Numerical Methods for Computer Science

Robin Bacher, Janis Hutz https://github.com/janishutz/eth-summaries

25. September 2025

TITLE PAGE COMING SOON

"Denken vor Rechnen" - Vasile Grudinaru, 2025

HS2025, ETHZ Summary of the Script and Lectures

25. September 2025 1 / 5

Inhaltsverzeichnis

1	Einführung 1.1 Rundungsfehler	3
2	Interpolation	5

25. September 2025 $2 \ / \ 5$

1 Einführung

1.1 Rundungsfehler

Absoluter & Relativer Fehler

Definition 1.1

• Absoluter Fehler: $||\widetilde{x} - x||$

• Relativer Fehler: $\frac{||\widetilde{x} - x||}{||x||}$ für $||x|| \neq 0$

wobei \widetilde{x} eine Approximation an $x \in \mathbb{R}$ ist

Rundungsfehler entstehen durch die (verhältnismässig) geringe Präzision die man mit der Darstellung von Zahlen auf Computern erreichen kann. Zusätzlich kommt hinzu, dass durch Unterläufe (in diesem Kurs ist dies eine Zahl die zwischen 0 und der kleinsten darstellbaren, positiven Zahl liegt) Präzision verloren gehen kann.

Überläufe hingegen sind konventionell definiert, also eine Zahl, die zu gross ist und nicht mehr dargestellt werden kann.

Auslöschung

Bemerkung 1.9

Bei der Subtraktion von zwei ähnlich grossen Zahlen kann es zu einer Addition der Fehler der beiden Zahlen kommen, was dann den relativen Fehler um einen sehr grossen Faktor vergrössert. Die Subtraktion selbst hat einen vernachlässigbaren Fehler

Beispiel 1.18: (Ableitung mit imaginärem Schritt) Als Referenz in Graphen wird hier oftmals die Implementation des Differenzialquotienten verwendet.

Der Trick hier ist, dass wir mit Komplexen Zahlen in der Taylor-Approximation einer glatten Funktion in x_0 einen rein imaginären Schritt durchführen können:

$$f(x_0 + ih) = f(x_0) + f'(x_0)ih - \frac{1}{2}f''(x_0)h^2 - iC \cdot h^3 \text{ für } h \in \mathbb{R} \text{ und } h \to 0$$

Da $f(x_0)$ und $f''(x_0)h^2$ reell sind, verschwinden die Terme, wenn wir nur den Imaginärteil des Ausdruckes weiterverwenden. Nach weiteren Vereinfachungen und Umwandlungen erhalten wir

$$f'(x_0) \approx \frac{\operatorname{Im}(f(x_0 + ih))}{h}$$

Falls jedoch hier die Auswertung von $\text{Im}(f(x_0+ih))$ nicht exakt ist, so kann der Fehler beträchtlich sein.

Beispiel 1.20: (Konvergenzbeschleunigung nach Richardson)

$$yf'(x) = yd\left(\frac{h}{2}\right) + \frac{1}{6}f'''(x)h^2 + \frac{1}{480}f^{(s)}h^4 + \dots - f'(x)$$
$$= -d(h) - \frac{1}{6}f'''(x)h^2 + \frac{1}{120}f^{(s)}(x)h^n \Leftrightarrow 3f'(x)$$
$$= 4d\left(\frac{h}{2}\right)d(h) + \mathcal{O}\left(h^4\right) \Leftrightarrow$$

Schema

$$d(h) = \frac{f(x+h) - f(x-h)}{2h}$$

wobei im Schema dann

$$R_{l,0} = d\left(\frac{h}{2^l}\right)$$

25. September 2025

und

$$R_{l,k} = \frac{4^k \cdot R_{l,k-1} - R_{l-1,k-1}}{4^k - 1}$$

und
$$f'(x) = R_{l,k} + C \cdot \left(\frac{h}{2^l}\right)^{2k+2}$$

25. September 2025 $4 \ / \ 5$

2 Interpolation

25. September 2025 $5 \ / \ 5$