pk,pk⟩ und βk+1 = ⟨pk,pk⟩

⟨pk−1,pk−1⟩ , wobei hier ⟨f, g⟩ =
∫ b

a
f(x)g(x)w(x) dx

das Skalarprodukt ist.

Beispiel 5.5.4: (Legendre-Polynome) sind definiert für w(x) = 1, a = −1 und b = 1 (sie sind orthogonal):

p0(x) = 1 p1(x) = x

p2(x) = 1
2(3x2 − 1) p3(x) = 1

2(5x3 − 3x)

Die Normierung der Legendre-Polynome ist nicht standardisiert
In numpy können wir mit scipy.special.eval legendre und scipy.special.legendre diese Polynome berech-

nen und mit scipy.special.roots legendre die Knoten berechnen

Beispiel 5.5.5: (Hermite-Polynome) sind definiert für w(x) = e−x2 , a = −∞ und b =∞:

p0(x) = 1 p1(x) = 2x
p2(x) = 4x2 − 2 p3(x) = 8x3 − 12x

Bemerkung 5.5.7: Aus Theorem 5.5.3 folgt direkt, dass c1, c2, . . . , cs die Nullstellen von ps sind.

Bemerkung 5.5.11: (Knoten und Fehler der Gauss-Quadratur)

• Gauss-Knoten sind nicht äquidistant.
• Gauss-Knoten sind nicht verschachtelt (was er damit meint ist, dass wir sie nicht mit DnQ verwenden können

—Wir können also nicht für eine Quadratur höherer Ordnung die Knotenpunkte der Gauss-Quadratur tieferer
Ordnung verwenden)

29. Dezember 2025 37 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

• Die Gauss-Quadratur ist offen (da die Endpunkte des Intervalls keine Knoten sind)
• Bei der Radau-Quadratur fixiert man ein Ende als Randknoten, und man hat nun Ordnung 2s−1. Die Berechnung

ist ansonsten gleich, bis auf den Fakt, dass wir nur noch (s− 1) Knoten haben (1 bis und mit s− 1).
Sie können mit scipy.special.roots jacobi(s - 1, alpha=1, beta=0) berechnet werden.

• Bei der Lobatto-Quadratur fixiert man gleich beide Enden als Randknoten, und man hat Ordnung 2s − 2 und
wir haben die Knoten c2, . . . , cs−1

• Die Lombatto- und Radau-Quadratur werden häufig bei der Lösung gewöhnlicher DGL verwendet.
Der Fehler der Gauss-Quadratur ist:∫ b

a

f(x) dx−
s∑

j=1
bj · f(cj) = b− a

(2s)! f
(2s)(z) mit z ∈ [a, b]

Und eine obere Schranke für den Fehler ist dann∣∣∣∣∣
∫ b

a

f(x) dx−
N∑

k=1
Gs(f, xk−1,xk

)

∣∣∣∣∣ ≤ c · h2s max
z∈[a,b]

|f (2s)(z)|

wobei c ∈ R eine Konstante ist und h = b− a die Grösse des Intervalls ist.
Bemerkung 5.5.14: (Gewichte der Gauss-Legendre-Quadratur) Für die Knoten c1, . . . , cs und den entsprechenden

Lagrange-Polynomen l1, . . . , ls mit deg(li) = s − 1 ∀i ∈ {1, . . . , s}. Die zugehörige Quadraturformel ist exakt für
Polynome 2s− 1-ten Grades. Die Gewichte sind:

bi =
∫ 1

0
li(t)2 dt

Satz 5.5.15: Die Gewichte der Gauss-Legendre-Quadraturformel sind positiv.

Algorithmus Laufzeit Genauigkeit Knoten Genauigkeit Gewichte
GW (1969) O

(
s3) / O

(
s2) O (1) O

(
s2)

Bogaert-Townsend O (s) O (1) O (1)
CC (2s Knoten) O (s log(s)) O (1) O (1)

Die Gauss-Quadratur ist in der Messtechnik nicht besonders geeignet, da wir die zugrundeliegende Funktion nicht im
Vorhinein kennen und die Kosten für die Anpassung der Ordnung aufgrund fehlender Verschachtelbarkeit sehr hoch sind
(wir müssen alle vorigen Berechnungen komplett neu machen)

5.5.2 Clenshaw-Curtis Quadraturformel

Die erste Quadraturformel von Fejér benutzt die Chebyshev-Knoten (Nullstellen der Chebyshev-Polynome erster Art),
welche aber nicht verschachtelt sind. Die zweite Quadraturformel von Fejér benutzt die Filippi-Knoten xk = cos

(
k π

n

)
für

k = 1, . . . , n− 1 und Clenshaw und Curtis haben dann zusätzlich noch die Endknoten hinzugefügt (also k = 0, . . . , n).
Die Clenshaw-Curtis-Knoten sind die Chebyshev-Abszissen und die Formel verhält sich mit den entsprechenden Gewichten
ähnlich gleich wie die Gauss-Quadratur.
Da die Clenshaw-Curtis-Quadratur mithilfe der DFT berechnet werden kann ist sie sehr effizient. Dazu müssen wir aber
zuerst etwas umformen, mit x = cos(θ), so dass das Integral eine periodische Funktion wird:∫ 1

−1
f(x) dx =

∫ π

0
f(cos(θ)) sin(θ) dθ = f(cos(θ))

F (θ) ist 2π-periodisch und gerade, kann sich also in eine Kosinius-Reihe entwickeln, also: F (θ) =
∑∞

k=0 ak cos(kθ),
woraus folgt, dass ∫ π

0
F (θ) sin(θ) dθ = . . . = a0 +

∑
2≤k gerade

2ak

1− k2

wobei sich die Koeffizienten ak mit FFT oder DCT berechnen lassen
Eine wichtige Erkenntnis ist, dass die Newton-Cotes bei grösserer Ordnung komplett unbrauchbar werden, wie das in
Abbildung 5.5.24 im Skript zu sehen ist, während die Clenshaw-Curtis-Quadratur ähnlich gut ist wie die Gauss-Quadratur
(gleiche Konvergenzordnung).

29. Dezember 2025 38 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Quadratur Intervall Gewichtsfunktion Polynom Notation scipy.special.

Gauss (−1, 1) 1 Legendre Pk roots legendre
Chebyshev I (−1, 1) 1√

1−x2 Chebyshev I Tk roots chebyt
Chebyshev II (−1, 1)

√
1− x2 Chebyshev II Uk roots chebyu

Jacobi α, β > 1 (−1, 1) (1− x)α(1 + x)β Jacobi P
(α,β)
k roots jacobi

Hermite R e−x2 Hermite Hk roots hermite
Laguerre (0,∞) xαe−x2 Laguerre Lk roots genlaguerre

Tabelle 5.5.16: Gewichtsfunktionen für Quadraturformeln

5.6 Adaptive Quadratur
Der lokale Fehler einer zusammengesetzten Quadraturformel auf dem Gitter M := {a = x0 < x1 < · · · < xm = b} ist
(für f ∈ C2([a, b])):∣∣∣∣∫ xk+1

xk

f(t) dt− f(xk) + f(xk+1)
2 (xk+1 − xk)

∣∣∣∣ ≤ (xk+1 − xk)3||f ′′||L∞([xk,xk+1])

Also ist es nur sinnvoll, das Gitter zu verfeinern wo |f ′′| gross ist.
Auf Seiten 150 - 151 im Skript findet sich Code, um eine adaptive Quadratur durchzuführen.

Bemerkung 5.6.3: (Adaptive Quadratur in Python) Mit scipy.integrate.quad können wir einfach eine adaptive
Quadratur durchführen und benutzt QUADPACK. Mit scipy.integrate.quadrature können wir die Gauss-Quadratur
verwenden.
Für x ∈ Rd, also eine mehrdimensionale Funktion der Dimension d können wir scipy.integrate.nquad verwenden.
Mehr dazu im nächsten Kapitel

5.7 Quadratur in Rd und dünne Gitter
Eine einfache Option wäre natürlich, zwei eindimensionale Quadraturformeln aneinander zu hängen. Für zweidimensionale
Funktionen sieht dies so aus:

I =
∫ n1

j1

n2∑
j2

ω1
j1
ω2

j2
f(c1

j1
, c2

j2
)

und für beliebige d haben wir (
wk

jk
, ck

jk

)
1≤jk≤nk

k = 1, . . . , d

Was dasselbe ist, wie oben, aber mit d Summen und d-mal ein wjk
und eine d-dimensionale Funktion f

Tensor-Produkt Repetition

TODO: Write this section

Die wichtigste Erkenntnis aus diesem Abschnitt ist die Idee, ein Sparse-Grid zu verwenden, um die Rechenarbeit zu
reduzieren.
In numpy Gibt es die Möglichkeit Sparse-Grid arrays mit scipy.sparse zu erstellen.

29. Dezember 2025 39 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

5.8 Monte-Carlo Quadratur
Bei der Monte-Carlo Quadratur wird, wie bei anderen Monte-Carlo-Algorithmen der Zufall genutzt

Grundrezept Wir nehmen N zahlen ti die zufällig aus der uniformen Verteilung auf [0, 1] gewählt werden.

I =
∫ 1

0
z(t) dt ≈ 1

N

N∑
i=1

z(ti)

Auf einem anderen Intervall [a, b] haben wir dann für si = a+ (b− a) · ti

I =
∫ b

a

z(s) ds ≈ |b− a| 1
N

z(si)∑
i=1

=: IN

Bemerkung 5.8.1: Die Konvergenz ist sehr langsam (
√
N), aber nicht abhängig von der Dimension oder Glattheit.

Zudem kann das Ergebnis falsch sein, da es probabilistisch ist.
Jede Monte-Carlo-Methode benötigt folgendes mitX = [IN−σ̃N , IN +σ̃N] undX enthält den wahren Wert

∫
[0,1]d z(t) dt

in ungefähr 68.3% der Fälle für N ti uniform Verteilt in [0, 1]d:
• ein Gebiet für das “Experiment”, hier [0, 1]d
• gute Zufallszahlen

• gute deterministische Berechnungen, hier σ̃N und IN

• Darstellung des Ergebnis, hier Pr[I ∈ X] = 0.683

Sei σ̃N =

√√√√ 1
N

∑N
i=1 z(ti)2 −

(
1
N

∑N
i=1 z(ti)

)2

N − 1 = σN√
N

Das Monte-Carlo-Verfahren beruht auf folgendem:∫
[0,1]d

z(x) dx = Ez(X) mit X ∼ U([0, 1]d)

wobei U([0, 1]d) die uniforme Verteilung der Zufallsvariable auf dem d-dimensionalen Intervall [0, 1]d ist.
Das Ziel der Monte-Carlo-Methode ist es, den Erwartungswert durch den Mittelwert der Funktionswerte der simulierten
Zufallsvariable mit einem Schätzer mN (z(X)), bzw. einer Schätzung mN (z(x)) zu approximieren:

mN (z(X)) := 1
N

N∑
i=1

z(Xi) mN (z(x)) := 1
N

N∑
i=1

z(xi)

Bemerkung 5.8.16: Wir verwenden mN (z(x)) für das z(x) im obigen Integral:

EmN (z(X)) = N
1
N

Ez(X) =
∫

[0,1]d

z(x) dx

Die Approximation von Ez(X) durch mN (x) ist besser, je kleiner die Varianz ist:

VmN (z(X)) = V

(
1
N

N∑
i=1

z(Xi)
)

= 1
N2NV(z(X)) = 1

N
V(z(X))→ 0

Der Zentrale Grenzwertsatz (Central Limit Theorem) besagt, dass für grosse N
mN (z(X))− Ez(X)√

1
N V(z(X))

sich fast wie eine normalverteilte Zufallsvariable Y ∼ N (0, 1) verhält. Daraus folgt mit σ(z(X)) =
√

V(z(X)):

Pr
[
|mN (z(X))− Ez(X)| ≤ λσ√

N

]
= 1√

2π

∫ λ

−λ

e− x2
2 dx+O

(
1√
N

)
= p(λ) +O

(
1
N

)
wobei 2λ die Länge des Integrationsintervalls ist, mit λ definiert als die Länge des untersuchten Intervalls. Wir haben
also eine langsame Konvergenz mit Fehler in O

(
1√
N

)
.

Oben (Bemerkung 5.8.1) wurde bereits erwähnt, dass wir 68.3% als die Wahrscheinlichkeit haben, dass wir den exakten
Wert in unserem Intervall haben. Woher kommt aber dieser Wert? Wenn wir λ = 1 wählen (wie es der Fall ist für das
gewählte Intervall), dann erhalten wir p(1) ≈ 0.683. Dies trifft allerdings nur zu, wenn N genügen gross (N ≥ 30) ist.

29. Dezember 2025 40 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Um die Präzision abzuschätzen, benötigen wir einen Schätzer für V(z(X)) = E(z(X)2)− (E(z(X)))2:

d∗
2(z(X)) := 1

N − 1

N∑
j=1

(z(Xj)−mN (z(X)))2 = N

N − 1
(
mN (z(X))2 − (mN (z(X)))2)

Aus dem kann die Schätzung für σ̃N von oben hergeleitet werden:√
N

N − 1 (mN (z(x)2))− (mN (z(x)))2)

für y =
√

V(z(X)) (oder ohne das N im Zähler für y√
N

) und V(z(X)) = Ed∗
2(z(X))

Vertrauensintervall Satz 5.8.17

Das Intervall mit y = λd∗
2(z(X)) [

mN (z(X))− y√
N
,mN (z(X)) + y√

N

]
enthält den wahren Wert I = E(z(X)) mit Wahrscheinlichkeit p(λ) bis auf einen Fehler in O

(
1√
N

)
und das

Vertrauensintervall ist:
[mN (z(X))− λσ̃N ,mN (z(X)) + λσ̃N]

Wiederholen wir das Experiment M mal, mit M gross, so enthält das Vertrauensintervall den Wert I in ungefähr 100p(λ)
Prozent der M Fälle.
Bemerkung 5.8.21: Ein kurzes Vertrauensintervall entspricht einer hohen Wahrscheinlichkeit, dass das Vertrauensin-

tervall den wahren Wert enthält. Im Grundrezept wird λ = 1 mit p(1) = 0.683 verwendet. Um ein kürzeres Vertrauens-
intervall zu erzielen können wir N erhöhen, oder die Berechnungen so reorganisieren, dass die Varianz kleiner wird. Wir
brauchen also für einen Fehler ε ungefähr 1

ε2 Evaluierungen.
Seiten 171 bis 176 im Skript enthalten eine Implementation. Unten eine simple Implementation ohne Plotting:

1 import numpy as np
2 def monte_carlo_integral(func, a, b, N):
3 t = np.random.uniform(a, b, N)
4 fx = func(t)
5 I = np.mean(fx) * (b - a)
6 var = np.std(fx, ddof=1) / np.sqrt(N)
7 return I, var

29. Dezember 2025 41 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

5.9 Methoden zur Reduktion der Varianz
Bei höheren Dimensionen d ist die Monte-Carlo-Methode oft die einzige praktikable Option. Deshalb ist es wichtig,
Methoden zu haben, um die Varianz zu verringern.

5.9.1 Control Variates

Die Idee ist hier, bekannte Integrale zu verwenden, um die Varianz zu reduzieren. Wir schreiben unser Integral unter
Verwendung eines bekannten, exakten Integrals φ(x) neu:

y
f(x) =

y
(z(x)− φ(x)) =

y
z(x) +

y
φ(x)

Das Ganze funktioniert natürlich für jedes d ∈ N. Oft wird die Taylor-Entwicklung von f(x) gewählt, da diese einfach
analytisch integrierbar ist.
Die Varianz wird dadurch reduziert, dass wir nur noch für z(x) einen Fehler haben.

In numpy können wir dies folgendermassen implementieren:

1 def control_variate_mc(func, phi, analytic_int_phi, a, b, N):
2 t = np.random.uniform(a, b, N)
3 val = func(t) - phi(t)
4 I = np.mean(val) * (b - a) + analytic_int_phi
5 return I

5.9.2 Importance Sampling

Importance Sampling Intuition

• Nicht alle Punkte, die während der Monte-Carlo Integration gezogen werden sind, sind gleich wichtig
• Importance Sampling optimiert die Verteilung der Punkte
• Man gewichtet die Punkte mit einer Dichtefunktion g(x), die wichtige Bereiche betont
• Der Erwartungswert wird als gewichteter Mittelwert berechnet, sodass keine Verzerrung auftritt

Wir schreiben unser zu berechnendes Integral mit D = [0, 1]d ein Intervall

I =
∫

D

f(x) dx

mit der Hilfsdichte g(x) (für welche gilt
∫

D
d = 1)

I =
∫

D

z(x)
g(x)g(x) dx = Eg

(
z(X)
g(X)

)
Der entsprechende Monte-Carlo-Schätzer mit N Stichproben Xi ∼ g ist

ÎN = 1
N

N∑
i=1

z(Xi)
g(Xi)

und dessen Varianz ist

Vg

(
z(X)
g(X)

)
=
∫

D

z2(x)
g(x) dx− I2

Ideal ist g(x) ∝ |f(x)|, also proportional zum Betrag von f(x)

5.9.3 Quasi-Monte-Carlo

Oft ist ein deterministischer Fehler nützlich, weshalb man bei der Quasi-Monte-Carlo-Methode die Zufallszahlen durch
quasi-zufällige Folgen ersetzt. Diese Folgen decken den Integrationsbereich systematisch ab.
Dies führt dazu, dass unser Fehler mit O

(
N−1 · (log(N))d

)
abnimmt. Für kleine d haben wir ungefähr eine Abnahme

in O
(
N1), aber bei grossen d ist die Verbesserung kaum mehr sichtbar.

In der Realität sind diese Methoden (besonders die Sobol-Sequenzen) trotzdem effektiv, da viele Integrale “effektiv
niedrigdimensional” sind.

29. Dezember 2025 42 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

6 Nullstellensuche
6.1 Iterative Verfahren
Definition 6.1.1: Ein iteratives Verfahren ist ein Algorithmus ϕF , der die Folge x(0), x(1), . . . von approximativen

Lösungen x(j) generiert. Die Definition ist dabei rekursiv: x(k) := ϕF (x(k−1)), sofern x(0) und ϕ gegeben sind.

Definition 6.1.5: (Konvergenz) ϕF zur Lösung F (x∗) = 0 konvergiert, wenn x(k) → x∗, mit x∗ die Nullstelle.

Definition 6.1.8: (Norm)

In numpy haben wir numpy.linalg.norm, welches zwei Argumente nimmt. Dabei ist das erste Argument der Vektor
und das Zweite die Art der Norm. Ohne zweites Argument wird die Euklidische Norm ||x||2, mit Argument 1 wird die
1-Norm ||x||1 := |x1| + . . . + |xn| und mit mit inf als Argument wird die ∞-Norm, bzw. die Max-Norm ||x||∞ :=
max{|x1|, . . . , |xn|} berechnet.

Definition 6.1.10: Zwei Normen || · ||1 und || · ||2 sind äquivalent auf V, falls es Konstanten C und C gibt so dass
C · ||v||1 ≤ ||v||2 ≤ C · ||v||1 ∀v ∈ V, mit V ein linearer Raum

Satz 6.1.11: Falls dim(V) <∞, dann sind alle Normen auf V äquivalent

Definition 6.1.13: (Lineare Konvergenz) x(k) konvergiert linear gegen x∗, falls es ein L < 1 gibt, so dass
||x(k+1) − x∗|| ≤ L||x(k) − x∗|| ∀k ≥ k0, L genannt Konvergenzrate

Definition 6.1.15: (Konvergenzordnung) p für das Verfahren, falls es ein C > 0 gibt, so dass
||x(k+1) − x∗|| ≤ C||x(k) − x∗||p ∀k ∈ N mit C < 1 für p = 1

Wir nehmen dabei an, dass ||x(0)−x∗|| < 1, damit wir eine konvergente Folge haben. Man kann die Konvergenzordnung
folgendermassen abschätzen, mit εk := ||x(k) − x∗|| (Konvergenzrate in Bemerkung 6.1.19):

p ≈ log(εk+1)− log(εk)
log(εk)− εk−1

Intuitiv haben wir Quadratische (oder Kubische, etc.) Konvergenzordnung, wenn sich die Anzahl Nullen im Fehler jede
Iteration verdoppeln (verdreifachen, etc.)

Bemerkung: Eine höhere Konvergenzordnung ist in Lin-Log-Skala an einer gekrümmten Konvergenzkurve erkennbar.
Bemerkung 6.1.19: (Abschätzung der Konvergenzrate) Sei εk := ||x(k)−x∗|| die Norm des Fehlers im k-ten Schritt.

εk+1 ≈ L · εk =⇒ log(εk+1) ≈ log(L) + log(εk) =⇒ εk+1 ≈ k log(L) + log(ε0)

Untenstehender Code berechnet den Fehler und die Konvergenzrate von x(k+1) = x(k) + cos(x(k)) + 1
sin(x(k))

. Dabei verwenden

wir x(15) anstelle von x∗ zur Berechnung der Konvergenzrate, da x∗ meist unbekannt ist.

1 def linear_convergance(x):
2 y = [] # container for the x(j)
3 for k in range(15):
4 x = x + (np.cos(x) + 1) / np.sin(x) # apply the iteration formula
5 y += [x] # store the value in the container
6 err = abs(np.array(y) - x) # estimation for the error
7 rate = err[1:] / err[:-1]
8 # estimation for convergence rate
9 return err, rate

29. Dezember 2025 43 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

6.2 Abbruchkriterien
Wir müssen irgendwann unsere Iteration abbrechen können, dazu haben wir folgende Möglichkeiten:

Typ Idee Vorteile Nachteile
A priori Fixe Anzahl k0 Schritte Einfach zu imple-

mentieren
Zu ungenau

A posteriori Berechnen bis Toleranz ε < τ erreicht Präzise Man kennt x∗ nicht
Ungefähr gleich Itaration bisx(k+1) ≈ x(k) Keine Voraussetzun-

gen
Ineffizient

Residuum Abbruch wenn ||F (x(k))|| < τ (wir al-
so fast bei 0 sind mit dem Funktions-
wert)

Einfach zu imple-
mentieren

Bei flachen Funktionen kann
||F (x(k)|| klein sein, aber ε
gross)

Tabelle 6.2.1: Vergleich der Abbruchkriterien

Bemerkung 6.2.2: Für das a posteriori Abbruchkriterium mit linearer Konvergenz und bekanntem L gilt die Abschätzung
aus Lemma 6.3.6 mit Korollar 6.3.17

6.3 Fixpunktiteration
Ein 1-Punkt-Verfahren benötigt nur den vorigen Wert: x(k+1) = ϕ(x(k))

Definition 6.3.1: Eine Fixpunktiteration heisst konsistent mit F (x) = 0 falls F (x) = 0⇔ ϕ(x) = x

Beispiel 6.3.2: Für F (x) = xex − 1 mit x ∈ [0, 1] liefert ϕ1(x) = e−x lineare Konvergenz, ϕ2(x) = 1+x
1+ex quadratische

Konvergenz und ϕ3(x) = x+ 1− xex eine divergente Folge.

Definition 6.3.5: (Kontraktion) ϕ falls es ein L < 1 gibt, so dass ||ϕ(x)− ϕ(y)|| ≤ L||x− y|| ∀x, y

Bemerkung 6.3.6: Falls x∗ ein Fixpunkt der Kontraktion ϕ ist, dann ist
||x(k+1) − x∗|| = ||ϕ(x(k))− ϕ(x∗)|| ≤ L||x(k) − x∗||

Banach’scher Fixpunktsatz Satz 6.3.7

Sei D ⊆ Kn (K = R,C) mit D abgeschlossen und ϕ : D → D eine Kontraktion. Dann existiert ein eindeutiger
Fixpunkt x∗, für welchen also gilt, dass ϕ(x∗) = x∗. Dieser ist der Grenzwert der Folge x(k+1) = ϕ(x(k)).

Lemma 6.3.8: Für U ⊆ Rn konvex und ϕ : U → Rn stetig differenzierbar mit L := supx∈U ||Dϕ(x)|| < 1 (Dϕ(x)
ist die Jacobi-Matrix von ϕ(x)). Wenn ϕ(x∗) = x∗ für x∗ ∈ U , dann konvergiert x(k+1) = ϕ(x(k)) gegen x∗ lokal
mindestens linear. Dies ist eine hinreichende (= sufficient) Bedingung.

Lemma 6.3.11: Für ϕ : Rn → Rn mit ϕ(x∗) = x∗ und ϕ stetig differenzierbar in x∗. Ist ||Dϕ(x∗)|| < 1, dann
konvergiert x(k+1) = ϕ(x(k)) lokal und mindestens linear mit L = ||Dϕ(x∗)||

Satz 6.3.13: (Satz von Taylor) Sei I ⊆ R ein Intervall, ϕ : I → R (m + 1)-mal differenzierbar und x ∈ I. Dann gilt
für jedes y ∈ I

ϕ(y)− ϕ(x) =
m∑

k=1

1
k!

(
ϕ(k)(x)(y − x)k

)
+O

(
|y − x|m+1)

Lemma 6.3.14: Sei I und ϕ wie in Satz 6.3.13. Sei zudem ϕ(l)(x∗) = 0 für l ∈ {1, . . . ,m} mit m ≥ 1. Dann konvergiert
x(k+1) = ϕ(x(k)) lokal gegen x∗ mit Ordnung p ≥ m+ 1

Lemma 6.3.16: Konvergiert ϕ linear mit L < 1, dann gilt:
||x∗ − x(k)|| ≤ Lk−l

1− L ||x
(l+1) − x(l)||

Korollar 6.3.17: für l = 0 haben wir ein a priori und für l = k − 1 ein a posteriori Abbruchkriterium:
||x∗ − x(k)|| ≤ Lk

1− L ||x
(1) − x(0)|| ≤ τ ||x∗ − x(k)|| ≤ L

1− L ||x
(k) − x(k−1)|| ≤ τ

29. Dezember 2025 44 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

6.4 Intervallhalbierungsverfahren
Die Idee hier ist, das Intervall immer weiter zu halbieren und ein bekannterer Namen für dieses Verfahren ist Bisekti-
onsverfahren.
In numpy haben wir scipy.optimize.bisect und scipy.optimize.fsolve, wobei fsolve ein alter Algorithmus

ist.
Im Skript auf Seiten 206 - 207 findet sich eine manuelle implementation des Bisektionsverfahren. Der Code ist jedoch
(at the time of writing) nicht ausführbar aufgrund von IndentationErrors

Das Bisektionsverfahren konvergiert linear und kann nur für Funktionen verwenden, bei welchen die Nullstellen auf beiden
Seiten jeweils ungleiche Vorzeichen haben.
Für jeden Iterationsschritt ermitteln wir die Mitte des Intervalls und berechnen die Funktionswerte an den Rändern, wie
auch dem Mittelpunkt. Dann ersetzen wir den Rand des Intervalls, dessen Funktionswert dasselbe Vorzeichen hat, wie
der Funktionswert des Mittelpunkts.

6.5 Newtonverfahren in 1D
Beim Newtonverfahren verwendet man für jeden Iterationsschritt die lineare Funktion F̃ = F (x(k))+F ′(x(k))(x−x(k)).
Die Nullstelle ist dann:

x(k+1) := x(k) − F (x(k))
F ′(x(k))

, falls F ′(x(k)) ̸= 0

Bemerkung 6.5.2: Die Newton-Iteration ist eine Fixpunktiteration mit quadratischer lokaler Konvergenz, mit

ϕ(x) = x− F (x)
F ′(x) =⇒ ϕ′(x) = F (x)F ′′(x)

(F ′(x))2 =⇒ ϕ′(x∗) = 0

falls F (x∗) = 0 und F (x∗) ̸= 0

6.6 Sekantenverfahren
Falls die Ableitung zu teuer oder nicht verfügbar ist, kann man sie durch q(k) := F (x(k))−F (x(k−1))

x(k)−x(k−1) . Dann ist ein Schritt:

F̃ (x) = F (x(k)) + q(k)(x− x(k)) =⇒ x(k+1) := x(k) − F (x(k))
q(k) , falls q(k) ̸= 0

6.7 Newton-Verfahren in n Dimensionen
Sei D ⊆ Rn und F : D → Rn stetig differenzierbar. Die Nullstelle ist

x(k+1) := x(k) −DF (x(k))−1F (x(k))
wobei DF (x(k)) =

[
∂Fj

∂xk
(x)
]

j,k=1,2,...,n
die Jacobi-Matrix von F ist.

Wichtig ist dabei, dass wir niemals das Inverse der Jacobi-Matrix (oder irgend einer anderen Matrix) von der Form
s = A−1b, sondern immer das Gleichungssystem As = b lösen sollten, da dies effizienter ist:

1 def newton(x, F, DF, tol=1e-12, maxit=50):
2 x = np.atleast_2d(x) # ’solve’ erwartet x als 2-dimensionaler numpy array
3 # Newton Iteration
4 for _ in range(maxit):
5 s = np.linal.solve(DF(x), F(x))
6 x -= s
7 if np.linalgnorm(s) < tol * np.linalg.norm(x):
8 return x

Wollen wir aber garantiert einen Fehler kleiner als unsere Toleranz τ können wir das Abbruchkriterium
||DF (x(k−1))−1F (x(k))|| ≤ τ

verwenden. Code, welcher dies implementiert findet sich auf Seite 213-216 im Skript.

29. Dezember 2025 45 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

6.8 Gedämpftes Newton-Verfahren
Wir wenden einen einen Dämpfungsfaktor λ(k) an, welcher heuristisch gewählt wird:

x(k+1) := x(k) − λ(k)DF (x(k))−1F (x(k))
Wir wählen λ(k) so, dass für ∆x(k) = DF (x(k))−1F (x(k)) und ∆(λ(k)) = DF (x(k))−1F (x(k) − λ(k)∆x(k))

||∆x(λ(k))||2 ≤
(

1− λ(k)

2

)
||∆x(k)||2

6.9 Quasi-Newton-Verfahren
Falls DF (x) zu teuer ist oder nicht zur Verfügung steht, können wir im Eindimensionalen das Sekantenverfahren ver-
wenden.
Im höherdimensionalen Raum ist dies jedoch nicht direkt möglich und wir erhalten die Broyden-Quasi-Newton Methode:

Jk+1 := Jk + F (x(k+1))(∆x(k))⊤

||∆x(k)||22
Dabei ist J0 z.B. durch DF (x(0)) definiert.

Bemerkung 6.9.1: (Broyden-Update) Das Broyden-Update ergibt bezüglich der || · ||2-Norm die minimale korrektur
der Jakobi-Matrix Jk an, so dass die Sekantenbedingung erfüllt ist. Die Implementierung erzielt man folgendermassen
mit der Sherman-Morrison-Woodbury Update-Formel:

J−1
k+1 =

(
I −

J−1
k F (x(k+1))(∆x(k))⊤

||∆x(k)||22 + (∆x(k))⊤J−1
k F (x(k+1))

)
J−1

k

Das Broyden-Quasi-Newton-Verfahren konvergiert langsamer als das Newton-Verfahren, aber schneller als das verein-
fachte Newton-Verfahren. (sp ist Scipy und np logischerweise Numpy im untenstehenden code)

1 def fastbroyd(x0, F, J, tol=1e-12, maxit=20):
2 x = x0.copy() # make sure we do not change the iput
3 lup = sp.linalg.lu_factor(J) # LU decomposition of J
4 s = sp.linalg.lu_solve(lup, F(x)) # start with a Newton corection
5 sn = np.dot(s, s) # squared norm of the correction
6 x -= s
7 f = F(x) # start with a full Newton step
8 dx = np.zeros((maxit, len(x))) # containers for storing corrections s and their sn:
9 dxn = np.zeros(maxit)

10 k = 0
11 dx[k] = s
12 dxn[k] = sn
13 k += 1 # the number of the Broyden iteration
14

15 # Broyden iteration
16 while sn > tol and k < maxit:
17 w = sp.linalg.lu_solve(lup, f) # f = F (actual Broyden iteration x)
18 # Using the Sherman-Morrison-Woodbury formel
19 for r in range(1, k):
20 w += dx[r] * (np.dot(dx[r - 1], w)) / dxn[r - 1]
21 z = np.dot(s, w)
22 s = (1 + z / (sn - z)) * w
23 sn = np.dot(s, s)
24 dx[k] = s
25 dxn[k] = sn
26 x -= s
27 f = F(x)
28 k += 1 # update x and iteration number k
29 return x, k # return the final value and the numbers of iterations needed

29. Dezember 2025 46 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

7 Intermezzo: Lineare Algebra
7.1 Grundlagen
Bemerkung 7.1.1: Eine Tabelle mit invertierbaren und nicht invertierbaren Matrizen findet sich unten:

Invertierbar Nicht Invertierbar
A ist regulär A ist singulär
Spalten sind linear unabhängig Spalten sind linear abhängig
Zeilen sind linear unabhängig Zeilen sind linear abhängig
det(A) ̸= 0 det(A) = 0
Ax = 0 hat eine Lösung x = b Ax = 0 hat unendlich viele Lösungen
Ax = b hat eine Lösung x = A−1b Ax = b hat keine oder unendlich viele Lösungen
A hat vollen Rang A hat Rang r < n
A hat n non-zero Pivots A hat r < n Pivots
span{A:,1, . . . , A:,n} hat Dimension n span{A:,1, . . . , A:,n} hat Dimension r < n
span{A1,:, . . . , An,:} hat Dimension n span{A1,:, . . . , An,:} hat Dimension r < n
Alle Eigenwerte von A sind nicht Null 0 ist der Eigenwert von A
0 /∈ σ(A) = Spektrum von A 0 ∈ σ(A)
AHA ist symmetrisch positiv definit AHA ist nur semidefinit
A hat n (positive) Singulärwerte A hat r < n (positive) Singulärwerte

Definition 7.1.2: (Orthogonale Vektoren) Vektoren q1, . . . , qn heissen orthogonal , falls
qH

i · qj = 0 ∀i, j ≤ n with i ̸= j

Wenn sie zudem normiert sind (also ||qi||2 = 1 ∀i ≤ n), dann heissen sie orthonormal

Bemerkung 7.1.3: In der vorigen Definition wird die Euklidische Norm ||q||22 = qH · q verwendet

Bemerkung 7.1.7: (Rotationen) Die Rotationsmatrix für eine Rotation um Winkel θ ist gegeben durch:

Rθ =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)


Perturbierte LGS

Statt Ax = b ist das LGS ungenau gegeben: (A+ ∆A)(x̃− x) = ∆b−∆Ax.

Definition 7.1.18: (Konditionszahl) cond(A) := ||A−1|| · ||A||. Manchmal auch mit κ(A) notiert
Auch hier gibt es sie wieder für verschiedene Normen:

• κ2(A) = σmax(A)
σmin(A) (Spektralnorm mit Singulärwerten)

• κ∞(A) = ||A||∞ · ||A−1||∞
• κ1(A) = ||A||1 · ||A−1||1

cond(A)≫ 1 bedeutet intuitiv: kleine Änderung der Daten 7→ grosse Änderung in der Lösung
Zudem haben wir folgende Eigenschaften:

• κ(A) ≥ 1
• κ(cA) = κ(A) ∀c ̸= 0

• κ(A) = κ(A−1)
• Für orthogonale und unitäre Matrizen Q: κ2(Q) = 1

Grosse Matrizen

Passen oft nicht (direkt) in den Speicher: effizientere Speicherung nötig, möglich für z.B. Diagonalmatrizen, Dreiecks-
matrizen. Auch für Cholesky möglich.
Dünnbesetzte Matrizen

nnz(A) := |{(i, j) | aij ∈ A, aij ̸= 0}| ≪ m · n

liml→∞
nnz(A(l))

nlml
= 0

Einfacher zu speichern: val, col, row sind Vektoren so dass val[k] = aij , wobei i = row[k], j = col[k]. (nur
aij ̸= 0)

29. Dezember 2025 47 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Es gibt viele Formate, je nach Anwendung sind gewisse sinnvoller als andere. (Siehe Tabelle, NumCSE)
scipy.sparse.csr_matrix(A) 7→ Dramatische Speichereinsparung.
Deprecated: bsr_array und coo_array verwenden, kompatibel mit numpy arrays.
CSC, CSR erlauben weitere Optimierungen, je nach Gewichtung der aij auf Zeilen, Spalten.

7.1.1 Gauss Elimination / LU Zerlegung

Das Anwenden der Gauss-Elimintation ergibt die LU-Zerlegung, gegeben durch A ∈ Rn×m = PLU , wobei U eine obere
Dreiecksmatrix (die resultierende Matrix der Gauss-Elimintation), L eine untere Dreiecksmatrix (Matrix aller Schritte
der Gauss-Elimintation) und P eine Permutationsmatrix ist.

In numpy können wir P, L, U = scipy.linalg.lu(A) (Numpy liefert keine LU-Zerlegung). Mit scipy.linalg.lu solve(P,
L, U) kann man dann das System lösen. Jedoch ist dies nicht sinnvoll, wenn wir die Dreiecksmatrizen gar nicht benötigen.
In diesem Fall verwenden wir einfach numpy.linalg.solve(A)

1 L = np.linalg.solve(A) # A = L @ L.T
2 y = np.linalg.solve(L, b)
3 x = np.linalg.solve(L.T, y)

Cholesky Zerlegung (A ist positiv defefinit und hermetisch)

A = LDLH = L
√
D︸ ︷︷ ︸

RH

√
DLH︸ ︷︷ ︸

R

= RHR

Diese Zerlegung kann Ax = b potenziell schneller lösen als LU und wir verwenden nur halb so viel Speicher. Zudem ist
keine Pivotierung nötig, also ist das Verfahren für symmetrisch positiv definite Matrizen numerisch stabil.
Im Folgenden ist der Cholesky algorithmus in Pseudocode beschrieben:

Algorithm 1 cholesky(A)
1 n← A.shape[0]
2 l← Initialisiere ein n× n array
3 for j = 1, 2, . . . , n do
4 ljj ←

√
Ajj −

∑j−1
k=1 l

2
jk

5 for i = j + 1, . . . , n do

6 lij ←
1
ljj

(
Aij −

j−1∑
k=1

likljk

)
7 return l

In numpy haben wir via scipy.linalg die Funktionen cholesky, cho factor und cho solve, wie auch bereits
äquivalent für die LU-Zerlegung

7.1.2 QR-Zerlegung

Wir können eine Matrix A ∈ Rm×n mit m ≥ n als A = QR zerlegen, wobei Q ∈ Rm×n orthonormale Spalten besitzt
und R ∈ Rn×n ist eine obere Dreiecksmatrix.
Die QR-Zerlegung ist numerisch stabiler bei schlecht konditionierten Problemen, ist die Basis vieler Eigenwertverfahren
und ist ideal für Least Squares.
Wir können mit der QR-Zerlegung auch LGS Ax = b lösen:

Ax = b⇐⇒ QRx = b⇐⇒ Rx = Q⊤b

Da Q orthogonal ist, haben wir Q−1 = Q⊤. Um das Ganze einfacher zu machen, lösen wir das System Rx = y, wobei
y := Q⊤b. In numpy können wir direkt mit np.linalg.solve() dies lösen (nutzt automatisch Rückwärtssubstitution)

29. Dezember 2025 48 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Givens-Rotations

Bei der Givens-Rotation generiert man eine Rotationsmatrix, die die (i, j)-Ebene um einen Winkel θ rotiert. Die dazu
konstruierte Matrix hat dabei die folgende Form (rechts eine Beschreibung des Eintrags (k, l)):

G(i, j, θ) =



1 0 · · · 0

0
. . .

c · · · s
...

...
...

...
−s · · · c

0
. . .

0 · · · 1


oder G(i, j, θ)k,l =



k = l ∧ k ̸= i, j 1
k = l ∧ (k = i ∨ k = j) c

k = i ∧ l = j −s
k = j ∧ l = i s

sonst 0

Dabei ist c = cos(θ) und s = sin(θ). Diese Matrix hat einige nützliche Eigenschaften: G⊤G = I (also ist G orthogonal),
also gilt auch G−1 = G⊤ und G modifiziert nur Zeilen i und j
Im Zweidimensionalen Raum können wir die Werte für c und s so bestimmen:[

c s
−s c

] [
a
b

]
=
[
r
0

]
r =

√
a2 + b2, c = a

r
, s = b

r

Wir haben jedoch das Problem, dass die Berechnung von r überlaufen kann. Dies lösen wir, indem wir skalieren:
Falls |b| > |a|:

t = a

b
, s = 1√

1 + t2
, c = s · t

Falls |a| ≥ |b|:

t = b

a
, s = c · t, c = 1√

1 + t2

Es ist wichtig, dass wir das r = sign(a)
√
a2 + b2 mit Vorzeichen berechnen, um Auslöschung zu vermeiden

Man kann nun mit der Givens-Rotation die QR-Zerlegung durchführen:

Algorithm 2 GivensQRDecomposition(A)
1 m← A.shape[0]
2 n← A.shape[1]
3 q ← Initialisiere ein n× n array
4 for j = 1, 2, . . . , n do
5 for i = m, . . . , 2 do
6 Nullsetze am,j , am−1,j , . . . , a2,j durch Givens-Rotationen Gm,j , Gm−1,j , . . . , G2,j

7 return l

29. Dezember 2025 49 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Gram-Schmidt

Die Idee des Gram-Schmidt-Algorithmus ist es, orthonormale Vektoren zu konstruieren und diese dann zur Matrix Q
zusammenzubasteln.
Es wurden zwei Algorithmen behandelt, beide unten in Pseudocode:

Algorithm 3 classicalGramSchmidt(A)
1 n← A.shape[0]
2 q ← Initialisiere ein n× n array
3 r ← Initialisiere ein n× n array
4 for k = 1, 2, . . . , n do
5 vk ← ak ▷ Der k-te Spaltenvektor
6 for i = 1, . . . , k − 1 do
7 rik ← q⊤

i ak

8 vk ← ak −
∑k−1

i=1 rikqi

9 rkk = ||vk||
10 qk = vk/rkk ▷ Vektor normieren
11 return q, r

Algorithm 4 modifiedGramSchmidt(A)
1 n← A.shape[0]
2 q ← Initialisiere ein n× n array
3 r ← Initialisiere ein n× n array
4 for k = 1, 2, . . . , n do
5 vk ← ak ▷ Der k-te Spaltenvektor
6 for i = 1, . . . , k − 1 do
7 rik ← q⊤

i vk

8 vk ← vk − rikqi

9 qk = vk/rkk ▷ Vektor normieren
10 return q, r

Falls R nicht benötigt wird, kann viel Speicher gespart werden, indem man das rik als eine scoped variable verwendet.

29. Dezember 2025 50 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Householder-Reflektor

Wir konstruieren eine Matrix H = I − 2vv
⊤

v⊤v
= I − 2uu⊤ mit u = v

||v||
.

Dabei ist die Matrix H orthogonal (H⊤H = I) und symmetrisch (H⊤ = H).
Um nun die QR-Zerlegung durchzuführen mit der Householder-Reflektion fehlen uns die Householder-Reflektoren. Um
diese zu erstellen wollen wir das v so wählen, dass Hx = ||x||e1 gilt. So werden also m − 1 Elemente auf einmal auf
Null gesetzt.
Der Ansatz dazu ist entsprechend v = x − αe1 mit α = −sign(x1)||x|| (minus, um numerische Stabilität zu erhalten)
und wir haben dann:

Hx = αe1 ⇐⇒ Hx = x− 2v
⊤x

v⊤v
v

Dann müssen wir nur noch v⊤x und v⊤v berechnen und auflösen. Der vollständige QR-Algorithmus lautet:

Algorithm 5 HouseholderQR(A)
1 n← A.shape[0]
2 H ← Initialisiere ein n× n array
3 for k = 1, 2, . . . , n do
4 x← A(k : m, k ▷ Wähle subvektor der k-ten Spalte
5 Hk ← Konstruiere Householder-Reflektor für x
6 A(k : m, k : n)← HkA(k : m, k : n) ▷ Update
7 Q← H1H2 · · ·Hn

8 R← HnHn−1 · · ·H1A

9 return Q, R

Die Laufzeiten der verschiedenen Methoden im Vergleich:
• Householder-QR: ≈ 2mn2 Flops
• Gram-Schmidt: ≈ 2mn2 Flops
• Givens: ≈ 3mn2 Flops

Jedoch ist die Householder-Methode bedeutend stabiler als die anderen beiden.

7.1.3 Singulärwertzerlegung

Satz 7.1.35: Jede Matrix A ∈ Cm×n kann in unitäre Matrizen U ∈ Cm×m und V ∈ Cn×n und die Diagonalmatrix
Σ = diag(σ1, . . . , σp) ∈ Cm×n, wobei p = min{m,n} und σ1 ≥ . . . ≥ σp ≥ 0, wobei σi der i-te Eigenwert ist, so dass

A = UΣV H

Die PCA (principal component analysis, zu Deutsch Hauptkomponentenanalysis) setzt sich zum Ziel, die Menge an
Informationen so zu reduzieren, so dass nur das Notwendige übrig bleibt.
Idealerweise sind die Daten frei von jeglichem Rauschen:

aj ≈ span{u1, . . . , up} mit p≪ n

In der Realität haben wir jedoch oft ein Rauschen in den Daten:

aj =
p∑

i=1
σiuivij + kleine Störungen

Die PCA versucht nun das p zu bestimmen und die orthonormalen Trendvektoren u1, . . . , up zu finden. Die Spalten von
U aus der SVD sind genau die gesuchten Trendvektoren (können geordnet werden nach den zugehörigen Singulärwerten):

A:,j ≈
p∑

i=1
σiuivij

Hierbei ist A eine Datenmatrix, bei welcher die Spalten die Datenpunkte oder Messungen sind und die Zeilen die
verschiedenen Merkmale oder Zeitpunkte in den Messungen sind.

29. Dezember 2025 51 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Die Matrix V H enthält in ihrer j-ten Spalte die Gewichte, die die p-Trends zum j-ten Datenpunkt beitragen.

Die ersten p Komponenten erfassen ca.
∑p

i=1 σ
2
i∑m

i=1 σ
2
i

Varianzkriterium p = min

q :
q∑

j=1
σ2

j ≥ ε
min{m,n}∑

j=1
σ2

j

. Oft wird ε = 0.90 verwendet (oder ε = 0.95, dies ist jedoch

konservativ, also kann es sein, dass es mehr Komponenten benötigt). ε ∈ (0, 1)

In numpy können wir sowohl die vollständige Singulärwertzerlegung durchführen, wie auch nur die Singulärwerte be-
rechnen.

• Zur vollständigen Berechnung nutzen wir numpy.linalg.svd (Option full matrices=False führt eine sparsa-
mere Version der SVD durch) oder scipy.linalg.svd,

• Falls wir nur die Singulärwerte benötigen, dann liefert scipy.linalg.svdvals eine günstigere Alternative.

Algorithm 6 PCA(A, ε)
1 n← A.shape[0]
2 m← A.shape[1]
3 U,Σ, V H ← Singulärwertzerlegung von A
4 p← berechnet wie oben mit Varianzkriterium
5 Up ← U:,1:p ▷ Wähle erste p Spalten von U
6 return Up, Singulärwerte σ1, . . . , σp

1 import numpy as np
2

3 # SVD of the data matrix
4 U, sigma, Vh = np.linalg.svd(A, full_matrices=False)
5 threshold = 0.90 # Threshold for variance (e.g. 90%, the epsilon as discussed previously)
6 total_var = np.sum(sigma**2)
7 cumsum = np.cumsum(sigma**2)
8 p = np.argmax(cumsum >= threshold * total_var) + 1
9 U_p = U[:, :p] # Primary components

10 scores = A.T @ U_p # Projection of the data

A word of caution:

• Zu niedriges ε kann zu Informationsverlust führen
• Zu hohes ε (e.g. ε = 0.99) kann zu overfitting führen

29. Dezember 2025 52 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

8 Ausgleichsrechnung
Der Begriff “Ausgleichsrechnung” mag vielleicht nicht bekannt sein, jedoch macht die Englische Übersetzung klar, was
der Inhalt dieses Abschnitts ist: Curve Fitting .
Wir werden also (unter anderem) Least-Squares-Probleme behandeln

8.1 Lineare Ausgleichsrechnung
Die Ansatz der Methode der kleinsten Quadrate ist (ausgedrückt mit Matrizen) ist min

x̂∈Rn

||Ax̂− b||2 und als Summe:

(a, c) = argmin
p∈Rn,q∈R

m∑
i=1
|yi − p⊤xi − q|2

Wobei yi die y-Koordinaten der Messpunkte zugehörig zu xi sind.
In numpy haben wir die Funktionen numpy.polyfit (um ein Polynom zu fitten), oder die allgemeinere Methode

numpy.linalg.lstsq. Um eine eindeutige Lösung zu erhalten können wir die Moore-Penrose (eine Art der Pseudoin-
versen) verwenden, wofür numpy.linalg.pinv und numpy.linalg.pinv2 zur Verfügung stehen

8.1.1 Normalengleichung

Definition 8.1.9: (Normalengleichung) AHAx = AH

Bemerkung 8.1.10: AHA ist Hermite-Symmetrisch, und falls A vollen Rank hat, dannn ist AHA positiv-definit und
die Normalengleichung hat eine eindeutige Lösung. Jedoch ist die Normalengleichung schlecht konditioniert (es gilt:
cond(AHA) = cond(A)2). Für gut konditionierte Matrizen ist dies kein Problem, jedoch ist die Normalengleichung für
schlecht konditionierte Matrizen ungeeignet.

Bemerkung 8.1.11: Man kann die Normalengleichung auch ohne die Berechnung von AHA berechnen:

AHAx = AHb⇐⇒ B

[
r
x

]
:=
[
−I A
AH 0

] [
r
x

]
=
[
b
0

]
für r := 1

a (Ax− b) mit a > 0, dann können wir B in obiger Gleichung durch Ba =
[
−aI A
AH 0

]
ersetzen, wobei wir a so

wählen, dass κ(Ba) minimal wird (Zur Erinnerung, κ ist die Konditionszahl der Matrix).

8.1.2 Lösung mittels orthogonaler Transformation

Nicht nur die Normalengleichungen, aber auch das LU-Verfahren kann für gewisse Matrizen (im Falle von LU sind es
Matrizen mit m > n) ungeeignet sein.
Wir versuchen wieder ||r||22 zu minimieren, mit r = Ax − b. Mithilfe der QR-Zerlegung lässt sich ein Lösungsansatz

herleiten, der höhere numerische Stabilität aufweist, als die Normalengleichungen. Sei A = QR = Q

[
R̃
0

]
. Dann, nach

Umformungen erhalten wir ||Rx− b̃||22 mit b̃ = QHb.
Nutzt man beispielsweise Housholder-Spiegelungen zur Berechnung der QR-Zerlegung, so kann man die Transformatio-
nen direkt auf b anwenden und so kann man sich das Abspeichern der Matrix Q komplett sparen.
Falls jedoch die Matrix A nicht vollen Rang hat (was sehr oft der Fall ist), dann ist es besser, die Singulärwertzerlegung
zu verwenden. Dann ist:

||Ax− b||2 = ||UΣV Hx− b||2 = ||ΣV Hx− UHb||2
In numpy verwendet numpy.linalg.lstsq die SVD für das Lösen

Definition 8.1.15: (Pseudoinverse) A+ = (AHA)−1AH = V1Σ+
r U

H
1

Die drei bisher besprochenen Verfahren lassen sich in zwei Kategorien einordnen:
1. A ∈ Km×n ist voll besetzt und n ist klein (m≫ n)
2. A ∈ Km×n ist dünn besetzt und m,n sind gross

Im ersten Fall wird aufgrund der numerischen Stabilität die QR oder SVD-Methode verwendet. Im zweiten Fall verwendet
man die Normalengleichungen, da diese die Struktur der dünn besetzten Matrizen verwenden können.

29. Dezember 2025 53 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

1 import numpy as np
2

3 A = np.array([[98.269, 1.0], [0.0, 1.0], [-194.96, 1.0]])
4 b = np.array([852.7, 624.5, 172.7])
5

6 def least_squares_svd(A, b, epsilon=1e-6):
7 U, s, Vh = np.linalg.svd(A)
8 r = 1 + np.where(s / s[0] > epsilon)[0].max() # numerical rank
9 y = np.dot(Vh[:r, :].T, np.dot(U[:, :r].T, b) / s[:r])

10 return y
11

12 # qr-decomposition:
13 def least_squares_qr(A, b):
14 Q, R = np.linalg.qr(A)
15 b_tilde = np.dot(Q.T, b)
16 return np.linalg.solve(R, b_tilde)
17

18 np.linalg.lstsq(A, b)

8.1.3 Totale Ausgleichsrechnung

Es kann vorkommen, dass sowohl die Matrix A, wie auch der Vektor b fehlerhaft sind. Dann ersetzen wir das System
Ax = b durch ein neues System Âx̂ = b̂, welches so nah wie möglich am ursprünglichen System liegt und so für welches
gilt b̂ ∈ Bild(Â).
Wir versuchen also die folgende Norm zu minimieren:

||C − Ĉ||F =
∣∣∣∣∣∣[A b

]
−
[
Â b̂

]∣∣∣∣∣∣
F

Das Problem lässt sich umschreiben als
min

Rang(Ĉ)=n

||C − Ĉ||F

Theorem ?? liefert die Lösung. Die Singulärwertzerlegung

C = UΣV H =
n+1∑
j=1

σj(u)j(v)H
j

gibt das Optimum

Ĉ =
n∑

j=1
σj(u)j(v)H

j

29. Dezember 2025 54 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

8.2 Nichtlineare Ausgleichsrechnung
Es ist natürlich auch möglich, dass das Modell für das Ausgleichsproblem nicht linear ist.

8.2.1 Newton-Verfahren

Aus der Analysis ist bekannt, dass für gesuchtes x ∈ Rn, so dass Φ(x) minimal ist, eine notwendige Bedingung durch
grad(Φ(x)) = 0 gegeben ist.
Da wir also eine Nullstellensuche in Rn haben, können wir dies mit dem Newton-Verfahren lösen:

x(k+1) = x(k) − (Dgrad(Φ(x)))−1grad(Φ(x))
Da HΦ(x) := D((grad)(Φ(x))) ist, haben wir also:

x(k+1) = x(k) − (HΦ(x))−1grad(Φ(x))

8.2.2 Gauss-Newton Verfahren

Direkt das Newton-Verfahren auf ein Problem anzuwenden kann unmöglich oder schwer praktikabel sein.
Die Idee des Gauss-Newton Verfahrens ist es, die komplizierte Funktion F (x) lokal durch eine lineare Funktion approxi-
miert, also:

F (x) ≈ F (y) +DF (y)(x− y) = F (y) +DF (y)x−DF (y)y

Falls man A := DF (y) und b = DF (y)y − F (y) definiert, so erhält man ein lineares Ausgleichsproblem:

argmin
x∈Rn

1
2 ||F (x)||22 ≈ argmin

x∈Rn

1
2 ||F (y) +DF (y)x||22 = argmin

x∈Rn

1
2 ||Ax− b||

2
2

wobei y eine Näherung der Lösung x ist. Die Iterationsvorschrift ist gegeben durch:
x(k+1) = x(k) − s mit s := argmin

z∈Rn

||F (x(k))−DF (x(k))z||22

1 import numpy as np
2

3 def gauss_newton(start_vec, Func, Jacobian, tolerance):
4 # Start vector has to be chosen intelligently
5 s = np.linalg.lstsq(Jacobian(start_vec), Func(start_vec))[0]
6 start_vec = start_vec - s
7 # now we perform the iteration
8 while np.linalg.norm(s) > tolerance * np.linalg.norm(start_vec):
9 # every time we update x by subtracting s, found with the least square method

10 s = np.linalg.lstsq(Jacobian(start_vec), Func(start_vec))[0]
11 start_vec = start_vec - s
12 return start_vec

Der Vorteil ist, dass die zweite Ableitung nicht benötigt wird, jedoch ist die Konvergenzordnung niedrieger (p ≤ 2)

29. Dezember 2025 55 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

Beispiel 8.2.3: Wir haben zwei Modellfunktionen, F1(t) = a1 + b1e
−c1t and F2(t) = a2 − b2e

−c2t. (F1 ist ein Heiz-
vorgang, F2 ist ein Abkühlvorgang). Untenstehender code berechnet die Lösung des nichtlinearen Ausgleichsproblems

1 import numpy as np
2

3 t = np.arange(0, 30, 5); n = len(t)
4 curr_heating = np.array([24.34, 18.93, 17.09, 16.27, 15.97, 15.91])
5 curr_cooling = np.array([9.66, 18.8, 22.36, 24.07, 24.59, 24.91])
6 # define the functions that have to be minimized
7 F_1 = lambda a: a[0] + a[1] * np.exp(-a[2] * t) - curr_heating
8 F_2 = lambda a: a[0] - a[1] * np.exp(-a[2] * t) - curr_cooling
9

10 # define the corresponding Jacobi matrices
11 def J_1(a):
12 mat = np.zeros((n, 3))
13 for k in range(n):
14 mat[k, 0] = 1.0
15 mat[k, 1] = np.exp(-t[k] * a[2])
16 mat[k, 2] = -t[k] * a[1] * np.exp(-t[k] * a[2])
17 return mat
18

19 def J_2(a):
20 mat = np.zeros((n, 3))
21 for k in range(n):
22 mat[k, 0] = 1.0
23 mat[k, 1] = -np.exp(-t[k] * a[2])
24 mat[k, 2] = t[k] * a[1] * np.exp(-t[k] * a[2])
25 return mat
26

27 # guess starting vector
28 x_1 = np.array([10.0, 5.0, 0.0])
29 x_2 = np.array([30.0, 10.0, 0.0])
30

31 # use the Gauss-Newton algorithm declared above
32 a_1 = gauss_newton(x_1, F_1, J_1, tolerance=10e-6)
33 a_2 = gauss_newton(x_2, F_2, J_2, tolerance=10e-6)
34 print("Heating ", a_1)
35 print("Cooling ", a_2)

29. Dezember 2025 56 / 57

Numerical Methods for Computer Science Robin Bacher, Janis Hutz

8.2.3 Weitere Methoden: BFGS, GD, SGC, CG, LM, ADAM

Für unterschiedliche Probleme können andere Funktionen günstiger oder besser geeignet sein. Eine Liste einiger bekannter
Methoden:

• BFGS (basiert auf Broyden): DΦ(x(k)) = DF (x(k))⊤F (x(k)), oder günstiger mit DΦ(x(k))⊤DF (x(k))s =
DF (x(k))⊤F (x(k))

• GD (Gradient Descent): s = λkDΦ(x(k)) (in ML wird λk als “Learning rate” bezeichnet)
• LM (Levenberg-Marquant): wir minimieren ||F (x(k))+DF (x(k))||2+λ||s||22 (also werden kleine Schritte bevorzugt)
• CG (Conjugated Gradient): GD ist sehr langsam, aber auch günstig. Mit höheren Kosten kann durch Wahl von
s = λzk und zk = DΦ(x(k)) + βz(k − 1) eine schnellere Konvergenz erreicht werden (Dämpfung)

• ADAM Hier werden spezielle λ und β gewählt und liefert die einfache Iterationen
x(k+1) = xk − λzk

z(k+1) = DΦ(x(k)) + βz(k)

In numpy gibt es via scipy.optimize.leastsq eine Implementation mit verschiedenen Iterationsmethoden, oder
alternativ scipy.optimize.minimize

29. Dezember 2025 57 / 57

	Introduction
	Einführung
	Rundungsfehler
	Rechenaufwand
	Rechnen mit Matrizen

	Polynominterpolation
	Interpolation und Polynome
	Monombasis

	Newton Basis
	Koeffizienten
	Auswertung
	Fehler

	Lagrange- und Baryzentrische Interpolationsformeln
	Fehler

	Chebyshev Interpolation
	Fehler

	Trigonometrische Interpolation
	Fourier-Reihen
	Diskrete Fourier Transformation
	Motivation
	Konstruktion
	DFT in Numpy
	DFT & Lineare Algebra

	Schnelle Fourier Transformation
	Trigonometrische Interpolation
	Von Approximation zur Interpolation
	Zero-Padding-Auswertung

	Fehlerabschätzungen
	DFT und Chebyshev-Interpolation

	Stückweise Polynomiale Interpolation
	Stückweise Lineare Interpolation
	Kubische Hermite-Interpolation
	Splines

	Numerische Quadratur
	Grundbegriffe und -Ideen
	Äquidistante Punkte
	Summierte Quadratur
	Romberg Schema
	Anwendung

	Nicht äquidistante Stützstellen
	Gauss Quadratur
	Clenshaw-Curtis Quadraturformel

	Adaptive Quadratur
	Quadratur in Rd und dünne Gitter
	Monte-Carlo Quadratur
	Methoden zur Reduktion der Varianz
	Control Variates
	Importance Sampling
	Quasi-Monte-Carlo

	Nullstellensuche
	Iterative Verfahren
	Abbruchkriterien
	Fixpunktiteration
	Intervallhalbierungsverfahren
	Newtonverfahren in 1D
	Sekantenverfahren
	Newton-Verfahren in n Dimensionen
	Gedämpftes Newton-Verfahren
	Quasi-Newton-Verfahren

	Intermezzo: Lineare Algebra
	Grundlagen
	Gauss Elimination / LU Zerlegung
	QR-Zerlegung
	Singulärwertzerlegung

	Ausgleichsrechnung
	Lineare Ausgleichsrechnung
	Normalengleichung
	Lösung mittels orthogonaler Transformation
	Totale Ausgleichsrechnung

	Nichtlineare Ausgleichsrechnung
	Newton-Verfahren
	Gauss-Newton Verfahren
	Weitere Methoden: BFGS, GD, SGC, CG, LM, ADAM

