1 Linear Algebra

Relevant definitions used throughout Analysis Il.
AcR™X"  zyeR? «ac

Def Scalar Product z -y :=>""" (2 - y;)

Def Euclidian Norm ||z|| :=

Used to generalize |x| in many Analysis | definitions

Lem. Properties of ||z||

(@) llall =0
() ||z|] &= =0
(iii) lagl| = o [[a]]
(i) o +yll <llall+llyll (Triangle Inequality)

Def Definiteness

Positive Definite g Az >0Vz € R;O

Negative Definite <= 2TAz <0 Vz € RZ,

If 0 is allowed, A is called positive/negative semi-definite.

min(m,n)

Def Trace Tr(A) := Z A, ,;
=0

2 Differential Equations

Def Differential Equation (DE)

Equation relating unknown f to derivatives f(*) at same z.

Def Ordinary Differential Equation (ODE)
DE s.t. f:I — R is in one variable.

Def Partial Differential Equation (PDE)
DE s.t. f:I% — R is in multiple variables.

Notation f(*) or y(*) instead of f(*)(z) for brevity.
Def Order ord(F) := m>ag<{z' | f@ e F, £ #£0}

Remark Any F's.t. ord(F') > 2 can be reduced to ord(F”) =

1, but using functions of higher dimensions.

Solutions to ODEs

VF :R? - R s.t. Fis cont. diff. and o, yo € R:

If: IR
st. Yz eI : f'(z) = F(z, f(x)) and f(x0) = yo

s.t. I is open and maximal.

Intuition: Solutions always exist (locally!) for nice enough equations.

2.1 Linear Differential Equations
Def Linear Differential Equation (LDE)

y ™ +apy®Y ot ay +agy =
ICRisopen, k>1, Vi<k:a;:I—C

Def Homogeneity of LDEs

def
Homogeneous £ h=0

Inhomogeneous Ly #0
Remark D(y) := y®) 4+ ... 4+ agy is a linear operation:
D(z1f1 + 22f2) = 21D(f1) + 22D(f2)

Vz1,22 € C,  f1, fo k-times differentiable

Def Homogeneous Solution Space
S(F):={f:I— C| f solves F, f is k-times diff.}

Remark S(F) is the Nullspace of a lin. map: f to D(f):
D(f) = 21D(f1) + 22D(f2) =0

Vz1,20 €C, fi1,f2 €S

Solutions for complex homogeneous LDEs

F s.t. ap, ... ,ap_1 continuous and complex-valued
1. S is a complex vector space, dim(S) = k
2. S'is a subspace of {f | f: I — C}
3. Voo € I, (yo,...,yx_1) € C* a unique sol. exists

Solutions for real homogeneous LDEs

F s.t. ag, ... ,ap_1 continuous and real-valued
1. Sis a real vector space, dim(S) = k
2. S'is a subspace of {f | f: I — R}
3. Vzo € I, (Y0, - - -,yr—1) € R¥ a unique sol. exists

Def Inhomogeneous Solution Space
So(F):={f+ fo| f€SF), foisa particular sol.}

Note: This is only a vector space if b = 0, where S, = S.

Solutions for real inhomogeneous LDEs

F s.t. ag, ... ,ap_1 continuous, b: I — C
1. Voo € I, (yo, - -,yx—_1) € C* a unique sol. exists
2. If b, a; are real-valued, a real-valued sol. exists.

Remark Applications of Linearity
If f1 solves F for by, and fy for by: f1 + fo solves by + bs.
Follows from: D(f1) + D(f2) = by + bo.



3 Solutions to Differential Equations

3.1 Linear Solutions: First Order
Form: ¢ +ay=1» ICR, ab:I—>R
Approach:

1. Hom. Solution f; for: ¢ +ay =0

Note that S has dim(S) =1, so f1 # 0 is a Basis for S

2. Part. Solution fq for oy +ay =b

Solutions: fy+z2f; forzeC

Explicit Homogeneous Solution
A(z) is a primitive of a, f(z0) = yo
fi(x) = z - exp(—A(z))
fi(@) = yo - exp(A(zo) — a(x))
Method Variation of Constants: Treating z as z(z) yields:

Explicit Inhomogeneous Solution

A(x) is a primitive of a

2(x)

Method Educated Guess
Usually, y has a similar form to b:

b(x) Guess
a- eaz b . eam
a - sin(fBx csin(Bzx) + d cos(Sx)

)

) csin(fzx) + dcos(Sx)
ae®® - sin(fz) e*® (esin(fz) + d cos(

( e** (esin(Bx) + d cos(
P,(x)-e** (l’) e
R (&) sin(2) + Sa(z) cos(Bz)
Ry (x) sin(Bz) + Sa(z) cos(62))

pz))
p))

“(
P,(z) - e** cos(Bzx) €™ (

mn

Remark If a, 8 are roots of P(X) with multiplicity j, mul-

tiply guess with a P;(x).

3.2 Linear Solutions: Constant Coefficients

Form:

Y 4 iy +ay=b

€ C are constants, b(x) is continuous.

3.2.1 Homogeneous Equations
The idea is to find a Basis of S:
Def Characteristic Polynomial P(X) =

[T, (X — a)

Remark The unique roots ag, ..., «a; form a Basis:

span(S) = {xfe™® | i <1, 0<j <}

U1y vi are the Multiplicities of o, .. ., g

Remark If a; = 8+ ~i € Cis a root, q;
To get a real-valued solution, apply:

Bx

e =e

(cos(yzx) + isin(yz))

Explicit Homogeneous Solution

Using ag, ...,

k
=1

Multiple roots: same scheme, using the basis vectors of S

ay, from P(X) s.t. a; # o, z; € C arbitrary

k
with f(j)(””) = Hzl . afeo"‘r

i=1

Solutions exist VZ = (z1,..., z}) since that system’s det(My) # 0.

= f — i is too.

3.2.2 Inhomogeneous Equations

Method Undetermined Coefficients: An educated guess.

L b(x) = ca® e = fy(a) = Q(x)e”
deg(Q) < d + vq, where vy, is a's multiplicity in P(X)
b(z) = cx? - cos(ax) )
2. J fp = Qi(x) cos(ax)+Q2(x) sin(ax
b(z) = ca® - sin(ax)
deg(Q1,2) < d+ va, where v, is a's multiplicity in P(X)

Remark Applying Linearity
Ifb(x) = Y7, bi(z), Asolution for b(z) is f(z) =

Sometimes called Superposition Principle in this context

2im fil®)

3.3 Other Methods

Method Change of Variable
If f(z)is replaced by h(y) = f(g(y)), then h is a sol. too.

Changes like h(t) = f(e') may lead to useful properties.

Separation of Variables

Form:
y' =a(y) b(z)
Solve using:
/ Ly ./M)d +
—— dy = z)dx+c
a(y)
Usually / 1/a(y) dy can be solved directly for In|a(y)| + c.

3.4 Method Overview

Method

Variation of constants

Use case

LDE with ord(F) =1

Hom. LDE w/ const. coeff.
Inhom. LDE w/ const. coeff.
ODE s.t. ¢ = a(y) - b(x)
eg. v = flax+by+c)

Characteristic Polynomial
Undetermined Coefficients
Separation of Variables

Change of Variables




4 Continuous functions in R"

Treating functions f : X C R® — R/C/R™, m,n >1

Notation f(x) for f: I C R™ — R™ means:

x=(21,...,2,), flx)= f(fl(x),...,fm(x))

4.1 Multivariate functions
Def Linear map f: R"™ — R™

In other words: f(x) = Az, A € C™*"
Linear Maps are continuous

Def Affine Linear map f(z) — Az +c
Def Quadratic form @ : R™ — R

In other words: Q(z) = 321" 5 227" (ai,jzi%;)
Def Monomials M (z) : R" — R — az{* - -z
For example: f(z,y,z) = 1622y2°
n

Def deg(M):=e=3.,d;
For example: deg(16z2y2°) =8

. n
Def Polynomials P(x) := 3" M;(x)
For example: P(z,y,z) = 3 + 2522y%2 + xy

Polynomials are continuous.

Def deg(P) := d > max{deg(M;) | M; in P}
For example: deg(z3 + 2522yS%2 + xy) = 9
Visualisations for some function types:

Def Graph G;:= {(z,y,2) € R® | z = f(z,y)}
Only for f : R2 — R. Visually, this is a surface in R3

Def Vector Plots for f : R? — R?

Points in (x,y) € R? are displayed as vectors f(z,y)

4.2 Sequences in R"

Def Sequences in R”
(a;‘k)kzl s.t. 2 € R™ where z;, = (mk,l, S ka)

Def Convergence in R"
lim (xk> —y = Ve>0,IN>1:VE>N: |lop—yll<e
— 00

Using this definition preserves many familiar results:

Lem. Equivalent conditions to Convergence
(i) Vist.1<i<n: lim (ac;“) =y

k—oc0

(@) lim ka - y” —0
k—o0
Def Limits at points

lim (f(x)) —y &L ve>0,30>0:

THET)—T0
Vet azg e X: ||z —mof| <6 = ||flx) -yl <e
XCR", f:X—=R" 290X, yeR™

The sequence test for Continuity works for point-limits too.

4.3 Continuity in R"

Def Continuity in R™
f continuous at xg € X S Ve > 0,30 >0:

foon <) = ||f(:c) —f(zo)H <e€

. def .
f continuous <= Vz € X : f continuous at x

XCR", f:X —>R™

Lem. Continuitiy using Sequences

f continuous at x if and only if:

V(zg)k>1:  lim (xk> =x9 = lim (f(mk)> = f(zo)
k— o0 k—o0

XCR" f: X —>R™

Lem. Continuity of Compositions
f: X =Y, g:Y — RP continuous = go f continuous
XCR*, YCR™, p>1

Lem. Continuity using Coordinate Functions
f:R™ - R™ continuous <= Vi < m : f; continuous

3

4.4 Subsets of R"

Def Bounded
X € R" bounded <% {||z] | € X} C R bounded.

Example: The open disc D = {z € R" | ||z — zo|| < r} is bounded.
Def Closed
def .
X CR” closed <% V(z)ps1 € X lim (mk> €Xx
- T—00

Example: (), R™ are closed.

Def Compact if closed and bounded.

Example: The closed Disc A = {z € R" H:r — [I‘uH < r} is compact.
Def Open

def.
X CR"open <= Vz e X, 36 >0:

{yeR" ||z, —y;| <9, Vi<n}CX

In other words: Changing any coord. z; by § keeps 2/ in X
Example: (), R™ are open (and closed)
Lem. The Cartesian Product preserves bounded/closed.

Lem. Continous functions preserve closed/open

V closed/open Y :
f7HY)={z € R" | f(z) € Y} is closed /open.

f:R™ — R™ is continuous, C R™

Lem. The complement of open sets is closed

X CR"isopen < {ze€R"|xz¢ X} is closed

Complement

Min-Max Theorem

For compact, non-empty X C R"™, continuous f: X — R:

dxy,20 € X : f(x1) = supf(z), f(x2)= inf f(x)
zeX zeX



5 Differential Calculus in R”

5.1 Partial Derivatives

Partial Derivative

f:X—>R, 1<i<n, zeX

of
6.Z‘i

X C R™ open,

(z0) := ¢ (w0,:)

forg: {t R | (z0,1,.--, t,...,Ton) € X} = R

g<t) = f(xo,’h sy LOt—1, t y LO 41y - - 7x0,n)

Freeze all x( , except one xq ;—t

Notation 6%(330) = Oy, f(z0) = 0; f(z0)

Lem. Properties of Partial Derivatives
Assuming Oz, f and Oy, g exist :

(i)  Oxi(f +g) = 0xif + Oxg

(i) Oxi(fg) = Oxi(f)g + dxi(g) f
(zu) Ox; (i) _ ail?i(f)g ; axi(g)f
9 g

X C R"™ open, f.g:X —R",

ifm=1

if g(x) A0V € X

1 <1< n

The Jacobian

X CR" open, f:X — R™ with partial derivatives existing
0x1 f1(x) Oz fi(x) Oxy, f1(x)
1,(z) = Ox1 fg(x) O fg(x) :
8x1];n(90) 3$2J;n($) al'nf.'m(x)

Think of f as a vector of f;, then J; is that vector stretched for all z;

9z f(z0)
Def Gradient Vf(zo) := : =Jp(z)"

X CR™ open, f:X — R, i.e. must map to 1 dimension

Remark WV f points in the direction of greatest increase.

This generalizes that in R, sgn(f) shows if f increases/decreases

Def Divergence div(f)(zo) := Tr(Js(z0))

X CR"open, f:X —R", J; exists

5.2 The Differential

Partial derivatives don't provide a good approx. of f, unlike in the
1-dimensional case. The differential is a linear map which replicates

this purpose in R™.
Differentiability in R"” & the Differential
u : R™ — R™ linear map

X CR™ open, f:X —R",

df (xo) :==u
If f is differentiable at ¢y € X with u s.t.

I — (f(z) — fzo) —u(x - wo)) =0

TFLO—>T0 H:L’ — xOH

Similarly, f is differentiable if this holds for all z € X

Lem. Properties of Differentiable Functions

(i)  Continuous on X
(i) Vi<m,j<n: O fi exists
0z, f(0) = a;

. 71771,) =a1x1+ -+ apTy

(i) m=1:
for: wu(xq,..
X C R™ open, f:X — R™ differentiable on X

Lem. Preservation of Differentiability

(1) f+ g is differentiable: d(f + g) = df + dg

(ii)  fg is differentiable, if m =1

(#i1) g is differentiable, if m =1, g(z) #0 Ve € X
X CR™ open, f,g:X — R™ differentiable on X

Lem. Cont. Partial Derivatives imply Differentiability
if all 0, f; exist and are continuous:

f differentiable on X,  df (xo) = J (o)
4

X C R"™ open,

f:X —R™

Lem. Chain Rule g o f is differentiable on X

d(g o f)(wo) = dg(f(x0)) o df (xo)
Jgor (o) = Jg(f(ﬂfo)) ~Jy (o)
X CR"™open, Y CR™open, f:X —=Y,g:Y — RP, f gdiff--able

Def Tangent Space

Ty (zo) := {(x,y) ER"XR™ | y= f(xo) +u(x—x0)}

X CR™ open, f:X — R™ diff.-able, z9 € X, wu=df(zo)

Def Directional Derivative

Dy f(xo) = t;iorgof(xo + “;) — f(z0)

X CR™open, f: X —>R™ v#0€R"” 29X

Lem. Directional Derivatives for Diff.-able Functions

D, f(z0) = df (xo)(v) = Iy (o) - v

X C R"™ open, f:X — R™ diff.-able, v#0e&R"™, 20€ X

Remark D, f is linear w.r.t v, so: Dy, 4y, f = Dy, f+ Dy, f
Remark D, f(xz0) = V f(zo) -v = ||V f(z0)|| cos(6)

In the case f: X — R, where 0 is the angle between v and V f(zg)



5.3 Higher Derivatives

Def Differentiability Classes

feC (X;R™) &L 1 diff-able on X, all 9, f; exist
feCH(Xx;R™) &L fdiff-able on X, all 8, f; € CF!
feC®(X;R™) & feck(X;R™) VE>1
X CR™ open, f:X —R™

Lem. Polynomials, Trig. functions and exp are in C'*°
Lem. Operations preserve Differentiability Classes

(i) ft+g €C*
(44) ]}g eC*
i) 5 et

f,g€ Ck

ifm=1

ifm=1¢g(x)#A0VereX

Lem. Composition preserves Differentiability Classes
gofecCt
feck fx)cy,

Y CR™ open, g:Y = RP, geCFk

Partial Derivatives commute in C*

E>2 X CR"open, f:X—>R™m fecCk

vay : 8w,yf = ay,a:f

This generalizes for Oz, ,...,z,, f-

Remark Linearity of Partial Derivatives
Ol (af1 +bfz) = adl f1 + bIY fo
Assuming both 9, f1 2 exist.

Def Laplace Operator

Af :=div(Vf(z)) :i a-(af) N <n aQJ;

The Hessian Lem. Taylor Approximation

X CR™open, f:X—>R, feC? xpeX Ekf(x;xo)i
TH£T)—T0 _ ko
O 1f(wo)  O21f(x0) O, f(20) o = ol
O1,2f(xo)  O2.2f(x0) On2f(x0) Where f(z) = Ty, f(z — wo; z0) + E f(2; x0)
Hy(z) := , , , k>1, XCR"open, f:X >R, feCF zyeX
' ' . Remark Taylor polynomials of degree 1, 2:
Oinf(30) Fonf(w0) -+ Dunflao) yier pewnem! ¢
T f(y; o) = f(2o) + Vf(z0) -y
Where (Hf(a:))i)j = &ﬂwjf(:z:) 1/ -
Tof (ys20) = flwo) + VS (w0) -y + 5 (2d - Hy(v) - 20)
Note that f: X — R, i.e. Hy only exists for 1-dimensionally valued f

Notation Hf(z) = Hess;(z) = V2f(x) Method Calculating Ty, f (y; zo) also yields Hy for k > 2.

Remark H(x¢) is symmetric: (Hf(aso))m. = (Hf(a:o))j’i Tof((zo,0); (z,9)) = ... + az® + by? + cxy
Def Polar Coordinates s My (20, 0) = l2a c]
g(r,0) = (r cos (), rsin(0 ) c 20

Method Taylor Polynomials can be found by combination.

)
cos(d) —r sin(@)]

J,(r,0) =
o(r.6) Lin(@) 7 cos(6)

1 Example: f(z,y) = v’ + sin(zy) +2z9% — ln(gc2 +1), k=3
Orf = cos(0)0,f — —sin(0)0s f 1 ~ Y~ Ty
r
. 1 2 3 4 8 1o
0, = sin(0)0,f + ~ cos(0)3f Lenldot F4g = ol mipyi e 4Bt
r Since k = 3, discarding all terms with deg > 3 yields: e¥” ~ 1

(r,0) € (0,+00) xR, det(dy)=r

3
2. sin(z) #z — & = sin(ay) = 2y
3. 2zy? = 2zy?  (Since it's already a polynomial, deg = 3)

4. ln(x—l—l)zm—%—l—% = In(z? + 1) ~ 22

5.4 Taylor Polynomials

Def |m|:=> " m Def y™ =y .ym

" Thus: f(z) ~ 1+ 2y + 22y? — 2?2 :Tgf((0,0);(:r,y))
Def m!:=mq!---m,!
for m = (my,..., mn), Y= (yi,..., Yn)

Taylor Polynomials

k>1, f:X—=R, feCF, zpeX

Tef(y00) = 3~ O flwoly™

m|<k



5.5 Critical Points

Lem. Local Maxima & Minima
f(y) < f(zg) Yy close of
fy) > f(zo) Vy close Oz;

In other words: df(zg) = V f(xzg) =0
[ X =R, X CR" open, f diff.-able

(o) =0 Vi<n

Def Critical Point

. " def
zo € X is critical <= Vf(zo) =0
X C R™ open, f : X — R diff.-able

Remark Existance of Maxima/Minima

Don't have to exist if X is open, only if X is compact.

However, for compact sets, the lemma above no longer applies.

Method Critical points on Compact Sets

Decompose X = X' U B, s.t. X' is open, B is a boundary.

1. Find critical points in X’
2. Check if any z € B is a maximum/minimum
Def Non-degenerate Critical Point
xo € X non-deg. & det(Hf(ato)) #0
X CR"open, f:X—=R, feC2? e X is critical
Lem. Definiteness of the Hessian

) positive definite

Hf(!)?o
H(x0) negative definite
H (zo

) indefinite = x is a saddle point.
X CR™open, f:X =R, feC? zp€ X non-deg. critical
Method Determining Definiteness for 2 x 2 Matrices

p. semi-def. pos. def.

RS e P

Tr(A) <— det(A) — Tr(A)

/nég. . neg. nehA
n. semi-def.
A is zero indefinite

= 1z is a local min.

= xg is a local max.

6 Integral Calculus in R"

6.1 Line Integrals

Integrals for f: [ — R"

I = [a,b] closed & bounded, f:I — R™ cont.

/abf(t) dt = </abf1(t) dt,...,/abfn(t) dt)

Def Piecewise Continuity

dk > 1, and a Partitiona =ty < --- <t =b
sit. f;: [tj_l,f,j] — R™ has f; € C! for all i<k
For f: I — R"

Def Parametrized Curve 7 : [a,b] — R™ pw.-cont.
Also called Path from ~(a) to ~(b)

Line Integral

v :la,b] = R is path, X C R"s.t. v([a,b]) C X
f: X — R™ continuous

Lf(8)~ ds = /abf(v(t)) -/ (¢) dt

Def Continuous integrals are linear

/ () + ot0)) i - / Cfyart / " o(t) d

M

fr9:1—F

Remark f: X — R"™ is called a Vector Field.

continuous

Def Oriented Reparametrization
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