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1 Graphs

1.1 Repetition

The graph algorithms of Kruskal, Prim, Boruvka, Dijkstra, Bellman-Ford, Floyd-Warshall and Johnson are still of
importance. See A & D summary for them

α-approximation algorithm Definition 1.1

This kind of algorithm approximates the result to level α, where α is the factor by which the result is off.
Ideally, α = 1, for a perfect approximation, which in reality is hardly ever, if ever possible.

1.4 Connectivity

k-Connected graph Definition 1.24

A graph G = (V,E) is called k-connected if |V | ≥ k + 1 and for all subsets X ⊆ V with |X| < k we have
that the graph G[V \X] is connected

If G[V \X] is not connected, we call it a (vertex)-separator.

A k-connected graph is also k − 1 connected, etc

k-edge-connected Definition 1.25

A graph G = (V,E) is called k-edge-connected if for all subsets X ⊆ E with |X| < k we have: The graph
(V,E\X) is connected

We also have edge-separators, defined analogously to above, i.e. the set X above is called a u-v-edge-separator if
by removing it from the graph, u and v no longer lay in the same connected component.

If a graph is k-edge-connected, it is also k − 1-edge-connected, etc

Menger’s theorem Theorem 1.26

Let G = (V,E) be a graph and u ̸= v ∈ V . Then we have
1. Every u-v-vertex-separator has size at least k ⇔ Exist at least k internally vertex-disjoint u-v-paths
2. Every u-v-edge-separator has size at least k ⇔ Exist at least k edge-disjoint u-v-paths
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1.4.1 Articulation points

If a graph is connected, but not 2-connected, there exists at least one vertex v for which, if removed, the graph is
not connected, called articulation points. Using a modified DFS, we can find these vertices. Instead of just setting
a flag for each vertex we visit, we set a number indicating the order in which the vertices were visited. The first
vertex we visit, for instance, gets number 1.

We also add another value, which we call low[v] := the smallest DFS-number that can be reached from v using a
path of arbitrarily many edges of the DFS-tree and at most one residual edge.

We also have (where s is the start / source vertex and E(T ) is the edge set of the DFS-tree):

v is an articulation point ⇔ (v = s and s has degree at least 2 in T ) or (v ̸= s and there exists w ∈ V with
{(v, w)} ∈ E(T ) and low[w] ≥ dfs[v])

Algorithm 1 FindArticulationPoints(G, s)

1 ∀v ∈ V : dfs[v]← 0 ▷ Stores dfs number for vertex v and also flag for visit
2 ∀v ∈ V : low[v]← 0 ▷ Stores low point for vertex v
3 ∀v ∈ V : isArticulationPoint[v]← false ▷ Indicates if vertex v is articulation point
4 num ← 0
5 T ← ∅ ▷ Depth-First-Search Tree
6 DFS-Visit(G, s)
7 if s has degree at least two in T then ▷ Start vertex classification could be incorrect from DFS-Visit
8 isArticulationPoint[s]← true

9 else
10 isArticulationPoint[s]← false

11 procedure DFS-Visit(G, v)
12 num ← num +1
13 dfs[v] ← num

14 low[v] ← dfs[v]

15 for all {v, w} ∈ E do
16 if dfs[w] = 0 then
17 T ← T ∪ {{v, w}}
18 val← DFS-Visit(G,w)
19 if val ≥ dfs[v] then ▷ Check articulation point condition
20 isArticulationPoint[v]← true

21 low[v]← min{low[v], val}
22 else if dfs[w] ̸= 0 and {v, w} /∈ T then ▷ Update low if already visited
23 low[v]← min{low[v], dfs[w]}
24 return low[v]

Articulation points Computation Theorem 1.28

For a connected graph G = (V,E) that is stored using an adjacency list, we can compute all articulation
points in O (|E|)
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1.4.2 Bridges

While articulation points show that a graph is not 2-connected, bridges shows that a graph isn’t 2-edge-connected.
In other words, they are certificates for the graph not being 2-edge-connected or more formally:

An edge e ∈ E in a connected graph G = (V,E) is called a bridge if the graph (V,E\{e}) is not connected.

From the definition of bridges we immediately have that a spanning tree has to contain all bridges of a graph, and
we can also state that only edges of a Depth-First-Search-Tree are possible candidates for a bridge.

The idea now is that every vertex contained in a bridge is either an articulation point or has degree 1 in G. Or
more formally:

A directed edge (v, w) of Depth-First-Search-Tree T is a bridge if and only if low[w] > dfs[v]

Bridges Computation Theorem 1.29

For a connected graph G = (V,E) that is stored using an adjacency list, we can compute all bridges and
articulation points in O (|E|)

1.4.3 Block-Decomposition

Block-Decomposition Definition 1.30

Let G = (V,E) be a connected graph. For e, f ∈ E we define a relation by

e ∼ f ⇐⇒ e = f or exists a common cycle through e and f

Then this relation is an equivalence relation and we call the equivalence classes blocks, sometimes also known
as 2-connectivity-components

It is now evident that two blocks, if even, can only intersect in one articulation point. The Block-Decomposition
is given by:

Let T be a bipartite graph (in this case a tree), with V = A⊎B where A is the set of articulation
points of G and B the set of blocks of G (This means that every block in G is a vertex in V ).
We connect a vertex a ∈ A with a block b ∈ B if and only if a is incident to an edge in b.
T is connected if G is and it is free of cycles if G is free of cycles, since every cycle is translatable
to a cycle in G

The algorithm to determine bridges and articulation points can again be reused and allows us to determine a
Block-Decomposition in linear time.
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1.5 Cycles

1.5.1 Eulerian cycles / circuits

Eulerian cycle Definition 1.31

A eulerian cycle in a graph G = (V,E) is a circuit (closed cycle) that contains each edge exactly once. If a
graph contains a eulerian cycle, we call it eulerian

If G contains a eulerian cycle, deg(v) of all vertices v ∈ V is even. For connected graph, we even have a double-sided
implication.

If we combine the entirety of the explanations of pages 43-45 in the script, we reach the following algorithm, where
NG(v) is the function returning the neighbours of vertex v in graph G:

Algorithm 2 EulerianCycle(G, vstart)

1 procedure RandomCycle(G, vstart)
2 v ← vstart
3 W ← ⟨v⟩ ▷ Prepare the cycle (add the start vertex to it)
4 while NG(v) ̸= ∅ do
5 Choose vnext arbitrarily from NG(v) ▷ Choose arbitrary neighbour
6 Attach vnext to the cycle W
7 e← {v, vnext}
8 Delete e from G
9 v ← vnext
10 return W
11 W ← RandomCycle(vstart) ▷ Fast runner
12 vslow ← start vertex of W
13 while vslow is not the last vertex in W do
14 v ← successor of vslow in W
15 if NG(v) ̸= ∅ then
16 W ′ ← RandomCycle(v)
17 W ←W1 +W ′ +W2 ▷ We union the different branches of the Euler cycle
18 vslow ← successor of vslow in W
19 return W

Eulerian Graph Theorem 1.32

a) A connected graph G is eulerian if and only if the degree of all vertices is even
b) In a connected eulerian graph, we can find a eulerian cycle in O (|E|)
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1.5.2 Hamiltonian Cycles

Hamiltonian Cycle Definition 1.33

A Hamiltonian Cycle in a graph G = (V,E) is a cycle passing through each vertex exactly once. If a graph
contains a Hamiltonian cycle, we call it Hamiltonian

A classic example here is the Travelling Salesman Problem (TSP), covered later on.

The issue with Hamiltonian cycles is that the problem is NP-complete, thus it is assumed that there does not exist
an algorithm that can determine if a graph is Hamiltonian in polynomial time.

Hamiltonian Cycle Algorithm Theorem 1.35

The algorithm HamiltonianCycle is correct and has space complexity O (n · 2n) and time complexity
O
(
n2 · 2n

)
, where n = |V |

In the below algorithm, G = (V,E) is a graph for which V = [n] and N(v) as usual the neighbours of v and we
define S as a subset of the vertices of G with 1 ∈ S. We define

PS,x :=

{
1 exists a 1-x-path in G that contains exactly the vertices of S

0 else

We then have:

G contains a Hamiltonian cycle ⇐⇒ ∃x ∈ N(1) with P[n],x = 1

Or in words, a graph contains a Hamiltonian Cycle if and only if for any of the neighbours of vertex 1, our predicate
PS,x = 1 for S = V = [n] and x being that vertex in the neighbours set N(1).

This means, we have found a recurrence relation, albeit an exponential one.

Algorithm 3 HamiltonianCycle(G = ([n], E))

1 for all x ∈ [n], x ̸= 1 do ▷ Initialization

2 P{1,x},x :=

{
1 if {1, x} ∈ E

0 else

3 for s = 3, . . . , n do ▷ Recursion
4 for all S ⊆ [n] with 1 ∈ S and |S| = s do ▷ See implementation notes in Section 5
5 for all x ∈ S, x ̸= 1 do ▷ Fill table for all x in the subset
6 PS,x = max{PS\{x},x′ | x′ ∈ S ∩N(x), x′ ̸= 1}
7 if ∃x ∈ N(1) with P[n],x = 1 then ▷ Check condition
8 return true

9 else
10 return false
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Improved algorithm

There are algorithms that can find Hamiltonian cycles without using exponential memory usage. The concept for
that is the inclusion-exclusion principle (more on that in Section 3.1)

Inclusion-Exclusion-Principle Theorem 1.36

For finite sets A1, . . . , An (n ≥ 2) we have∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

l=1

(−1)l+1
∑

1≤i1<···<il≤n

|Ai1 ∩ . . . ∩Ail |


=

n∑
i=1

|Ai| −
∑

1≤i1<i2≤n

|Ai1 ∩Ai2 |+
∑

1≤i1<i2<i3≤n

|Ai1 ∩Ai2 ∩Ai3 | − . . .+ (−1)n+1 · |A1 ∩ . . . ∩An|

Since it is easier to find walks compared to paths, we define for all subsets S ⊆ [n] with v /∈ S for a start vertex
s ∈ V

WS := {walks of length n in G with start and end vertex s that doesn’t visit any vertices of S}

We thus reach the following algorithm:

Algorithm 4 CountHamiltionianCycles(G = ([n], E))

1 s← 1 ▷ Start vertex, can be chosen arbitrarily
2 Z ← |W∅| ▷ All possible paths with length n in G
3 for all S ⊆ [n] with s /∈ S and S ̸= ∅ do
4 Compute |WS | ▷ With adjacency matrix of G[V \S]
5 Z ← Z + (−1)|S||WS | ▷ Inclusion-Exclusion
6 Z ← Z

2 ▷ There are two cycles for each true cycle (in both directions, we only care about one)
7 return Z ▷ The number of Hamiltonian cycles in G

Count Hamiltionian Cycles Algorithm Theorem 1.37

The algorithm computes the number of Hamiltonian cycles in G with space complexity O
(
n2

)
and time

complexity O
(
n2.81 log(n) · 2n

)
, where n = |V |

The time complexity bound comes from the fact that we need O (log(n)) matrix multiplications to compute |WS |,
which can be found in entry (s, s) in (AS)

n, where AS is the adjacency matrix of the induced subgraph G[V \S].
Each matrix multiplication can be done in O

(
n2.81

)
using Strassen’s Algorithm. The 2n is given by the fact that

we have that many subsets to consider.
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1.5.3 Special cases

Bipartite graph Lemma 1.39

If G = (A ⊎B,E) is a bipartite graph with |A| ̸= |B|, G cannot contain a Hamiltonian cycle

A hypercube Hd with dimension d has the vertex set {0, 1}d. Two vertices are connected if and only if their
0-1-sequences differ in exactly one bit.

Every hypercube of dimension d ≥ 2 has a Hamiltonian cycle

Grid graphs (also known as mesh graphs) are graphs laid out in a (typically) square grid of size m× n

A grid graph contains a Hamiltonian cycle if and only if n or m (or both) are even. If both are
odd, there is no Hamiltonian cycle

Dirac Theorem 1.41

If G is a graph with |V | ≥ 3 vertices, for which every vertex has at least |V |
2 neighbours, G is Hamiltonian.

In other words, every graph with minimum degree |V |
2 is Hamiltonian.

1.5.4 Travelling Salesman Problem

Given a graph Kn and a function l :

(
[n]

2

)
→ N0 that assigns a length to each edge of the graph, we are looking

for a Hamiltonian cycle C in Kn with

∑
e∈C

l(e) = min

{∑
e∈C′

l(e) | C ′ is a Hamiltonian cycle in Kn

}

In words, we are looking for the hamiltonian cycle with the shortest length among all hamiltonian cycles.

Travelling Salesman Problem Theorem 1.43

If there exists for α > 1 a α-approximation algorithm for the travelling salesman problem with time com-
plexity O (f(n)), there also exists an algorithm that can decide if a graph with n vertices is Hamiltonian in
O (f(n)).

This obviously means that this problem is also NP-complete. If we however use the triangle-inequality l({x, z}) ≤
l({x, y}) + l({y, z})), which in essence says that a direct connection between two vertices has to always be shorter
or equally long compared to a direct connection (which intuitively makes sense), we reach the metric travelling
salesman problem, where, given a graph Kn and a function l (as above, but this time respecting the triangle-
inequality), we are again looking for the same answer as for the non-metric problem.

Metric Travelling Salesman Problem Theorem 1.44

There exists a 2-approximation algorithm with time complexity O
(
n2

)
for the metric travelling salesman

problem.

Proof: This algorithm works as follows: Assume we have an MST and we walk around the outside of it. Thus,
the length of our path is 2 mst(Kn, l). If we now use the triangle inequality, we can skip a few already visited
vertices and at least not lengthen our journey around the outside of the MST. Any Hamiltonian cycle can be
transformed into an MST by removing an arbitrary edge from it. Thus, for the optimal length (minimal length) of
a Hamiltonian cycle, we have opt(Kn, l) ≥ mst(Kn, l). If we now double the edge set (by duplicating each edge),
then, since for l(C) =

∑
e∈C l(e) for our Hamiltonian cycle C, we have l(C) ≤ 2opt(Kn, l), we can simply find a

eulerian cycle in the graph in O (n), and since it takes O
(
n2

)
to compute an MST, our time complexity is O

(
n2

)
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1.6 Matchings

Matchings are assignment problems, which could take the form of assigning a job to a specific CPU core or system.
That system will have to fulfill the performance requirements of the task, but performance should not be wasted, as
there could be a different job with higher performance requirements that would not be processable simultaneously
otherwise.

Matching Definition 1.45

An edge set M ⊆ E of a graph G is called a matching if no vertex of the graph is assigned to more than
one vertex, or more formally:

e ∩ f = ∅ for all e, f ∈M with e ̸= f

We call a vertex v covered by M if there exists an edge e ∈M that contains v.

A matching is called a perfect matching if every vertex is covered by an edge of M , or equivalently |M | = |V |
2

Maxima Definition 1.47

Given a graph G and matching M in G
• M is called amaximal matching (or in German “inklusionsmaximal”) if we haveM∪{e} is no matching
for all e ∈ E\M

• M is called a maximum matching (or in German “kardinalitätsmaximal”) if we have |M | ≥ |M ′| for
all matchings M ′ in G

1.6.1 Algorithms

Algorithm 5 Greedy-Matching(G)

1 M ← ∅
2 while E ̸= ∅ do
3 choose an arbitrary edge e ∈ E ▷ Randomly choose from E
4 M ←M ∪ {e}
5 delete e and all incident edges (to both vertices) in G

The above algorithm doesn’t return the maximum matching, just a matching

Greedy-Matching Theorem 1.48

The Greedy-Matching determines a maximal matching MGreedy in O (|E|) for which we have

|MGreedy| ≥
1

2
|Mmax|

where Mmax is a maximum matching

Berge’s Theorem Theorem 1.49

If M is a not a maximum matching in G, there exists an augmenting path to M

Proof: If M is not a maximum matching, there exists a matching M ′ with higher cardinality, where M ⊕M ′ (M
xor M ′) has a connected component that contains more edges of M ′ than M . Said connected component is the
augmenting path for M

This idea leads to an algorithm to determine a maximum matching: As long as a matching isn’t a maximum match-

ing, there exists an augmenting path that allows us to expand the matching. After at most |V |
2 − 1 steps, we have

a maximum matching. For bipartite graphs, we can use modified BFS with time complexity O ((|V |+ |E|) · |E|)
to determine the augmenting paths.
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Algorithm 6 AugmentingPath(G = (A ⊎B,E),M)

1 L0 := {set of all non-covered vertices in A}
2 if L0 = ∅ then
3 return M is a maximum matching
4 Mark all vertices in L0 as visited
5 for i = 1, . . . , n do
6 if i is odd then ▷ We start with an unmatched vertex (by definition)
7 Li := {all unvisited neighbours of Li−1 using edges in E\M}
8 else
9 Li := {all unvisited neighbours of Li−1 using edges in M}
10 Mark all vertices in Li as visited ▷ We used them in our augmenting path, note that
11 if Li contains non-covered vertex v then
12 Find path P starting at L0 and ending at v using backtracking
13 return P
14 return M is already a maximum matching

Augmenting Path: An alternating path that (here) starts from unmatched vertices, where an
alternating path is a path that starts with an unmatched vertex and whose edges alternately belong
to the matching and not.

The algorithm discussed above uses layers Li to find the augmenting paths. Each of the layers is alternatingly part
of the matching and not part of it, where the first one is not part of the matching. Augmenting paths also always
have length m odd, so the last layer is not part of the matching.

Hopcroft and Karp Algorithm

Algorithm 7 MaximumMatching(G = (A⊕B,E))

1 M ← {e} for any edge e ∈ E ▷ Initialize Matching with simple one of just one edge (trivially a matching)
2 while there are still augmenting paths in G do
3 k ← length of the shortest augmenting path
4 find a maximal set S of pairwise disjunct augmenting paths of length k
5 for all P of S do
6 M ←M ⊕ P ▷ Augmenting along all paths of S
7 return M

To find the shortest augmenting path, we observe that if the last layer has more than one non-covered vertex, we
can potentially (actually, likely) find more than one augmenting path. We find one first, remove it from the data
structure and find more augmenting paths by inverting the tree structure (i.e. cast flippendo on the edges) and
using DFS to find the all augmenting paths. We always delete each visited vertex and we thus have time complexity
O (|V |+ |E|), since we only visit each vertex and edge once.

Hopcroft and Karp Algorithm Theorem 1.50

The algorithm of Hopcroft and Karp’s while loop is only executed O
(√
|V |

)
times. Hence, the maximum

matching is computed in O
(√
|V | · (|V |+ |E|)

)
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Other matching algorithms

In Section 4, using flows to compute matchings is discussed.

Weighted Matching problem Theorem 1.51

Let n be even and l :
(
[n]
2

)
→ N0 be a weight function of a complete graph Kn. Then, we can compute, in

time O
(
n3

)
, a minimum perfect matching with

∑
e∈M

l(e) = min

{ ∑
e∈M ′

l(e)
∣∣∣ M ′ is a perfect matching in Kn

}

MTSP with approximation Theorem 1.52

There is a 3
2 -approximation algorithm with time complexity O

(
n3

)
for the metric travelling salesman

problem

1.6.2 Hall’s Theorem

Hall’s Theorem Theorem 1.53

For a bipartite graph G = (A ⊎B,E) there exists a matching M with cardinality |M | = |A| if and only if

|N(X)| ≥ |X| ∀X ⊆ A

The following theorem follows from Hall’s Theorem immediately. We remember that a graph is k-regular if and
only if every vertex of the graph has degree exactly k

Matching in k-regular bipartite graphs Theorem 1.54

Let G be a k-regular bipartite graph. Then there exists M1, . . . ,Mk such that E = M1 ⊎ . . . ⊎Mk where
each Mi is a perfect matching

Algorithm for the problem Theorem 1.55

If G is a 2k-regular bipartite graph, we can find a perfect matching in time O (|E|)

It is important to note that the algorithms to determine a perfect matching in bipartite graph do not work for
non-bipartite graphs, due to the fact that when we remove every other edge from the eulerian cycle, it is conceivable
that the graph becomes disconnected. While this is no issue for bipartite graphs (as we can simply execute the
graph on all connected components), for k = 1, such a connected component can could contain an odd number of
vertices, thus there would be a eulerian cycle of odd length from which not every other edge can be deleted. Since
that component has odd length, no perfect matching can exist.
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1.7 Colourings

Good examples for problems that can be solved using colourings are the channel picking of wireless devices, for
compilers to pick registers and for creating timetables and exam schedules.

Colouring Definition 1.57

A (vertex-)colouring of a graph G with k colours is an image c : V → [k] such that

c(u) ̸= c(v) ∀{u, v} ∈ E

The chromatic number X (G) is the minimum number of colours that are required to colour the graph G

Graphs with chromatic number k are also called k-partite, where from the naming of a bipartite graph comes, since
we can partition the graph into k separate sets

Bipartite graph Theorem 1.59

A graph G = (V,E) is bipartite if and only if it does not contain a cycle of uneven length as sub-graph

On political maps, two neighbouring countries are coloured in different colours. We assume that the territories
of every country is connected and that all countries that only touch at one point can be coloured with the same
colour.

Four colour theorem Theorem 1.60

Every land map can be coloured in four colours

Again, the problem of determining if the chromatic number of a graph is smaller than a value t is another NP-
complete problem. We thus have to again proceed with an approximation.

The following algorithm correctly computes a valid colouring.

Greedy-Colouring Algorithm Theorem 1.61

For the number of colours C(G) the Greedy-Colouring needs to colour the connected graph G we have

X (G) ≤ C(G) ≤ ∆(G) + 1

where ∆(G) := maxv∈V deg(v) is the maximum degree of a vertex in G. If the graph is stored as an
adjacency list, the algorithm finds a colouring O (|E|)

Algorithm 8 Greedy-Colouring(G)

1 Choose an arbitrary order of vertices V = {v1, . . . , vn}
2 c[v1]← 1
3 for i = 2, . . . , n do
4 c[vi]← min{k ∈ N | k ̸= c(u) ∀u ∈ N(vi) ∩ {v1, . . . , vi−1}} ▷ Find minimum available colour

Brook’s theorem Theorem 1.62

Let G be a connected graph that is neither complete nor a cycle of uneven length (uneven cycle), we have

X (G) ≤ ∆(G)

and there is an algorithm that colours the graph using ∆(G) colours in O (|E|). Otherwise X (G) ≤ ∆(G)+1

Of note is that a graph with an even number of vertices and edges does not contain an uneven cycle, so for an
incomplete graph with an even number of edges and vertices, we always have that X (G) ≤ ∆(G)
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Maximum degree Theorem 1.63

Let G be a graph and k ∈ N the number representing the maximum degree of any vertex of any induced
subgraph of G. Then we have X (G) ≤ k + 1 and a (k + 1)-coloring can be found in O (|E|)

Mycielski-Construction Theorem 1.64

For all k ≥ 2 there exists a triangle-free graph Gk with X (Gk) ≥ k

It is even possible to show that for all k, l ≥ 2 there exists a graph Gk,l such that said graph doesn’t contain a
cycle of length at most l, but we still have X (Gk,l) ≥ k.

To conclude this section, one last problem:

We are given a graph G which we are told has X (G) = 3. This means, we know that there is exists an order of
processing for the Greedy-Colouring algorithm that only uses three colours. We don’t know the colours, but
we can find an upper bound for the number of colours needed

3-colourable graphs Theorem 1.65

Every 3-colourable graph G can be coloured in time O (|E|) using at most O
(√
|V |

)
colours

Since the graph has to be bipartite (because for each vertex v, its neighbours can only be coloured in 2 other
colours, because the graph can be 3-coloured), we can use BFS and thus have linear time. The algorithm works as
follows: We choose the vertices with the largest degree and apply three colours to them. For the ones of smaller
degree, we apply Brook’s theorem.
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2 Combinatorics

2.1 Introduction

Please note: This section was not part of the book and is written in very simple terms (it is taken from a summary
I wrote 4 years ago during Gymnasium)

Combinatorics was developed from the willingness of humans to gamble and the fact that everybody wanted to
win as much money as possible.

2.2 Simple counting operations

The easiest way to find the best chance of winning is to write down all possible outcomes. This can be very tedious
though when the list gets longer.

We can note this all down as a list or as a tree diagram. So-called Venn Diagrams might also help represent the
relationship between two sets or events. Essentially a Venn Diagram is a graphical representation of set operations
such as A ∪B.

2.3 Basic rules of counting

2.3.1 Multiplication rule

If one has n possibilities for a first choice and m possibilities for a second choice, then there are a total of n ·m
possible combinations.

When we think about a task, and we have an and in between e.g. properties, we need to multiply all the options.

2.3.2 Addition rule

If two events are mutually exclusive, the first has n possibilities and the second one has m possibilities, then both
events together have n+m possibilities.

When we think about a task, and we have an or in between e.g. properties, then we need to add all the options.
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2.4 Factorial

Factorial Definition 2.1

The factorial stands for the product of the first n natural numbers where n ≥ 1. Notation: !

n! = n · (n− 1) · (n− 2) · . . . · 3 · 2 · 1

Additionally, 0! = 1. We read n! as “n factorial”

2.4.1 Operations

We can rewrite n! as n · (n− 1)! or n · (n− 1) · (n− 2)! and so on.

It is also possible to write 7 · 6 · 5 with factorial notation:
7!

4!
, or in other words, for any excerpt of a factorial

sequence:

n · (n− 1) · . . . ·m =
n!

(m− 1)!

2.5 Permutations

Permutations Definition 2.2

A permutation of a group is any possible arrangement of the group’s elements in a particular order

Permutation rule without repetition: The number of n distinguishable elements is defined as: n!

2.5.1 Permutation with repetition

For n elements n1, n2, . . . , nk of which some are identical, the number of permutations can be calculated as follows:

p =
n!

n1! · n2! · . . . · nk!

where nk is the number of times a certain element occurs. As a matter of fact, this rule also applies to permutations

without repetition, as each element occurs only once, which means the denominator is 1, hence
n!

(1!)n
= n!

Example 2.3: CANADA has 6 letters, of which 3 letters are the same. So the word consists of 3 A’s, which can

be arranged in 3! different ways, a C, N and D, which can be arranged in 1! ways each. Therefore, we have:

6!

3! · 1! · 1! · 1!
=

6!

3!
= 6 · 5 · 4 = 120

Since 1! equals 1, we can always ignore all elements that occur only once, as they won’t influence the final result.
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2.6 Variations

Variations Definition 2.4

A variation is a selection of k elements from a universal set that consists of n distinguishable elements.

Variation rule without repetition: The nPk function is used to place n elements on k places. In a
more mathematical definition: The number of different variations consisting of k different elements selected
from n distinguishable elements can be calculated as follows:

n!

(n− k)!
=n Pk

2.6.1 Variations with repetition

If an element can be selected more than once and the order matters, the number of different variations consisting
of k elements selected from n distinguishable elements can be calculated using nk

2.7 Combinations

Combination Definition 2.5

A combination is a selection of k elements from n elements in total without any regard to order or arrange-
ment.
Combination rule without repetition:

nCk =

(
n

k

)
=

nPk

k!
=

n!

(n− k)! · k!

2.7.1 Combination with repetition

In general the question to ask for combinations is, in how many ways can I distribute k objects among n elements?

n+k−1Ck =

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!

2.8 Binomial Expansion

Binomial expansion is usually quite hard, but it can be much easier than it first seems. The first term of the
expression of (a + b)n is always 1anb0. Using the formula for combination without repetition, we can find the
coefficients of each element:

This theory is based on the Pascal’s Triangle and the numbers of row n correspond to the coefficients of each
element of the expanded term.

We can calculate the coefficient of each part of the expanded term k with combinatorics as follows:

(
n

k

)
Binomial Expansion Formula 2.6

In general:

(a+ b)n = 1anb0 +

(
n

1

)
an−1b1 +

(
n

2

)
an−2b2 + . . .+

(
n

n− 1

)
a1bn−1 +

(
n

n

)
a0bn
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2.9 Overview

December 31, 2025 19 / 45



Algorithms and Probability Janis Hutz

3 Probability

3.1 Basics

Discrete Sample Space Definition 3.1

A sample space S consists of a set Ω consisting of elementary events ωi. Each of these elementary events
has a probability assigned to it, such that 0 ≤ Pr[ωi] ≤ 1 and∑

ω∈Ω

Pr[ω] = 1

We call E ⊆ Ω an event. The probability Pr[E] of said event is given by

Pr[E] :=
∑
ω∈E

Pr[ω]

If E is an event, we call E := Ω\E the complementary event

Events Lemma 3.2

For two events A,B, we have:

1. Pr[∅] = 0,Pr[Ω] = 1
2. 0 ≤ Pr[A] ≤ 1

3. Pr[A] = 1− Pr[A]
4. If A ⊆ B, we have Pr[A] ≤ Pr[B]

Addition law Theorem 3.3

If events A1, . . . , An are relatively disjoint (i.e. ∀(i ̸= j) : Ai ∩Aj = ∅), we have (for infinite sets, n =∞)

Pr

[
n⋃

i=1

Ai

]
=

n∑
i=1

Pr[Ai]
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The below theorem is known as the Inclusion-Exclusion-Principle, or in German the “Siebformel” and is the general
case of the addition law, where the events don’t have to be disjoint.

Inclusion/Exclusion Theorem 3.6

Let A1, . . . , An be events, for n ≥ 2. Then we we have

Pr

[
n⋃

i=1

Ai

]
=

n∑
l=1

(−1)l+1
∑

1≤i1<...<il≤n

Pr[Ai1 ∩ . . . ∩Ail ]

=

n∑
i=1

Pr[Ai]−
∑

1≤i1<i2≤n

Pr[Ai1 ∩Ai2 ] +
∑

1≤i1<i2<i3≤n

Pr[Ai1 ∩Ai2 ∩Ai3 ]− . . .

+ (−1)n+1 · Pr[A1 ∩ . . . ∩An]

What is going on here? We add all intersections where an even number of ∩-symbols are used and subtract all
those who have and odd number of intersections.

Use: This is useful for all kinds of counting operations where some elements occur repeatedly, like counting the

number of integers divisible by a list of integers (see Code-Expert Task 04)

Of note here is that we sum up with e.g.
∑

1≤i1<j1≤n

Pr[Ai1 ∩Ai2 ] is all subsets of the whole set Ω, where two events

are intersected / added.

If Ω = A1 ∪ . . . ∪An and Pr[ω] = 1
|Ω| , we get∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

l=1

(−1)l+1
∑

1≤i1<...<il≤n

|Ai1 ∩ . . . ∩Ail

Since for n ≥ 4 the Inclusion-Exclusion-Principle formulas become increasingly long and complex, we can use a
simple approximation, called the Union Bound, also known as the Boolean inequality

Union Bound Corollary 3.7

For events A1, . . . , An we have (for infinite sequences of events, n =∞)

Pr

[
n⋃

i=1

Ai

]
≤

n∑
i=1

Pr[Ai]

Laplace principle: We can assume that all outcomes are equally likely if nothing speaks against it

Therefore, we have Pr[ω] =
1

|Ω|
and for any event E, we get Pr[E] =

|E|
|Ω|
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3.2 Conditional Probability

Conditional Probability Definition 3.9

Let A,B be events, with Pr[B] > 0. The conditional probability Pr[A|B] of A given B is defined as

Pr[A|B] :=
Pr[A ∩B]

Pr[B]

We may also rewrite the above as

Pr[A ∩B] = Pr[B|A] · Pr[A] = Pr[A|B] · Pr[B]

Multiplication law Theorem 3.11

Let A1, . . . , An be events. If Pr[A1 ∩ . . . ∩An] > 0, we have

Pr[A1 ∩ . . . ∩An] = Pr[A1] · Pr[A2|A1] · Pr[A3|A1 ∩A2] · . . . · Pr[An|A1 ∩ . . . ∩An]

The proof of the above theorem is based on the definition of conditional probability. If we rewrite Pr[A1] =
Pr[A1]

1 ,
apply the definition of Pr[A2|A1], and do the same to all subsequent terms, the equation simplifies to Pr[A1∩. . .∩An]

Use: The law of total probability is used, as the name implies, to calculate the total probability of all possible
ways in which an even B can occur.

Law of total probability Theorem 3.14

Let A1, . . . , An be relatively disjoint events and let B ⊆ A1 ∪ . . . ∪An. We then have

Pr[B] =

n∑
i=1

Pr[B|Ai] · Pr[Ai]

The same applies for n =∞. Then, B =
⋃∞

i=1 Ai

Using the previously defined theorem, we get Bayes’ Theorem

Bayes’ Theorem Theorem 3.16

Let A1, . . . , An be relatively disjoint events and let B ⊆ A1 ∪ . . . ∪ An be an event with Pr[B] > 0. Then
for each i = 1, . . . , n, we have

Pr[Ai|B] =
Pr[Ai ∩B]

Pr[B]
=

Pr[B|Ai] · Pr[Ai]∑n
j=1 Pr[B|Aj ] · Pr[Aj ]

The same applies for n =∞. Then B =
⋃∞

i=1 Ai

Use: Bayes’ Theorem is commonly used to calculate probabilities on different branches or in other words, to
rearrange conditional probabilities. The sum in the denominator represents all posible paths to the event summed
up

Example 3.17: Assume we want to find the probability that event X happened given that event Y happened.

Important: Event X happened before event Y happened and we do not know the probability of X. Therefore
we have Pr[X|Y ] as the probability. But we don’t actually know that probability, so we can use Bayes’ Theorem
to restate the problem in probabilities we can (more) easily determine.
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3.3 Independence

Definition 3.19: (Independence of two events) Two events A and B are called independent if

Pr[A ∩B] = Pr[A] · Pr[B]

Independence Definition 3.23

Events A1, . . . , An are called independent, if for all subsets I ⊆ {1, . . . , n} with I = {i1, . . . , ik} and |I| = k,
we have that

Pr[Ai1 ∩ . . . ∩Aik ] = Pr[Ai1 ] · . . . · Pr[Aik ]

The same in simpler terms: If all events A1, . . . , An are relatively disjoint, they are independent. We can determine
if they are, if the probability of the intersection of all events is simply their individual probabilities multiplied with
each other.

Independence Lemma 3.24

Events A1, . . . , An are independent if and only if for all (s1, . . . , sn) ∈ {0, 1}n we have

Pr[As1
1 ∩ . . . ∩Asn

n ] = Pr[As1
1 ] · . . . · Pr[Asn

n ]

where A0
i = Ai (i.e. si = 0) and A1

i = Ai (i.e. si = 1)

{0, 1}n is the space of n-bit binary numbers, representing subsets of the sample space, each of them being any of
the subsets intersected with up to n other subsets

The si in this expression are very straight forward to understand as simply indicating if we consider the event or
its complement.

Lemma 3.25: (Let A, B and C be independent events. Then, A∩B and C as well A∪B and C are independent)

In this lecture, we are always going to assume that we can use actual random numbers, not just pseudo random
numbers that are generated by PRNGs (Pseudo Random Number Generators).
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3.4 Random Variables

Random Variable Definition 3.26

A random variable is an image X : Ω→ R that maps the sample space to a real number.
The range WX := X (Ω) = {x ∈ R : ∀ω ∈ Ω with X (ω) = x}’s countability depends on the countability of
Ω, and is either countable or countably infinite

For those who don’t have an intuition for what a random variable actually is: See Section 3.4.3.

Often times when looking at random variables, we are interested in the probabilities at which X takes certain values.
We write either X−1(xi) or more intuitively X = xi. Analogously, we have (short: Pr[“X ≤ x′′

i ] as Pr[X ≤ xi])

Pr[“X ≤ x′′
i ] =

∑
x∈WX :x≤xi

Pr[“X = x′′] = Pr[{ω ∈ Ω : X (ω) ≤ xi}]

From this notation, we easily get two real functions. We call fX : R → [0, 1] for which x 7→ Pr[X = x] the
probability mass function (PMF, Dichtefunktion) of X , which maps a real number to the probability that the
random variable takes this value.

The cumulative distribution function (CDF, Verteilungsfunktion) of X is a function, which maps a real number
to the probability that the value taken by the random variable is lower than, or equal to, the real number. Often
times it suffices to state the PMF of the random variable (since we can easily derive the CDF from it)

FX : R→ [0, 1], x→ Pr[X ≤ x] =
∑

x′∈WX :x′≤x

Pr[X = x′] =
∑

x′∈WX :x′≤x

fX (x′)

3.4.1 Expected value

Expected Value Definition 3.28

The expected value E[X ] describes the average value the random variable X takes.
We define the expected value E[X ] as

E[X ] :=
∑

x∈WX

x · Pr[X = x]

only if the sum converges absolutely. Otherwise, the expected value is undefined. This is trivially true for
finite sample spaces.

In this lecture, only random variables with an expected value are covered, so that condition does not need to be checked here

Alternative to the above definition over the elements of the range of the random variable, we can also define it as

Expected Value Lemma 3.30

If X is a random variable, we have

E[X ] =
∑
ω∈Ω

X (ω) · Pr[ω]

If the range of the random variable consists only of non-zero integers, we can calculate the expected value with the
following formula

Expected Value Theorem 3.31

Let X be a random variable with WX ⊆ N0. We then have

E[X ] =
∞∑
i=1

Pr[X ≥ i]
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Conditional Random Variables

Conditional Random Variable Definition 3.32

Let X be a random variable and let A be an event with Pr[A] > 0

Pr[(X|A) ≤ x] = Pr[X ≤ x|A] =
Pr[{ω ∈ A : X (ω) ≤ x}]

Pr[A]

Expected Value (Conditional) Theorem 3.33

Let X be a random variable. For relatively disjoint events A1, . . . , An with A1 ∪ . . . ∪ An = Ω and
Pr[A1], . . . ,Pr[An] > 0, we have (analogously for n =∞)

E[X ] =
n∑

i=1

E[X|Ai] · Pr[Ai]

Linearity of the expected value

We can calculate the expected value of a sum of any number of random variables X1, . . . ,Xn : Ω → R simply by
summing the expected values of each of the random variables Xi

Linearity of expected value Theorem 3.34

Given random variables X1, . . . ,Xn and let X := a1X1 + . . .+ anXn + b for any a1, . . . , an, b ∈ R, we have

E[X ] = a1 · E[X1] + . . .+ an · E[Xn] + b

Very simply with two random variables X and Y , we have E[X + Y ] = E[X] + E[Y ]

Indicator Variable Definition 3.36

We use indicator variables to formalize the probability that an event A occurs using the expected value
For an event A ⊆ Ω the accompanying indicator variable XA is given by

XA(ω) :=

{
1 if ω ∈ A

0 else

For the expected value of XA we have: E[XA] = Pr[A]

We can now prove the Inclusion-Exclusion-Principle using a fairly simple proof. See Example 2.36 in the script for
it.

Use: We use the indicator variable for experiments where we perform a certain action numerous times where each

iteration does not (or does for that matter) depend on the previous outcome.
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3.4.2 Variance

Even though two random variables may have the same expected value, they can still be significantly different. The
Variance describes the dispersion of the results, or how far off the expected value the different values are maximally
(up to a certain limit, that is)

Variance Definition 3.40

For a random variable X with µ = E[X ], the variance Var[X ] is given by

Var[X ] := E[(X − µ)2] =
∑

x∈WX

(x− µ)2 · Pr[X = x]

σ :=
√

Var[X ] is called the standard deviation of X

Variance (easier) Theorem 3.41

For any random variable X we have
Var[X ] = E[X 2]− E[X ]2

We also have

Variance Theorem 3.42

For any random variable X and a, b ∈ R we have

Var[a · X + b] = a2 ·Var[X ]

The moments of a random variable are given by the expected value and the variance.

Moment Definition 3.43

The kth moment of a random variable X is E[X k] whereas E[(X − E[X ])k] is called the kth central
moment .

Note The expected value is thus the first moment and the variance the second central moment.

3.4.3 Intuition

If you struggle to imagine what a random variable X is, or what for example X 2 is, read on. As definition 3.25
states, a random variable is a function, which is why people tend to get confused. It is not a variable in the normal
way of understanding.

With that in mind, things like X 2 makes much more sense, as it’s simply the result of the function squared, which
then makes theorem 3.40 make much more sense, given the definition of the expected value.

Of note is that remembering the summation formulas for the variance (or knowing how to get to it) is handy for
the exam, as that formula is not listed on the cheat-sheet provided by the teaching team as of FS25. Deriving it is
very easy though, as it’s simply applying the expected value definition to the initial definition, which is listed on
the cheat-sheet.
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3.5 Discrete distribution

3.5.1 Bernoulli-Distribution

A random variable X with WX is called Bernoulli distributed if and only if its probability mass function is of
form

fX (x) =


p x = 1

1− p x = 0

0 else

The parameter p is called the probability of success (Erfolgswahrscheinlichkeit). Bernoulli distribution is used to
describe boolean events (that can either occur or not). It is the trivial case of binomial distribution with n = 1. If
a random variable X is Bernoulli distributed, we write

X ∼ Bernoulli(p)

and we have
E[X ] = p and Var[X ] = p(1− p)

3.5.2 Binomial Distribution

If we perform a Bernoulli trial repeatedly (e.g. we flip a coin n times), the number of times we get one of the
outcomes is our random variable X and it is called binomially distributed and we write

X ∼ Bin(n, p)

and we have
E[X ] = np and Var[X ] = np(1− p)

3.5.3 Geometric Distribution

If we have an experiment that is repeated until we have achieved success, where the probability of success is p, the
number of trials (which is described by the random variable X ) is geometrically distributed . We write

X ∼ Geo(p)

The density function is given by

fX (i) =

{
p(1− p)i−1 for i ∈ N
0 else

whilst the expected value and variance are defined as

E[X ] = 1

p
and Var[X ] = 1− p

p2

The cumulative distribution function is given by

FX (n) = Pr[X ≤ n] =

n∑
i=1

Pr[X = i] =

n∑
i=1

p(1− p)i−1 = 1− (1− p)n

Note Every trial in the geometric distribution is unaffected by the previous trials

Geometric Distribution Theorem 3.46

If X ∼ Geo(p), for all s, t ∈ N we have

Pr[X ≥ s+ t|X > s] = Pr[X ≥ t]
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Coupon Collector problem

First some theory regarding waiting for the nth success. The probability mass function is given by fX (x) =(
z − 1
n− 1

)
· pn · (1− p)z−n whereas the expected value is given by E[X ] =

n∑
i=1

E[Xi] =
n

p

The coupon collector problem is a well known problem where we want to collect all coupons on offer. How many
coupons do we need to obtain on average to get one of each? We will assume that the probability of getting
coupon i is equal to all other coupons and getting a coupon doesn’t depend on what coupons we already have
(independence)

Let X be a random variable representing the number of purchases to the completion of the collection. We split up
the time into separate phases, where X is the number of coupons needed to end phase i, which ends when we have
found one of the n− i+ 1 coupons not previously collected (i.e. we got a coupon we haven’t gotten yet)

Logically, X =
∑n

i=1 Xi. We can already tell from the experiment we are conducting that it is going to be
geometrically distributed and thus the probability of success is going to be p = n−i+1

n and we have E[Xi] =
n

n−i+1

With that, let’s determine

E[X ] =
n∑

i=1

E[Xi] =

n∑
i=1

n

n− i+ 1
= n ·

n∑
i=1

1

i
= n ·Hn

where Hn :=
∑n

i=1
1
i is the nth harmonic number, which we know (from Analysis) is Hn = ln(n) +O (1), thus we

have E[X ] = n · ln(n) +O (n).

The idea of the transformation is to reverse the (n− i+ 1), so counting up instead of down, massively simplifying
the sum and then extracting the n and using the result of Hn to fully simplify

3.5.4 Poisson distribution

The Poisson distribution is applied when there is only a small likelihood that an event occurs, but since the
cardinality of the sample space in question is large, we can expect at least a few events to occur. We write

X ∼ Po(λ)

An example for this would be for a person to be involved in an accident over the next hour. The probability mass
function is given by

fX (i) =

{
e−λλi

i! for i ∈ No

0 else
and E[X ] = Var[X ] = λ

Using the Poisson distribution as limit for the binomial distribution

We can approximate the binomial distribution using the Poisson distribution if we have large n and small constant
np. λ = E[X ] = np in that case.
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3.6 Multiple random variables

There are times when we are interested in the outcomes of multiple random variables simultaneously. For two
random variables X and Y, we evaluate probabilities of type

Pr[X = x,Y = y] = Pr[{ω ∈ Ω : X (ω) = x,Y(ω) = y}]

Here Pr[X = x,Y = y] is a shorthand notation for Pr[“X = x′′ ∩ “Y = y′′]

We define the common probability mass function fX ,Y by

fX ,Y(x, y) := Pr[X = x,Y = y]

We can also get back to the individual probability mass of each random variable

fX =
∑

y∈WY

fX ,Y(x, y) or fY(y) =
∑

x∈WX

fX ,Y(x, y)

We hereby call fX and fY marginal density (Randdichte)

We define the common cumulative distribution function by

FX ,Y(x, y) := Pr[X ≤ x,Y ≤ y] = Pr[{ω ∈ Ω : X (ω) ≤ x,Y ≤ y}] =
∑
x′≤x

∑
y′≤y

fX ,Y(x
′, y′)

Again, we can use marginal density

FX (x) =
∑
x′≤x

fX (x′) =
∑
x′≤x

∑
y∈WY

fX ,Y(x
′, y) and FY(y) =

∑
y′≤y

fY(y
′) =

∑
y′≤y

∑
x∈WX

fX ,Y(x, y
′)

3.6.1 Independence of random variables

Independence Definition 3.53

Random variables X1, . . . ,Xn are called independent if and only if for all (x1, . . . , xn) ∈WX1
× . . .×WXn

we have

Pr[X1 = x1, . . . ,Xn = xn] = Pr[X1 = x1] · . . . · Pr[Xn = xn]

Or alternatively, using probability mass functions

fX1,...Xn(x1, . . . , xn) = fX1(x1) · . . . · fXn(xn)

In words, this means that for independent random variables, their common density is equal to the product
of the individual marginal densities

The following lemma shows that the above doesn’t only hold for specific values, but also for sets

Independence Lemma 3.54

Let X1, . . . ,Xn be independent random variables and let S1, . . . , Sn ⊆ R be any set, then we have

Pr[X1 ∈ S1, . . . ,Xn ∈ Sn] = Pr[X1 ∈ S1] · . . . · Pr[Xn ∈ Sn]

Independence Corollary 3.55

Let X1, . . . ,Xn be independent random variables and let I = {i1, . . . , ik} ⊆ [n], then Xi1 , . . . ,Xik are also
independent
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Independence Theorem 3.56

Let f1, . . . , fn be real-valued functions (fi : R → R for i = 1, . . . , n). If the random variables X1, . . . , Xn

are independent, then this also applies to f1(X1), . . . , fn(Xn)

3.6.2 Composite random variables

Using functions we can combine multiple random variables in a sample space.

Two random variables Theorem 3.59

For two independent random variables X and Y, let Z := X + Y. Then we have

fZ(z) =
∑

x∈WX

fX · fY(z − x)

We call, analogously to the terms used for power series, fZ(z) “convolution”

3.6.3 Moments of composite random variables

Linearity of the expected value Theorem 3.61

For random variables X1, . . . ,Xn and X := a1X1 + . . .+ anXn with a1, . . . , an ∈ R we have

E[X ] = a1E[X1] + . . .+ anE[Xn]

There are no requirements in terms of independence of the random variables, unlike for the multiplicativity

Multiplicativity of the expected value Theorem 3.62

For independent random variables X1, . . . ,Xn we have

E[X1 · . . . · Xn] = E[X1] · . . . · E[Xn]

Variance of multiple random variables Theorem 3.63

For independent random variables X1, . . . ,Xn and X = X1 + . . .+ Xn we have

Var[X ] = Var[X1] + . . .+Var[Xn]

3.6.4 Wald’s Identity

Wald’s identity is used for cases where the number of summands is not a constant, commonly for algorithms that
repeatedly call subroutines until a certain result is attained. The time complexity of such an algorithm can be
approximated by splitting up the algorithm into phases, where each phase is a call of the subroutine. The number
of calls to the subroutine, thus the number of phases, is usually not deterministic in that case but rather bound to
a random variable.

Wald’s Identity Theorem 3.66

Let N and X be two independent random variables with WN ⊆ N. Let

Z :=

N∑
i=1

Xi

where X1,X2, . . . are independent copies of X . Then we have

E[Z] = E[N ] · E[X ]
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3.7 Approximating probabilities

Since it can be very expensive to calculate the true probabilities in some cases, we will now cover some tools that
allow us to approximate the probabilities using upper or lower bounds.

3.7.1 Markov’s & Chebyshev’s inequalities

Markov’s inequality Theorem 3.68

Let X be a random variable that may only take non-negative values. Then for all t > 0 ∈ R, we have

Pr[X ≥ t] ≤ E[X ]
t
⇐⇒ Pr[X ≥ t · E[X ]] ≤ 1

t

Markov’s inequality is fairly straight forward to prove, and it already allows us to make some useful statements,
like that for the coupon collector problem, we only need to make more than 100n log(n) purchases with probability
1

100 . The following inequality usually gives a much more precise bound than Markov’s inequality

Chebyshev’s inequality Theorem 3.69

Let X be a random variable and t > 0 ∈ R. Then we have

Pr[|X − E[X| ≥ t]] ≤ Var[X ]
t2

⇐⇒ Pr[|X − E[X ]| ≥ t ·
√

Var[X ]] ≤ 1

t2

A common tactic when using these is to restate the original probability Pr[X ≥ t] as Pr[|X − E[X]| ≥ t − E[X]]
and then set t = t′ for t′ = t− E[X]

3.7.2 Chernoff bounds

The Chernoff bounds are specifically designed for Bernoulli-variables

Chernoff bounds Theorem 3.71

Let X1, . . . ,Xn be independent Bernoulli-distributed random variables with Pr[Xi = 1] = pi and Pr[Xi =
0] = 1− pi. Then we have for X :=

∑n
i=1 Xi

(i) Pr[X ≥ (1 + δ)E[X ]] ≤ e−
1
3 δ

2E[X ] for all 0 < δ ≤ 1

(ii) Pr[X ≤ (1− δ)E[X ]] ≤ e−
1
2 δ

2E[X ] for all 0 < δ ≤ 1
(iii) Pr[X ≥ t] ≤ 2−t for t ≥ 2eE[X ]

We determine the δ in the inequality by finding it such that t = (1+ δ)E[X] or, for the second one, t = (1− δ)E[X].
For the third one, no δ is required
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3.8 Randomized Algorithms

In comparison to deterministic algorithms, here, the output is not guaranteed to be equal for the same input data
after reruns. While this can be an issue in some cases, it allows us to usually significantly reduce time complexity
and thus allows us to solve NP-complete problems in some cases in polynomial time even.

The problem with true randomness is that it is hardly attainable inside computers, some kind of predictability will
always be there in some form or another, especially if the random number generator is algorithm-based, not on
random events from the outside. In this course, we will though assume that random numbers generated by random
number generators provided by programming languages actually provide independent random numbers

In the realm of randomized algorithms, one differentiates between two approaches

Types of randomized algorithms

Monte-Carlo-Algorithm Las-Vegas-Algorithm

Always correct ✗ ✓
Constant runtime ✓ ✗

While this is the normal case for Las-Vegas Algorithms, we can also consider the following:

Let the algorithm terminate if a certain runtime bound has been exceeded and return something like “???” if it
has not found a correct answer just yet. We will most commonly use this definition of a Las-Vegas-Algorithm in
this course

3.8.1 Reduction of error

Error reduction Las-Vegas-Algorithm Theorem 3.73

Let A be a Las-Vegas-Algorithm, where Pr[A(I)correct] ≥ ε
Then, for all δ > 0 we call Aδ an algorithm that calls A until we either get a result that is not “???” or we
have executed N = ε−1 ln(δ−1) times. For Aδ we then have

Pr[Aδ(I)correct] ≥ 1− δ

On the other hand, for Monte-Carlo-Algorithms, the probability of error decreases rapidly. It is not easy though
to determine whether or not an answer is correct, unless the algorithm only outputs two different values and we
know that one of these values is always correct

Error reduction Theorem 3.75

Let A be a randomized algorithm, outputting either Yes or No, whereas

Pr[A(I) = Yes] = 1 if I is an instance of Yes

Pr[A(I) = No] ≥ ε if I is an instance of No

Then, for all δ > 0 we call Aδ the algorithm that calls A until either No is returned or until we get Yes
N = ε−1 ln(δ−1) times. Then for all instances I we have

Pr[Aδ(I)correct] ≥ 1− δ

This can also be inverted and its usage is very straight forward.
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If we however have Monte-Carlo-Algorithms that have two-sided errors, i.e. there is error in both directions, we
have

Two-Sided Error reduction Theorem 3.76

Let ε > 0 and A be a randomized algorithm, that always outputs either Yes or No whereas

Pr[A(I)correct] ≥ 1

2
+ ε

Then, for all δ > 0 we call Aδ the algorithm that calls A N = 4ε−2 ln(δ−1) independent times and then
returns the largest number of equal responses. Then we have

Pr[Aδ(I)correct] ≥ 1− δ

For randomized algorithms for optimization problems like the calculation of a largest possible stable set, as seen
in Example 2.37 in the script, we usually only consider if they achieve the desired outcome.

Optimization problem algorithms Theorem 3.77

Let ε > 0 and A be a randomized algorithm for a maximization problem, for which

Pr[A(I) ≥ f(I)] ≥ ε

Then, for all δ > 0 we call Aδ the algorithm that calls A N = 4ε−2 ln(δ−1) independent times and then
returns the best result. Then we have

Pr[Aδ(I) ≥ f(I)] ≥ 1− δ

For minimization problems, analogously, we can replace ≥ f(I) with ≤ f(I)

3.8.2 Sorting and selecting

The QuickSort algorithm is a well-known example of a Las-Vegas algorithm. It is one of the algorithms that always
sorts correctly, but its runtime depends on the selection of the pivot elements, which happens randomly.

QuickSort Recall

As covered in the Algorithms & Data Structures lecture, here are some important facts
• Time complexity: Ω (n log(n)), Θ (n log(n)), O

(
n2

)
• Performance is dependent on the selection of the pivot (the closer to the middle the better, but not
in relation to its current location, but rather to its value)

• In the algorithm below, ordering refers to the operation where all elements lower than the pivot
element are moved to the left and all larger than it to the right of it.

Algorithm 9 QuickSort

1 procedure QuickSort(A, l, r)
2 if l < r then
3 p← Uniform({l, l + 1, . . . , r}) ▷ Choose pivot element randomly
4 t← Partition(A, l, r, p) ▷ Return index of pivot element (after ordering)
5 QuickSort(A, l, t− 1) ▷ Sort to the left of pivot
6 QuickSort(A, t, r) ▷ Sort to the right of pivot

We call Ti,j the random variable describing the number of comparisons executed during the execution of Quick-
Sort(A, l, r). To prove that the average case of time complexity in fact is Θ (n log(n)), we need to show that

E[Ti,j ] ≤ 2(n+ 1) ln(n) +O (n)

which can be achieved using a the linearity of the expected value and an induction proof. (Script: p. 154)
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Selection problem

For this problem, we want to find the k-th smallest value in a sequence A[1], . . . , A[n]. An easy option would be to
simply sort the sequence and then return the k-th element of the sorted array. The only problem: O (n log(n)) is
the time complexity of sorting.

Now, the QuickSelect algorithm can solve that problem in O (n)

Algorithm 10 QuickSelect

1 procedure QuickSelect(A, l, r, k)
2 p← Uniform({l, l + 1, . . . , r}) ▷ Choose pivot element randomly
3 t← Partition(A, l, r, p)
4 if t = l + k − 1 then
5 return A[t] ▷ Found element searched for
6 else if t > l + k − 1 then
7 return QuickSelect(A, l, t− 1, k) ▷ Searched element is to the left
8 else
9 return QuickSelect(A, t+ 1, r, k − t) ▷ Searched element is to the right

3.8.3 Primality test

Deterministically testing for primality is very expensive if we use a simple algorithm, namely O (
√
n). There are

nowadays deterministic algorithms that can achieve this in polynomial time, but they are very complex.

Thus, randomized algorithms to the rescue, as they are much easier to implement and also much faster. With the
right precautions, they can also be very accurate, see theorem 2.74 for example.

A simple randomized algorithm would be to randomly pick a number on the interval [2,
√
n] and checking if that

number is a divisor of n. The problem: The probability that we find a certificate for the composition of n is very
low (O

(
1
n

)
). Looking back at modular arithmetic in Discrete Maths, we find a solution to the problem:

Fermat’s little theorem Theorem 3.78

If n ∈ N is prime, for all numbers 0 < a < n we have

an−1 ≡ 1 mod n

Using exponentiation by squaring, we can calculate an−1 mod n in O
(
k3

)
.

Algorithm 11 Miller-Rabin-Primality-Test

1 procedure Miller-Rabin-Primality-Test(n)
2 if n = 2 then
3 return true

4 else if n even or n = 1 then
5 return false

6 Choose a ∈ {2, 3, . . . , n− 1} randomly
7 Calculate k, d ∈ Z with n− 1 = d2k and d odd ▷ See below for how to do that
8 x← ad mod n
9 if x = 1 or x = n− 1 then
10 return true

11 while not repeated more than k − 1 times do ▷ Repeat k − 1 times
12 x← x2 mod n
13 if x = 1 then
14 return false

15 if x = n− 1 then
16 return true

17 return false

This algorithm has time complexity O (ln(n)). If n is prime, the algorithm always returns true. If n is composed,
the algorithm returns false with probability at least 3

4 .
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Notes We can determine k, d ∈ Z with n− 1 = d2k and d odd easily using the following algorithm

Algorithm 12 Get d and k easily

1 k ← 1
2 d← n− 1
3 while d is even do
4 d← d

2
5 k ← k + 1

What we are doing here is removing the all even divisors from d, to make it odd.

3.8.4 Target-Shooting

The Target-Shooting problem is the following: Given a set U and a subset thereof S ⊆ U , whose cardinality is

unknown, how large is the quotient |S|
|U | . We define an indicator variable for S by IS : U → {0, 1}, where IS(u) = 1

if and only if u ∈ S

The Target-Shooting algorithm approximates the above quotient:

Algorithm 13 Target-Shooting

1 procedure TargetShooting(N,U)
2 Choose u1, . . . , uN ∈ U randomly, uniformly and independently
3 return N−1 ·

∑N
i=1 IS(ui)

For this algorithm, two assumptions have to be made:

• IS has to be efficiently computable

• We need an efficient procedure to choose a uniformly random element from the set U .

Target-Shooting Theorem 3.79

Let δ, ε > 0. If N ≥ 3 |U |
|S| · ε

−2 · ln
(
2
δ

)
, the output of Target-Shooting is, with probability at least 1− δ,

on the Interval
[
(1− ε) |S|

|U | , (1 + ε) |S|
|U |

]

3.8.5 Finding dulicates

Deterministically, this could be achieved using a HashMap or the like, iterating over all items, hashing them and
checking if the hash is available in the map. This though uses significant amounts of extra memory and is also
computationally expensive. A cheaper option (in terms of memory and time complexity) is to use a Bloomfilter.

The randomized algorithm also use Hash-Functions, but are not relevant for the exam.

Hash Function Definition 3.80

If we have S ⊆ U , i.e. our dataset S is subset of a universe U , a hash function is an image h : U → [m],
whereas [m] = {1, . . . ,m} and m is the number of available memory cells. It is assumed that we can
efficiently calculate a hash for an element and that all elements are randomly distributed, i.e. we have for
u ∈ U Pr[h(u) = i] = 1

m for all i ∈ [m]
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4 Algorithms

4.1 Graph algorithms

4.1.1 Long path problem

Given a tuple (G,B) where G is a graph and B ∈ N0, we need to determine whether there exists a path of length
B in G.

This problem is another one of the infamous NP-Complete problems, for which there supposedly doesn’t exist an
algorithm that can solve the problem in polynomial time. We can show that this problem belongs to said group if
we can show that we can efficiently construct a graph G′ with n′ ≤ 2n− 2 vertices such that G has a Hamiltonian
Cycle if and only if G′ has a path of length n.

We construct a graph G′ from graph G by selecting a vertex v and replacing each edge incident to that vertex with
edges that lead to newly added vertices ŵ1, ŵ2, . . .. G′ has (n − 1) + deg(v) ≤ 2n − 2 vertices. All the vertices
ŵ1, . . . , ŵdeg(v) all have degree 1.

The graph G′ fulfills the above implication because

(i) Let ⟨v1, v2, . . . , vn, v1⟩ be a Hamiltonian cycle. Assume for contradiction that the resulting graph, constructed
according to the description above does not contain a path of length n. Let’s assume v1 = v (the vertex
removed during construction). However, ⟨v̂2, v2, . . . , v̂n, vn⟩ is a path of length n

(ii) Let ⟨u0, u1, . . . , un⟩ be a path of length n in G′ and let deg(ui) ≥ 2 ∀i ∈ {1, . . . , n− 1} These vertices hence
have to be the n − 1 remaining vertices of G, thus we have u0 = ŵi and un = ŵj two different ones of new
vertices of degree 1 in G′. Thus, we have u1 = wi and un−1 = wj and we have ⟨v, u1, . . . , un−1, v⟩, which is
a Hamiltonian cycle in G

Due to the construction of the graph G′ we can generate it from G in O
(
n2

)
steps. We thus have:

Long Path Problem Theorem 4.1

If we can find a long-path in a graph with n vertices in time t(n), we can decide if a graph with n vertices
has a Hamiltonian cycle in t(2n− 2) +O

(
n2

)
Short long paths

In biological applications, the long paths searched are usually small compared to n. It is possible to solve this
problem in polynomial time if for the tuple (G,B) B = log(n).

Notation and useful properties:

• [n] := {1, 2, . . . , n}. [n]k is the set of sequences over [n] of length k and we have
∣∣[n]k∣∣ = nk.

(
[n]
k

)
is the set

of subsets of [n] of cardinality k and we have
∣∣∣([n]k )∣∣∣ = (

n
k

)
• For every graph G = (V,E) we have

∑
v∈V deg(v) = 2|E|

• k vertices (no matter if part of a path or not) can be coloured using [k] in exactly kk ways whereas k! of said
colourings use each colour exactly once.

• For c, n ∈ R+ we have clog(n) = nlog(c)

• For n ∈ N0 we have
∑n

i=0

(
n
i

)
= 2n. (Application of binomial expansion, see 2.8)

• For n ∈ N0 we have n!
nn ≥ e−n

• If we repeat an experiment with probability of success p until success, E[X ] = 1
p where X := number of trials
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Colourful paths

A path is called colourful if all vertices on it are coloured differently. For v ∈ V and i ∈ N0 let’s define

Pi(v) :=

{
S ∈

(
[k]

i+ 1

) ∣∣∣∣∣ ∃ path ending in v coloured with S colours

}

Thus, Pi(v) contains a set S of i+ 1 colours if and only if there exists a path with vertex v whose colours are the
colours in S. It is important to note that such a path has to be always exactly of length i.

If we solve this problem for every v ∈ V , we solved our problem and we have

∃ colourful path of length k − 1 ⇐⇒
⋃
v∈V

Pk−1(v) ̸= ∅

For the algorithm, we need to also define N(v) which returns the neighbours of v and γ : V → [k] which assigns a
colour to each vertex.

Algorithm 14 Colourful path algorithm

1 procedure Colourful(G, i)
2 for all v ∈ V do
3 Pi(v)← ∅
4 for all x ∈ N(v) do
5 for all R ∈ Pi−1(x) with γ(v) /∈ R do
6 Pi(v)← Pi(v) ∪ {R ∪ {γ(v)}}

The time complexity of this algorithm is O
(
2kkm

)
. If we now have k = O (log(n)), the algorithm is polynomial.

Random colouring

The idea to solve the short long path problem in polynomial time is to randomly colour the vertices using colours
[k], whereby k := B + 1 and check if there is a colourful path of length k − 1. Since we are guaranteed to have a
colourful path if we find one, we can develop a Las Vegas Algorithm that solves this problem. But first

Random Colouring Theorem 4.2

Let G be a graph with a path of length k − 1
(1) We have psuccess = Pr[∃ colourful path of length k − 1] ≥ Pr[P is colourful] = k!

kk ≥ e−k

(2) The expected number of trials required to get a colourful path of length k − 1 is 1
psuccess

≤ ek

For our algorithm we choose a λ > 1 ∈ R and we repeat the test at most
⌈
λek

⌉
. If we succeed once, we abort and

output “Yes”. If we haven’t succeeded in any of the trials, we output “No”

Random Colouring Algorithm Theorem 4.3

• Time complexity: O
(
λ(2e)kkm

)
• If we return “Yes”, the graph is guaranteed to contain a path of length k − 1
• If we return “No”, the probability of false negative is e−λ
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4.1.2 Flows

Network Definition 4.5

A Network is a tuple N = (V,A, c, s, t) whereby
• (V,A) is a directed graph
• c : A → R+

0 the capacity function
• s ∈ V is the source
• t ∈ V\{s} is the target

The capacity function hereby describes the maximum flow through each edge. For each vertex that is not the
source or target, the flow is constant, i.e. the total amount entering vertex v has to be equal to the amount exiting
it again.

Flow Definition 4.6

Given a network N = (V,A, c, s, t), a flow in said network is a function f : A → R where

0 ≤ f(e) ≤ c(e) ∀e ∈ A The acceptability

∀v ∈ V\{s, t}
∑

u∈V:(u,v)∈A

f(u, v) =
∑

u∈V:(v,u)∈A

f(v, u) the conservation of flow

The value of a flow f is given by

val(f) :=
∑

u∈V:(s,u)∈A

f(s, u)−
∑

u∈V:(u,s)∈A

f(u, s)

We call a flow integeral if f(e) ∈ Z ∀e ∈ A

Flow Lemma 4.7

The total flow to the target equals the value of the flow, i.e.

netinflow(f) = val(f) =
∑

u∈V:(u,t)∈A

f(u, t)−
∑

u∈V:(t,u)∈A

f(t, u)

s-t-cut Definition 4.8

An s-t-cut of a network N = (V,A, c, s, t) is a partition P = (S, T ) of V (i.e. S ∪ T = V and S ∩ T = ∅)
where s ∈ S and t ∈ T . The capacity of a s-t-cut is then given by

cap(S, T ) =
∑

(u,w)∈(S×T )∩A

c(u,w)

s-t-cut Lemma 4.9

Given f is a flow and (S, T ) a s-t-cut in N = (V,A, c, s, t), we have

val(f) ≤ cap(S, T )

Max-flow - min-cut Theorem 4.10

Every network N = (V,A, c, s, t) fulfills (f a flow, (S, T ) an s-t-cut)

max
f∈N

val(f) = min
(S,T )∈N

cap(S, T )
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It is easier to calculate the min-cut, since there are only a finite number of s-t-cuts (albeit exponentially many, i.e.
2|V|−2), thus the importance of the above theorem. It forms the basis of the algorithms that calculate a solution
to the max-flow problem.

An approach to solve the max-flow problem is to use augmenting paths, but the issue with that is that it isn’t
guaranteed that we will find a max flow in a finite number of steps.

Residual capacity network

Using a residual capacity graph also known as a residual network, we can solve the max-flow problem in polynomial
time. The concept is simple, yet ingenious: It is simply a network of the remaining capacity (or the exceeded
capacity) of an edge e ∈ A for a flow f

Residual Network Definition 4.11

Let N = (V,A, c, s, t) be a network without bidirectional edges and let f be a flow in said network N . The
residual network Nf = (V,Af , rf , s, t) is given by
(1) If e ∈ A with f(e) < c(e), then edge e is also ∈ Af whereas rf (e) := c(e)− f(e)
(2) If e ∈ A with f(e) > 0 then edge eopp in Af whereas rf (e

opp) = f(e)
(3) Only edges as described in (1) and (2) can be found in Af

We call rf (e), e ∈ A the residual capacity of edge e

When reconstructing a network from the residual network, the original network is given by:

• The capacity of an edge (u, v) in the original network is the value of (u, v) and (v, u) in the residual network
added (if applicable), where (u, v) is directed towards the target.

• The flow of an edge is a bit more complicated: An edge that might appear to intuitively not be part of the
flow may be and vice-versa. Flow preservation is the key: The same amount of fluid has to enter each vertex
(that is not s or t) has to also exit it again. To check if an edge is part of the flow, simply see if the start
vertex of the edge has an excess of fluid.

• If just one edge is present, the edge is flipped, if two are present, figure out which edge was part of the flow
and which one is the remaining capacity.

Note: A vertex in the residual network directed towards the target is usually the remaining capacity!

Maximum Flow Theorem 4.12

A flow f in a network N = (V,A, c, s, t) is a maximum flow if and only if there does not exist a directed
path between the source and target of the residual network.
For every such maximum flow there exists a s-t-cut with val(f) = cap(S, T )
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Algorithms

Most algorithms for the max-flow problem use a residual network, where Af is the edge-set in the residual network.

Algorithm 15 Ford-Fulkerson

1 procedure Ford-Fulkerson(V,A, c, s, t)
2 f ← 0 ▷ Flow is constantly 0
3 while ∃s-t-path P in (V,Af ) do ▷ Augmenting path
4 Increase flow along P by minimum residual capacity in P
5 return f ▷ Maximum flow

The problem with this algorithm is that it may not terminate for irrational capacities. If we however only consider
integral networks without bidirectional edges, it can be easily seen that if we denote U ∈ N the upper bound for
capacities, the time complexity of this algorithm is O (nUm)whereO (m) is the time complexity for constructing
residual network.

Max-Flow Algorithm Theorem 4.13

If in a network without bidirectional edges and all capacities integral and no larger than U , there is an
integral max-flow we can compute in O (mnU), whereas m is the number of edges and n the number of
vertices in the network.

There are more advanced algorithms than this one that can calculate solutions to this problem faster or also for
irrational numbers. For the following two proposition, m = |E| and n = |V |, i.e. m is the number of edges and n
the number of vertices

Capacity-Scaling Proposition 4.14

If in a network all capacities are integral and at most U , there exists an integral max-flow that can be
computed in O (mn(1 + log(U)))

Dynamic-Trees Proposition 4.15

The max-flow of a flow in a network can be calculated in O (mn log(n))
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Bipartite Matching as Flow-Problem

We can use the concepts of flows to determine matchings in bipartite graphs.

Let G = (V,E) be a bipartite graph, i.e. ∃ Partition (U ,W) of V such that E = {{u,w} | u ∈ U , w ∈ W}. We
construct a network N = (V ∪̇{s, t},A, c, s, t), i.e. to the vertices of G, we added a source and a target. The
capacity function is c(e) = 1. We copy the edges from G, having all edges be directed ones from vertices in U to
ones in W. We add edges from the source s to every vertex in U and from every vertex in W to the target t.

Bipartite Matching - Max-Flow Lemma 4.16

The maximum matching in a bipartite graph G is equal to the maximum flow in the network N as described
above

Edge- and Vertex-disjoint paths

We can determine the degree of the connectivity of a graph (i.e. the number of vertices / edges that have to
be removed that the graph becomes disconnected) by determining how many edge- or vertex-disjoint paths exist
between two vertices. Again, using max-flow, we can solve this problem as follows:

Given an undirected graph G = (V,E) and two vertices u, v ∈ V : u ̸= v, we need to define our network
N = (V,A, c, s, t):

• Copy the vertex set V and union it with two new vertices s and t and we thus have V = V ∪ {s, t}

• Add two edges for each undirected edge in G, i.e. A = E ∪ E′ where E′ is has all edge directions reversed

• We define the capacity function as c(e) = 1

• We add two edges (s, u) and (v, t) and set the capacity of these edges to |V |. These are the two vertices
between which we evaluate the edge-disjoint paths

If instead of edge-disjoint paths, we want to find vertex -disjoint paths, we simply replace each vertex x ∈ V \{u, v}
by xin and xout and connect all input-edges to xin and all output-edges of x to xout

Image segmentation

We can also use cuts to solve image segmentation, i.e. to split background from foreground. We can translate an
image to an undirected graph, since every pixel has four neighbours. Whatever the pixel values mean in the end,
we assume we can deduce two non-negative numbers αp and βp denoting the probability that p is in the foreground
or background respectively.

Since this topic looks to not be too relevant for the exam, a full explanation of this topic can be found in the script
on page 186-189

Flows and convex sets

From the definition of flows we have seen, there is always at least one flow, the flow 0.

Flows Lemma 4.17

Let f0 and f1 be flows in a network N and let λ ∈ R : 0 < λ < 1, then the flow fλ given by

∀e ∈ A : fλ(e) := (1− λ)f0(e) + λf1(e)

is also a flow in N . We have

val(fλ) = (1− λ) · val(f0) + λ · val(f1)

Number of flows in networks Corollary 4.18

(i) A network N has either exactly one flow (the flow 0) or infinitely many flows
(ii) A network N has either exactly one maximum flow or infinitely many maximum flows
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Convex sets We define a function f : A → R that induces a vector vf := (f(e1), f(e2), . . . , f(em)) ∈ Rm whereas
e1, . . . , em is an ordering of the vertices of A where m = |A|. We can interpret the set of (maximum) flows as a
subset of Rm

Convex set Definition 4.19

Let m ∈ N
(i) For v0, v1 ∈ Rm let v0v1 := {(1 − λv0) + λv1 | λ ∈ R, 0 ≤ λ ≤ 1} be the line segment connecting v0

and v1
(ii) A set C ⊆ Rm is called convex if for all v0, v1 ∈ C the whole line segment v0v1 is in C

Examples: Spheres or convex Polytopes (e.g. dice or tetrahedra in R3)

Convex sets Theorem 4.20

The set of flows of a network with m edges, interpreted as vectors is a convex subset of Rm. The set of all
maximum flows equally forms a convex subset of Rm
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4.1.3 Min-Cuts in graphs

In the following section we use multigraphs.

Multigraph Recall

A multigraph is an undirected, unweighted and acyclic graph G = (V,E), where multiple edges are allowed
to exist between the same pair of vertices.
(Instead of multiple edges, we could also allow weighted edges, but the algorithms and concepts presented
here are more easily understandable using multiple edges)

Min-Cut Problem

We define µ(G) to be the cardinality of the min-cut (this is the problem). This problem is similar to the min-cut
problem for flows, only that we have a multigraph now. We can however replace multiple edges with a single,
weighted edge, allowing us to use the algorithms discussed above. Since we need to compute (n− 1) s-t-cuts, our
total time complexity is O

(
n4 log(n)

)
, since we can compute s-t-cuts in O

(
n3 log(n)

)
= O (n ·m log(n))

Edge contraction

Let e = {u, v} be an edge of our usual multigraph G. The contraction of e replaces the two vertices u and v
with a single vertex denoted xu,v, which is incident to all edges any of the two vertices it replaced were incident
to, apart from the ones between the two vertices u and v. We call the new graph G/e and degG/e(xu,v) =
degG(u) + degG(v)− 2k where k denotes the number of edges between u and v.

Of note is that there is a bijection: Edges in G without the ones between u and v ↔ Edges in G/e

Edge contraction Lemma 4.21

Let G be a graph and e be an edge of G. Then we have that µ(G/e) ≥ µ(G) and we have equality if G
contains a min-cut C with e /∈ C.

Random edge contraction

Algorithm 16 Random Cut where G is a connected Multigraph

1 procedure Cut(G)
2 while |V (G)| > 2 do ▷ Vertices of G
3 e← uniformly random edge in G
4 G← G/e
5 return Size of a unique cut of G

If we assume that we can perform edge contraction in O (n) and we can choose a uniformly random edge in G in
O (n) as well, it is evident that we can compute Cut(G) in O

(
n2

)
Random edge contraction Lemma 4.22

If e is uniformly randomly chosen from the edges of multigraph G, then we have

Pr[µ(G) = µ(G/e)] ≥ 1− 2

n
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Correctness of Cut(G) Lemma 4.23

To evaluate the correctness of Cut(G), we define

p̂(G) := Probability that Cut(G) returns the value µ(G)

and let

p̂(n) := inf
G=(V,E),|V |=n

p̂(G)

Then, for all n ≥ 3 we have

p̂ ≥
(
1− 2

n

)
· p̂(n− 1)

Probability of Correctness of Cut(G) Lemma 4.24

For all n ≥ 2 we have p̂(n) ≥ 2

n(n− 1)
=

1(
n
2

)
Thus, we repeat the algorithm Cut(G) λ

(
n
2

)
times for λ > 0 and we return the smallest value we got.

Cut(G) Theorem 4.25

For the algorithm that runs Cut(G) λ
(
n
2

)
times we have the following properties:

(1) Time complexity: O
(
λn4

)
(2) The smallest found value is with probability at least 1− e−λ equal to µ(G)

If we choose λ = ln(n), we have time complexity O
(
n4 ln(n)

)
with error probability at most 1

n

Of note is that for low n, it will be worth it to simply deterministically determine the min-cut
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5 Coding

5.1 Tricks

• Encoding subsets is very easy using bitshift operators. We can use (i & (1 << j)) != 0 in combination
with a loop to go through all subsets of the set. The for-loop will have to go from i = 1 (if we want to exclude
the empty set) to i = 2k − 1

• Inclusion-Excluison is very powerful

• Always check the what the input values are and expect them to provide bad code (e.g. provided code reads
ints, even though we need to read doubles (or long)). An easy way to check if everything is correct, is to
print the data import’s results and compare with the input files if something looks incorrect

• DP (as always) can come in very handy for solving probabilities related problems
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