\definition \textbf{Differential Equation} (DE)\\ Equation relating unknown $f$ to derivatives $f^{(i)}$ at \textit{same} $x$. \definition \textbf{Ordinary Differential Equation} (ODE)\\ DE s.t. $f: I \to \R$ is in one variable. \definition \textbf{Partial Differential Equation} (PDE)\\ DE s.t. $f: I^d \to \R$ is in multiple variables. \notation $f^{(i)}$ or $y^{(i)}$ instead of $f^{(i)}(x)$ for brevity. \definition \textbf{Order} $\ \ord(F) := \underset{i \geq 0}{\text{max}}\{ i \sep f^{(i)} \in F,\ f^{(i)} \neq 0 \}$ \remark Any $F$ s.t. $\ord(F) \geq 2$ can be reduced to $\ord(F') = 1$, but using functions of higher dimensions. \begin{subbox}{Solutions to ODEs} \smalltext{$\forall F: \R^2 \to \R$ s.t. $F$ is cont. diff. and $x_0,y_0 \in \R$:} \begin{align*} & \exists f: I \to \R \\ & \text{s.t. } \forall x \in I: f'(x) = F(x, f(x)) \text{ and } f(x_0) = y_0 \end{align*} \smalltext{s.t. $I$ is open and maximal.} \end{subbox} \subtext{Intuition: Solutions always exist (locally!) for \textit{nice enough} equations.} \subsection{Linear Differential Equations} \definition \textbf{Linear Differential Equation} (LDE)\\ $$y^{(k)} + a_{k-1}y^{(k-1)} + \ldots + a_1y' + a_0y = b$$ \subtext{$I \subset \R$ is open$,\quad k \geq 1,\quad \forall i < k: a_i: I \to \C$} \definition Homogeneity of LDEs\\ \begin{tabular}{ll} \textbf{Homogeneous} & $\iffdef b = 0$\\ \textbf{Inhomogeneous} & $\iffdef b \neq 0$ \end{tabular} \remark $D(y) := y^{(k)} + \ldots + a_0y$ is a linear operation: $$D(z_1f_1 + z_2f_2) = z_1D(f_1) + z_2D(f_2)$$ \subtext{$\forall z_1,z_2 \in \C,\quad f_1,f_2\ k$-times differentiable} \definition \textbf{Homogeneous Solution Space}\\ $\S(F) := \{ f: I \to \C \sep f \text{ solves } F, f \text{ is } k \text{-times diff.} \}$ \remark $\S(F)$ is the Nullspace of a lin. map: $f$ to $D(f)$: $$ D(f) = z_1D(f_1) + z_2D(f_2) = 0 $$ \subtext{ $\forall z_1,z_2 \in \C,\quad f_1,f_2 \in \S$ } \begin{subbox}{Solutions for complex homogeneous LDEs} \smalltext{ $F$ s.t. $a_0,\ \ldots\ ,a_{k-1}$ continuous and complex-valued } \begin{enumerate} \item $\S$ is a complex vector space, $\dim(\S) = k$ \item $\S$ is a subspace of $\{ f \sep f: I \to \C \}$ \item $\forall x_0 \in I, (y_0,\ldots,y_{k-1}) \in \C^k$ a unique sol. exists \end{enumerate} \end{subbox} \begin{subbox}{Solutions for real homogeneous LDEs} \smalltext{$F$ s.t. $a_0,\ \ldots\ ,a_{k-1}$ continuous and real-valued} \begin{enumerate} \item $\S$ is a real vector space, $\dim(\S) = k$ \item $\S$ is a subspace of $\{ f \sep f: I \to \R \}$ \item $\forall x_0 \in I, (y_0,\ldots,y_{k-1}) \in \R^k$ a unique sol. exists \end{enumerate} \end{subbox} \definition \textbf{Inhomogeneous Solution Space}\\ $\S_b(F) := \{ f + f_0 \sep f \in \S(F),\ f_0 \text{ is a particular sol.} \}$\\ \subtext{Note: This is only a vector space if $b = 0$, where $\S_b = \S$.} \begin{subbox}{Solutions for real inhomogeneous LDEs} \smalltext{$F$ s.t. $a_0,\ \ldots\ ,a_{k-1}$ continuous, $b: I \to \C$} \begin{enumerate} \item $\forall x_0 \in I, (y_0,\ldots,y_{k-1}) \in \C^k$ a unique sol. exists \item If $b, a_i$ are real-valued, a real-valued sol. exists. \end{enumerate} \end{subbox} \remark \textbf{Applications of Linearity}\\ If $f_1$ solves $F$ for $b_1$, and $f_2$ for $b_2$: $f_1 + f_2$ solves $b_1 + b_2$. \\ Follows from: $D(f_1) + D(f_2) = b_1 + b_2$.