\subsection{Partial Derivatives} \begin{subbox}{Partial Derivative} \smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R,\quad 1 \leq i \leq n,\quad x_0 \in X$} $$\dfd{i}(x_{0}) := g'(x_{0,i})$$ \smalltext{for $g: \{ t \in \R \sep (x_{0, 1}, \ldots,\ t\ ,\ldots, x_{0, n}) \in X \} \to \R^n$} $$ g(t) := \underbrace{f(x_{0,i}, \ldots, x_{0,t-1},\ t\ , x_{0, t+1},\ldots,x_{0, n})}_{ \text{ Freeze all }x_{0, k} \text{ except one } x_{0, i} \to t}$$ \end{subbox} \notation $\dfd{i}(x_0) = \sdfd{i}(x_0) =\ssdfd{i}(x_0)$ \lemma \textbf{Properties of Partial Derivatives}\\ \smalltext{Assuming $\sdfd{i} \text{ and } \partial_{x_i} g \text{ exist }$:} $ \begin{array}{ll} (i) & \partial x_i (f+g) = \partial x_i f + \partial x_i g \\ (ii) & \partial x_i (fg) = \partial x_i (f)g + \partial x_i (g)f\quad \text{ if } m=1\\ (iii) & \partial x_i \Bigr(\displaystyle\frac{f}{g}\Bigl) = \displaystyle\frac{\partial x_i(f)g - \partial x_i(g)f}{g^2}\quad \text{ if } g(x) \neq 0\ \forall x \in X\\ \end{array} $\\ \subtext{$X \subset \R^n \text{ open},\quad f.g: X \to \R^n,\quad 1 \leq i \leq n$} \begin{subbox}{The Jacobian} \smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R^n \text{ with partial derivatives existing}$} $$ \textbf{J}_f(x) := \begin{bmatrix} \partial x_1 f_1(x) & \partial x_2 f_1(x) & \cdots & \partial x_n f_1(x) \\ \partial x_1 f_2(x) & \partial x_2 f_2(x) & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \partial x_1 f_n(x) & \partial x_2 f_n(x) & \cdots & \partial x_n f_m(x) \end{bmatrix} $$ \end{subbox} \subtext{Think of $f$ as a vector of $f_i$, then $\textbf{J}_f$ is that vector stretched for all $x_j$} \definition \textbf{Gradient} $\nabla f(x_0) := \begin{bmatrix} \partial x_1 f(x_0) \\ \vdots \\ \partial x_n f(x_0) \end{bmatrix} = \textbf{J}_f(x)^\top$\\ \subtext{$X \subset \R^n \text{ open},\quad f: X \to \R$, i.e. \textit{must} map to $1$ dimension} \remark $\nabla f$ points in the direction of greatest increase. \subtext{This generalizes that in $\R$, $\text{sgn}(f)$ shows if $f$ increases/decreases} \definition \textbf{Divergence} $\text{div}(f)(x_0) := \text{Tr}\bigr(\textbf{J}_f(x_0)\bigl)$\\ \subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^n,\quad \textbf{J}_f \text{ exists}$} \subsection{The Differential} \smalltext{ Partial derivatives don't provide a good approx. of $f$, unlike in the $1$-dimensional case. The \textit{differential} is a linear map which replicates this purpose in $\R^n$. } \begin{subbox}{Differentiability in $\R^n$ \& the Differential} \smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R^n,\quad u: \R^n \to \R^m \text{ linear map}$} $$ df(x_0) := u $$ If $f$ is differentiable at $x_0 \in X$ with $u$ s.t. $$ \underset{x \neq x_0 \to x_0}{\lim} \frac{1}{\big\| x - x_0 \big\|}\Biggl( f(x) - f(x_0) - u(x - x_0) \Biggr) = 0 $$ \end{subbox} \subtext{Similarly, $f$ is differentiable if this holds for all $x \in X$} \lemma \textbf{Properties of Differentiable Functions} $ \begin{array}{ll} (i) & \text{Continuous on } X \\ (ii) & \forall i \leq m, j \leq n:\quad \partial_{x_j}f_i \text{ exists} \\ (iii) & m=1:\quad \partial_{x_i} f(x_0) = a_i \\ & \text{for:}\quad u(x_1,\ldots,x_n) = a_1x_1 + \cdots + a_nx_n \end{array} $ \subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m \text{ differentiable on } X$} \lemma \textbf{Preservation of Differentiability} $ \begin{array}{ll} (i) & f + g \text{ is differentiable: } d(f+g)=df+dg \\ (ii) & fg \text{ is differentiable, if } m=1 \\ (iii) & \displaystyle\frac{f}{g}\ \text{ is differentiable, if } m=1,\ g(x) \neq 0\ \forall x \in X \end{array} $ \subtext{$X \subset \R^n \text{ open},\quad f,g: X \to \R^m \text{ differentiable on }X$} \lemma \textbf{Cont. Partial Derivatives imply Differentiability} if all $\partial_{x_j} f_i$ exist and are continuous: $$ f \text{ differentiable on } X,\quad df(x_0) = \textbf{J}_f(x_0) $$ \subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m$} \lemma \textbf{Chain Rule} $\quad g \circ f \text{ is differentiable on } X$ \begin{align*} & d(g \circ f)(x_0) &= dg\bigl( f(x_0) \bigr) \circ df(x_0) \\ & \textbf{J}_{g \circ f}(x_0) &= \textbf{J}_g\bigl( f(x_0) \bigr) \cdot \textbf{J}_f(x_0) \end{align*} \subtext{$X \subset \R^n \text{ open},\quad Y \subset \R^m \text{ open},\quad f: X \to Y, g: Y \to \R^p, f,g \text{ diff.-able}$} \definition \textbf{Tangent Space} $$ T_f(x_0) := \Bigl\{ (x,y) \in \R^n \times \R^m \sep y = f(x_0) + u(x-x_0) \Bigr\} $$ \subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m \text{ diff.-able},\quad x_0 \in X,\quad u = df(x_0)$} \definition \textbf{Directional Derivative} $$ D_v f(x_0) = \underset{t \neq 0 \to 0}{\lim} \frac{f(x_0 + tv) - f(x_0)}{t} $$ \subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m,\quad v \neq 0 \in \R^n,\quad x_0 \in X$} \lemma \textbf{Directional Derivatives for Diff.-able Functions} $$ D_vf(x_0) = df(x_0)(v) = \textbf{J}_f(x_0) \cdot v $$ \subtext{$X \subset \R^n \text{ open},\quad f: X \to \R^m \text{ diff.-able},\quad v \neq 0 \in \R^n,\quad x_0 \in X$} \remark $D_vf$ is linear w.r.t $v$, so: $D_{v_1 + v_2}f = D_{v_1}f + D_{v_2}f$ \remark $D_vf(x_0) = \nabla f(x_0) \cdot v = \big\| \nabla f(x_0) \big\| \cos(\theta)$\\ \subtext{In the case $f: X \to \R$, where $\theta$ is the angle between $v$ and $\nabla f(x_0)$} \newpage \subsection{Higher Derivatives} \definition \textbf{Differentiability Classes} \begin{align*} & f \in C^1(X;\R^m) &\iffdef& f \text{ diff.-able on } X, \text{ all } \partial_{x_j} f_i \text{ exist} \\ & f \in C^k(X;\R^m) &\iffdef& f \text{ diff.-able on } X, \text{ all } \partial_{x_j} f_i \in C^{k-1} \\ & f \in C^\infty(X;\R^m) &\iffdef& f \in C^k(X;\R^m)\ \forall k \geq 1 \end{align*} \subtext{$X \subset \R^n \text{ open},\quad f:X\to\R^m$} \lemma Polynomials, Trig. functions and $\exp$ are in $C^\infty$ \lemma \textbf{Operations preserve Differentiability Classes} $ \begin{array}{lcll} (i) & f + g & \in C^k \\ (ii) & fg & \in C^k & \text{ if } m=1 \\ (iii) & \displaystyle\frac{f}{g} & \in C^k & \text{ if } m=1, g(x) \neq 0\ \forall x \in X \end{array} $\\ \subtext{$f,g \in C^k$} \lemma \textbf{Composition preserves Differentiability Classes} $$ g \circ f \in C^k $$ \subtext{$f \in C^k,\quad f(X) \subset Y,\quad Y \subset \R^m \text{ open},\quad g: Y \to \R^p,\quad g \in C^k$} \begin{subbox}{Partial Derivatives commute in $C^k$} \smalltext{$k \geq 2,\quad X \subset \R^n \text{ open},\quad f: X \to \R^m,\quad f \in C^k$} $$ \forall x,y:\quad \partial_{x,y}f = \partial_{y,x}f $$ \smalltext{This generalizes for $\partial_{x_1,\ldots,x_n}f$.} \end{subbox} \remark Linearity of Partial Derivatives $$ \partial_x^m(af_1 + bf_2) = a\partial_x^mf_1 + b\partial_x^mf_2 $$ \subtext{Assuming both $\partial_x f_{1,2}$ exist.} \definition \textbf{Laplace Operator} $$ \Delta f := \text{div}\bigl( \nabla f(x) \bigr) = \sum_{i=0}^{n} \frac{\partial}{\partial x_i}\Bigl( \frac{\partial f}{\partial x_i} \Bigr) = \sum_{i=0}^{n} \frac{\partial^2f}{\partial x_i^2} $$ \begin{subbox}{The Hessian} \smalltext{$X \subset \R^n \text{ open},\quad f: X \to \R,\quad f \in C^2,\quad x_0 \in X$} $$ \textbf{H}_f(x) := \begin{bmatrix} \partial_{1,1}f(x_0) & \partial_{2,1}f(x_0) & \cdots & \partial_{n,1}f(x_0) \\ \partial_{1,2}f(x_0) & \partial_{2,2}f(x_0) & \cdots & \partial_{n,2}f(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1,n}f(x_0) & \partial_{2,n}f(x_0) & \cdots & \partial_{n,n}f(x_0) \end{bmatrix} $$ Where $\bigl( \textbf{H}_f(x) \bigr)_{i,j} = \partial_{x_i,x_j}f(x)$ \end{subbox} \subtext{Note that $f: X \to \R$, i.e. $\textbf{H}_f$ only exists for $1$-dimensionally valued $f$} \notation $\textbf{H}_f(x) = \text{Hess}_f(x) = \nabla^2f(x)$ \remark $\textbf{H}_f(x_0)$ is symmetric: $\bigl( \textbf{H}_f(x_0) \bigr)_{i,j} = \bigl( \textbf{H}_f(x_0) \bigr)_{j, i}$ \subsection{Change of Variable}