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1 Linear Algebra

Relevant definitions used throughout Analysis II.

A ∈ Rm×n, x, y ∈ Rn, α ∈ R

Def Scalar Product x · y :=
∑n

i=0(xi · yi)

Def Euclidian Norm ||x|| :=

√√√√ n∑
i=1

x2
i

Used to generalize |x| in many Analysis I definitions

Lem. Properties of ||x||

(i) ||x|| ≥ 0

(ii) ||x|| ⇐⇒ x = 0

(iii) ||αx|| = α · ||x||
(iv) ||x+ y|| ≤ ||x||+ ||y|| (Triangle Inequality)

Def Definiteness

Positive Definite
def⇐⇒ x⊤Ax > 0 ∀x ∈ Rn

̸=0

Negative Definite
def⇐⇒ x⊤Ax < 0 ∀x ∈ Rn

̸=0

If 0 is allowed, A is called positive/negative semi-definite.

Def Trace Tr(A) :=

min(m,n)∑
i=0

Ai,i

2 Differential Equations

Def Differential Equation (DE)
Equation relating unknown f to derivatives f (i) at same x.

Def Ordinary Differential Equation (ODE)
DE s.t. f : I → R is in one variable.

Def Partial Differential Equation (PDE)
DE s.t. f : Id → R is in multiple variables.

Notation f (i) or y(i) instead of f (i)(x) for brevity.

Def Order ord(F ) := max
i≥0

{i | f (i) ∈ F, f (i) ̸= 0}

Remark Any F s.t. ord(F ) ≥ 2 can be reduced to ord(F ′) =
1, but using functions of higher dimensions.

Solutions to ODEs

∀F : R2 → R s.t. F is cont. diff. and x0, y0 ∈ R:

∃f : I → R
s.t. ∀x ∈ I : f ′(x) = F (x, f(x)) and f(x0) = y0

s.t. I is open and maximal.

Intuition: Solutions always exist (locally!) for nice enough equations.

2.1 Linear Differential Equations

Def Linear Differential Equation (LDE)

y(k) + ak−1y
(k−1) + . . .+ a1y

′ + a0y = b

I ⊂ R is open, k ≥ 1, ∀i < k : ai : I → C

Def Homogeneity of LDEs

Homogeneous
def⇐⇒ b = 0

Inhomogeneous
def⇐⇒ b ̸= 0

Remark D(y) := y(k) + . . .+ a0y is a linear operation:

D(z1f1 + z2f2) = z1D(f1) + z2D(f2)

∀z1, z2 ∈ C, f1, f2 k-times differentiable

Def Homogeneous Solution Space
S(F ) := {f : I → C | f solves F, f is k-times diff.}

Remark S(F ) is the Nullspace of a lin. map: f to D(f):

D(f) = z1D(f1) + z2D(f2) = 0

∀z1, z2 ∈ C, f1, f2 ∈ S

Solutions for complex homogeneous LDEs

F s.t. a0, . . . , ak−1 continuous and complex-valued

1. S is a complex vector space, dim(S) = k

2. S is a subspace of {f | f : I → C}
3. ∀x0 ∈ I, (y0, . . . , yk−1) ∈ Ck a unique sol. exists

Solutions for real homogeneous LDEs

F s.t. a0, . . . , ak−1 continuous and real-valued

1. S is a real vector space, dim(S) = k

2. S is a subspace of {f | f : I → R}
3. ∀x0 ∈ I, (y0, . . . , yk−1) ∈ Rk a unique sol. exists

Def Inhomogeneous Solution Space
Sb(F ) := {f + f0 | f ∈ S(F ), f0 is a particular sol.}
Note: This is only a vector space if b = 0, where Sb = S.

Solutions for real inhomogeneous LDEs

F s.t. a0, . . . , ak−1 continuous, b : I → C
1. ∀x0 ∈ I, (y0, . . . , yk−1) ∈ Ck a unique sol. exists

2. If b, ai are real-valued, a real-valued sol. exists.

Remark Applications of Linearity
If f1 solves F for b1, and f2 for b2: f1 + f2 solves b1 + b2.
Follows from: D(f1) +D(f2) = b1 + b2.
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3 Solutions to Differential Equations

3.1 Linear Solutions: First Order

Form: y′ + ay = b I ⊂ R, a, b : I → R

Approach:

1. Hom. Solution f1 for: y′ + ay = 0
Note that S has dim(S) = 1, so f1 ̸= 0 is a Basis for S

2. Part. Solution f0 for y′ + ay = b

Solutions: f0 + zf1 for z ∈ C

Explicit Homogeneous Solution

A(x) is a primitive of a, f(x0) = y0

f1(x) = z · exp(−A(x))

f1(x) = y0 · exp(A(x0)− a(x))

Method Variation of Constants: Treating z as z(x) yields:

Explicit Inhomogeneous Solution

A(x) is a primitive of a

f0(x) =

(∫
b(x) · exp(A(x))

)
︸ ︷︷ ︸

z(x)

· exp (−A(x))

Method Educated Guess
Usually, y has a similar form to b:

b(x) Guess

a · eαx b · eαx

a · sin(βx) c sin(βx) + d cos(βx)

b · cos(βx) c sin(βx) + d cos(βx)

aeαx · sin(βx) eαx (c sin(βx) + d cos(βx))

beαx · cos(βx) eαx (c sin(βx) + d cos(βx))

Pn(x) · eαx Rn(x) · eαx

Pn(x) · eαx sin(βx) eαx (Rn(x) sin(βx) + Sn(x) cos(βx))

Pn(x) · eαx cos(βx) eαx (Rn(x) sin(βx) + Sn(x) cos(βx))

Remark If α, β are roots of P (X) with multiplicity j, mul-
tiply guess with a Pj(x).

3.2 Linear Solutions: Constant Coefficients

Form:

y(k) + ak−1y
(k−1) + . . .+ a1y

′ + a0y = b

Where a0, . . . , ak−1 ∈ C are constants, b(x) is continuous.

3.2.1 Homogeneous Equations

The idea is to find a Basis of S:

Def Characteristic Polynomial P (X) =
∏k

i=1(X − αi)

Remark The unique roots α1, . . . , αl form a Basis:

span(S) = {xjeαix | i ≤ l, 0 ≤ j ≤ vi}

v1, . . . , vk are the Multiplicities of α1, . . . , αk

Remark If αj = β + γi ∈ C is a root, ᾱj = β − γi is too.
To get a real-valued solution, apply:

eαjx = eβx (cos(γx) + i sin(γx))

Explicit Homogeneous Solution

Using α1, . . . , αk from P (X) s.t. αi ̸= αj , zi ∈ C arbitrary

f(x) =

k∏
i=1

zi · eαix with f (j)(x) =

k∏
i=1

zi · αj
i e

αix

Multiple roots: same scheme, using the basis vectors of S

Solutions exist ∀Z = (z1, . . . , zk) since that system’s det(MZ) ̸= 0.

3.2.2 Inhomogeneous Equations

Method Undetermined Coefficients: An educated guess.

1. b(x) = cxd · eαx =⇒ fp(x) = Q(x)eαx

deg(Q) ≤ d+ vα, where vα is α’s multiplicity in P (X)

2.
b(x) = cxd · cos(αx)
b(x) = cxd · sin(αx)

}
fp = Q1(x) cos(αx)+Q2(x) sin(αx)

deg(Q1,2) ≤ d+ vα, where vα is α’s multiplicity in P (X)

Remark Applying Linearity
If b(x) =

∑n
i=1 bi(x), A solution for b(x) is f(x) =

∑n
i=1 fi(x)

Sometimes called Superposition Principle in this context

3.3 Other Methods

Method Change of Variable
If f(x) is replaced by h(y) = f(g(y)), then h is a sol. too.
Changes like h(t) = f(et) may lead to useful properties.

Separation of Variables

Form:
y′ = a(y) · b(x)

Solve using: ∫
1

a(y)
dy =

∫
b(x) dx+ c

Usually
∫
1/a(y) dy can be solved directly for ln |a(y)|+ c.

3.4 Method Overview

Method Use case

Variation of constants LDE with ord(F ) = 1

Characteristic Polynomial Hom. LDE w/ const. coeff.

Undetermined Coefficients Inhom. LDE w/ const. coeff.

Separation of Variables ODE s.t. y′ = a(y) · b(x)
Change of Variables e.g. y′ = f(ax+ by + c)
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4 Continuous functions in Rn

Treating functions f : X ⊂ Rn → R/C/Rm, m, n ≥ 1

Notation f(x) for f : I ⊂ Rn → Rm means:
x = (x1, . . . , xn), f(x) = f

(
f1(x), . . . , fm(x)

)
4.1 Multivariate functions

Def Linear map f : Rn → Rm

In other words: f(x) = Ax, A ∈ Cm×n

Linear Maps are continuous

Def Affine Linear map f(x) 7→ Ax+ c

Def Quadratic form Q : Rn → R
In other words: Q(x) =

∑n
i=0

∑m
j=0 (ai,jxixj)

Def Monomials M(x) : Rn → R 7→ αxd1
1 · · ·xdn

n

For example: f(x, y, z) = 16x2yz5

Def deg(M) := e =
∑n

i=1 di
For example: deg(16x2yz5) = 8

Def Polynomials P (x) :=
∑n

i=0 Mi(x)
For example: P (x, y, z) = x3 + 25x2y6z + xy

Polynomials are continuous.

Def deg(P ) := d ≥ max{deg(Mi) | Mi in P}
For example: deg(x3 + 25x2y6z + xy) = 9

Visualisations for some function types:

Def Graph Gf := {(x, y, z) ∈ R3 | z = f(x, y)}
Only for f : R2 → R. Visually, this is a surface in R3

Def Vector Plots for f : R2 → R2

Points in (x, y) ∈ R2 are displayed as vectors f(x, y)

4.2 Sequences in Rn

Def Sequences in Rn

(xk)k≥1 s.t. xk ∈ Rn where xk =
(
xk,1, . . . xk,n

)
Def Convergence in Rn

lim
k→∞

(
xk

)
= y ⇐⇒ ∀ϵ > 0,∃N ≥ 1 : ∀k ≥ N : ||xk−y|| < ϵ

Using this definition preserves many familiar results:

Lem. Equivalent conditions to Convergence

(i) ∀i s.t. 1 ≤ i ≤ n : lim
k→∞

(
xk,i

)
= yi

(ii) lim
k→∞

∥∥∥xk − y
∥∥∥ = 0

Def Limits at points

lim
x ̸=x0→x0

(
f(x)

)
= y

def⇐⇒ ∀ϵ > 0,∃δ > 0 :

∀x ̸= x0 ∈ X :
∥∥x− x0

∥∥ < δ =⇒
∥∥f(x)− y

∥∥ < ϵ

X ⊂ Rn, f : X → Rm, x0 ∈ X, y ∈ Rm

The sequence test for Continuity works for point-limits too.

4.3 Continuity in Rn

Def Continuity in Rn

f continuous at x0 ∈ X
def⇐⇒ ∀ϵ > 0,∃δ > 0 :∥∥x− x0

∥∥ < δ =⇒
∥∥f(x)− f(x0)

∥∥ < ϵ

f continuous
def⇐⇒ ∀x ∈ X : f continuous at x

X ⊂ Rn, f : X → Rm

Lem. Continuitiy using Sequences
f continuous at x0 if and only if:

∀(xk)k≥1 : lim
k→∞

(
xk

)
= x0 =⇒ lim

k→∞

(
f(xk)

)
= f(x0)

X ⊂ Rn, f : X → Rm

Lem. Continuity of Compositions
f : X → Y, g : Y → Rp continuous =⇒ g ◦ f continuous
X ⊂ Rn, Y ⊂ Rm, p ≥ 1

Lem. Continuity using Coordinate Functions
f : Rn → Rm continuous ⇐⇒ ∀i ≤ m : fi continuous

4.4 Subsets of Rn

Def Bounded

X ⊂ Rn bounded
def⇐⇒

{∥∥x∥∥ | x ∈ X
}
⊂ R bounded.

Example: The open disc D = {x ∈ Rn |
∥∥x− x0

∥∥ < r} is bounded.

Def Closed

X ⊂ Rn closed
def⇐⇒ ∀(xk)k≥1 ∈ X : lim

x→∞

(
xk

)
∈ X

Example: ∅, Rn are closed.

Def Compact if closed and bounded.
Example: The closed Disc Λ = {x ∈ Rn |

∥∥x−x0

∥∥ ≤ r} is compact.

Def Open

X ⊂ Rn open
def⇐⇒ ∀x ∈ X, ∃δ > 0 :{

y ∈ Rn | |xi − yi| < δ, ∀i ≤ n
}
⊂ X

In other words: Changing any coord. xi by δ keeps x′ in X

Example: ∅,Rn are open (and closed)

Lem. The Cartesian Product preserves bounded/closed.

Lem. Continous functions preserve closed/open

∀ closed/open Y :

f−1(Y ) =
{
x ∈ Rn | f(x) ∈ Y

}
is closed/open.

f : Rn → Rm is continuous, Y ⊂ Rm

Lem. The complement of open sets is closed

X ⊂ Rn is open ⇐⇒
{
x ∈ Rn | x /∈ X

}︸ ︷︷ ︸
Complement

is closed

Min-Max Theorem

For compact, non-empty X ⊂ Rn, continuous f : X → R:

∃x1, x2 ∈ X : f(x1) = sup
x∈X

f(x), f(x2) = inf
x∈X

f(x)
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5 Differential Calculus in Rn

5.1 Partial Derivatives

Partial Derivative

X ⊂ Rn open, f : X → R, 1 ≤ i ≤ n, x0 ∈ X

∂f

∂xi
(x0) := g′(x0,i)

for g : {t ∈ R | (x0,1, . . . , t , . . . , x0,n) ∈ X} → Rn

g(t) := f(x0,i, . . . , x0,t−1, t , x0,t+1, . . . , x0,n)︸ ︷︷ ︸
Freeze all x0,k except one x0,i→t

Notation ∂f
∂xi

(x0) = ∂xi
f(x0) = ∂if(x0)

Lem. Properties of Partial Derivatives
Assuming ∂xif and ∂xig exist :

(i) ∂xi(f + g) = ∂xif + ∂xig

(ii) ∂xi(fg) = ∂xi(f)g + ∂xi(g)f if m = 1

(iii) ∂xi

(f
g

)
=

∂xi(f)g − ∂xi(g)f

g2
if g(x) ̸= 0 ∀x ∈ X

X ⊂ Rn open, f.g : X → Rn, 1 ≤ i ≤ n

The Jacobian

X ⊂ Rn open, f : X → Rn with partial derivatives existing

Jf (x) :=


∂x1f1(x) ∂x2f1(x) · · · ∂xnf1(x)

∂x1f2(x) ∂x2f2(x)
. . .

...
...

...
. . .

...

∂x1fn(x) ∂x2fn(x) · · · ∂xnfm(x)


Think of f as a vector of fi, then Jf is that vector stretched for all xj

Def Gradient ∇f(x0) :=


∂x1f(x0)

...

∂xnf(x0)

 = Jf (x)⊤

X ⊂ Rn open, f : X → R, i.e. must map to 1 dimension

Remark ∇f points in the direction of greatest increase.
This generalizes that in R, sgn(f) shows if f increases/decreases

Def Divergence div(f)(x0) := Tr
(
Jf (x0)

)
X ⊂ Rn open, f : X → Rn, Jf exists

5.2 The Differential

Partial derivatives don’t provide a good approx. of f , unlike in the

1-dimensional case. The differential is a linear map which replicates

this purpose in Rn.

Differentiability in Rn & the Differential

X ⊂ Rn open, f : X → Rn, u : Rn → Rm linear map

df(x0) := u

If f is differentiable at x0 ∈ X with u s.t.

lim
x̸=x0→x0

1∥∥x− x0

∥∥
(
f(x)− f(x0)− u(x− x0)

)
= 0

Similarly, f is differentiable if this holds for all x ∈ X

Lem. Properties of Differentiable Functions

(i) Continuous on X

(ii) ∀i ≤ m, j ≤ n : ∂xj
fi exists

(iii) m = 1 : ∂xi
f(x0) = ai

for: u(x1, . . . , xn) = a1x1 + · · ·+ anxn

X ⊂ Rn open, f : X → Rm differentiable on X

Lem. Preservation of Differentiability

(i) f + g is differentiable: d(f + g) = df + dg

(ii) fg is differentiable, if m = 1

(iii)
f

g
is differentiable, if m = 1, g(x) ̸= 0 ∀x ∈ X

X ⊂ Rn open, f, g : X → Rm differentiable on X

Lem. Cont. Partial Derivatives imply Differentiability

if all ∂xj
fi exist and are continuous:

f differentiable on X, df(x0) = Jf (x0)

X ⊂ Rn open, f : X → Rm

Lem. Chain Rule g ◦ f is differentiable on X

d(g ◦ f)(x0) = dg
(
f(x0)

)
◦ df(x0)

Jg◦f (x0) = Jg
(
f(x0)

)
· Jf (x0)

X ⊂ Rn open, Y ⊂ Rm open, f : X → Y, g : Y → Rp, f, g diff.-able

Def Tangent Space

Tf (x0) :=
{
(x, y) ∈ Rn × Rm | y = f(x0) + u(x− x0)

}
X ⊂ Rn open, f : X → Rm diff.-able, x0 ∈ X, u = df(x0)

Def Directional Derivative

Dvf(x0) = lim
t̸=0→0

f(x0 + tv)− f(x0)

t

X ⊂ Rn open, f : X → Rm, v ̸= 0 ∈ Rn, x0 ∈ X

Lem. Directional Derivatives for Diff.-able Functions

Dvf(x0) = df(x0)(v) = Jf (x0) · v

X ⊂ Rn open, f : X → Rm diff.-able, v ̸= 0 ∈ Rn, x0 ∈ X

Remark Dvf is linear w.r.t v, so: Dv1+v2f = Dv1f+Dv2f

Remark Dvf(x0) = ∇f(x0) · v =
∥∥∇f(x0)

∥∥ cos(θ)
In the case f : X → R, where θ is the angle between v and ∇f(x0)
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5.3 Higher Derivatives

Def Differentiability Classes

f ∈ C1(X;Rm)
def⇐⇒ f diff.-able on X, all ∂xjfi exist

f ∈ Ck(X;Rm)
def⇐⇒ f diff.-able on X, all ∂xj

fi ∈ Ck−1

f ∈ C∞(X;Rm)
def⇐⇒ f ∈ Ck(X;Rm) ∀k ≥ 1

X ⊂ Rn open, f : X → Rm

Lem. Polynomials, Trig. functions and exp are in C∞

Lem. Operations preserve Differentiability Classes

(i) f + g ∈ Ck

(ii) fg ∈ Ck if m = 1

(iii)
f

g
∈ Ck if m = 1, g(x) ̸= 0 ∀x ∈ X

f, g ∈ Ck

Lem. Composition preserves Differentiability Classes

g ◦ f ∈ Ck

f ∈ Ck, f(X) ⊂ Y, Y ⊂ Rm open, g : Y → Rp, g ∈ Ck

Partial Derivatives commute in Ck

k ≥ 2, X ⊂ Rn open, f : X → Rm, f ∈ Ck

∀x, y : ∂x,yf = ∂y,xf

This generalizes for ∂x1,...,xnf .

Remark Linearity of Partial Derivatives

∂m
x (af1 + bf2) = a∂m

x f1 + b∂m
x f2

Assuming both ∂xf1,2 exist.

Def Laplace Operator

∆f := div
(
∇f(x)

)
=

n∑
i=0

∂

∂xi

( ∂f

∂xi

)
=

n∑
i=0

∂2f

∂x2
i

The Hessian

X ⊂ Rn open, f : X → R, f ∈ C2, x0 ∈ X

Hf (x) :=


∂1,1f(x0) ∂2,1f(x0) · · · ∂n,1f(x0)

∂1,2f(x0) ∂2,2f(x0) · · · ∂n,2f(x0)
...

...
. . .

...

∂1,nf(x0) ∂2,nf(x0) · · · ∂n,nf(x0)


Where

(
Hf (x)

)
i,j

= ∂xi,xjf(x)

Note that f : X → R, i.e. Hf only exists for 1-dimensionally valued f

Notation Hf (x) = Hessf (x) = ∇2f(x)

Remark Hf (x0) is symmetric:
(
Hf (x0)

)
i,j

=
(
Hf (x0)

)
j,i

Def Polar Coordinates

g(r, θ) =
(
r cos(θ), r sin(θ)

)
Jg(r, θ) =

[
cos(θ) −r sin(θ)

sin(θ) r cos(θ)

]

∂xf = cos(θ)∂rf − 1

r
sin(θ)∂θf

∂yf = sin(θ)∂rf +
1

r
cos(θ)∂θf

(r, θ) ∈ (0,+∞)× R, det(Jg) = r

5.4 Taylor Polynomials

Def |m| :=
∑n

i=1 m1

Def m! := m1! · · ·mn!

Def ym := ym1 · · · ymn

for m = (m1, . . . ,mn), y = (y1, . . . , yn)

Taylor Polynomials

k ≥ 1, f : X → R, f ∈ Ck, x0 ∈ X

Tkf(y;x0) :=
∑

|m|≤k

1

m!
∂m
x f(x0)y

m

Lem. Taylor Approximation

lim
x ̸=x0→x0

Ekf(x;x0)∥∥x− x0

∥∥k = 0

Where f(x) = Tkf(x− x0;x0) + Ekf(x;x0)

k ≥ 1, X ⊂ Rn open, f : X → R, f ∈ Ck, x0 ∈ X

Remark Taylor polynomials of degree 1, 2:

T1f(y;x0) = f(x0) +∇f(x0) · y

T2f(y;x0) = f(x0) +∇f(x0) · y +
1

2

(
x⊤
0 ·Hf (y) · x0

)
Method Calculating Tkf(y;x0) also yields Hf for k ≥ 2.

T2f((x0, y0); (x, y)) = . . .+ ax2 + by2 + cxy

=⇒ Hf (x0, y0) =

[
2a c

c 2b

]

Method Taylor Polynomials can be found by combination.

Example: f(x, y) = ey
4︸︷︷︸

1

+sin(xy)︸ ︷︷ ︸
2

+2xy2︸ ︷︷ ︸
3

− ln(x2 + 1)︸ ︷︷ ︸
4

, k = 3

1. ex ≈ 1 + x+ x2

2
+ x3

6
=⇒ ey

4 ≈ 1 + y4 + y8

2
+ y12

6

Since k = 3, discarding all terms with deg > 3 yields: ey
3 ≈ 1

2. sin(x) ≈ x− x3

6
=⇒ sin(xy) ≈ xy

3. 2xy2 ≈ 2xy2 (Since it’s already a polynomial, deg = 3)

4. ln(x+ 1) ≈ x− x2

2
+ x3

3
=⇒ ln(x2 + 1) ≈ x2

Thus: f(x) ≈ 1 + xy + 2xy2 − x2 = T3f
(
(0, 0); (x, y)

)
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5.5 Critical Points

Lem. Local Maxima & Minima

f(y) ≤ f(x0) ∀y close

f(y) ≥ f(x0) ∀y close

}
∂f

∂xi
(x0) = 0 ∀i ≤ n

In other words: df(x0) = ∇f(x0) = 0

f : X → R, X ⊂ Rn open, f diff.-able

Def Critical Point

x0 ∈ X is critical
def⇐⇒ ∇f(x0) = 0

X ⊂ Rn open, f : X → R diff.-able

Remark Existance of Maxima/Minima
Don’t have to exist if X is open, only if X is compact.
However, for compact sets, the lemma above no longer applies.

Method Critical points on Compact Sets
Decompose X = X ′ ∪B, s.t. X ′ is open, B is a boundary.

1. Find critical points in X ′

2. Check if any x ∈ B is a maximum/minimum

Def Non-degenerate Critical Point

x0 ∈ X non-deg.
def⇐⇒ det

(
Hf (x0)

)
̸= 0

X ⊂ Rn open, f : X → R, f ∈ C2, x0 ∈ X is critical

Lem. Definiteness of the Hessian

Hf (x0) positive definite =⇒ x0 is a local min.

Hf (x0) negative definite =⇒ x0 is a local max.

Hf (x0) indefinite =⇒ x0 is a saddle point.

X ⊂ Rn open, f : X → R, f ∈ C2, x0 ∈ X non-deg. critical

Method Determining Definiteness for 2× 2 Matrices

det(A)

indefinite

Tr(A)

pos. def.

neg. def.

Tr(A)

p. semi-def.

n. semi-def.

A is zero

pos.0

neg.

pos.

neg.

pos.

neg.
0

6 Integral Calculus in Rn

6.1 Line Integrals

Integrals for f : I → Rn

I = [a, b] closed & bounded, f : I → Rn cont.∫ b

a

f(t) dt =

(∫ b

a

f1(t) dt, . . . ,

∫ b

a

fn(t) dt

)

Def Piecewise Continuity
∃k ≥ 1, and a Partition a = t0 < · · · < tk = b
s.t. fj : [tj−1, tj ] → Rn has fj ∈ C1 for all j ≤ k
For f : I → Rn

Def Parametrized Curve γ : [a, b] → Rn pw.-cont.
Also called Path from γ(a) to γ(b)

Line Integral

γ : [a, b] → Rn is path, X ⊂ Rn s.t. γ
(
[a, b]

)
⊂ X

f : X → Rn continuous∫
γ

f(s) · ds :=

∫ b

a

f
(
γ(t)

)
· γ′(t) dt

Def Continuous integrals are linear∫ b

a

(
f(t) + g(t)

)
dt =

∫ b

a

f(t) dt+

∫ b

a

g(t) dt

f, g : I → Rn continuous

Remark f : X → Rn is called a Vector Field.

Def Oriented Reparametrization
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