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1 Introduction

This Cheat-Sheet does not serve as a replacement for solving exercises and getting familiar with the content. There is no guarantee
that the content is 100% accurate, so use at your own risk. If you discover any errors, please open an issue or fix the issue yourself
and then open a Pull Request here:

https://github.com/janishutz/eth-summaries

This Cheat-Sheet was designed with the HS2025 page limit of 10 A4 pages in mind. Thus, the whole Cheat-Sheet can be printed
full-sized, if you exclude the title page, contents and this page. You could also print it as two A5 pages per A4 page and also print

the | Analysis I summary | in the same manner, allowing you to bring both to the exam.

And yes, she did really miss an opportunity there with the quote. .. But she was also sick, so it’s not as unexpected

This summary also uses tips and tricks from this | Exercise Session



https://github.com/janishutz/eth-summaries
https://github.com/janishutz/eth-summaries/blob/master/semester2/analysis-i/cheat-sheet-jh/cheat-sheet-en.pdf
https://polybox.ethz.ch/index.php/s/WBGFTRdEjRwJjQC

2 Differential Equations

2.1 Introduction

Ex 2.1.1: f'(z) = f(x) has only solution f(z) = ae® for any a € R; f’ —a = 0 has only solution f(z) = [ a(t) dt

Zo

T 2.1.2: Let I : R2 — R be a differential function of two variables. Let 2o € R and 19 € R%. The Ordinary Differential Equation
(ODE) y' = F(z,y) has a unique solution f defined on a “largest” interval I that contains zy such that yo = f(z0)

2.2 Linear Differential Equations

An ODE is considered linear if and only if the ys are only scaled and not part of powers.
D'2:20: (Linear differential equation of order k) (order = highest derivative) y®) + ap_1y*=1 + ... 4+ a1y + apy = b, with a;
and b functions in z. If b(x) =0 Vz, homogeneous, else inhomogeneous
T 2.2.2: For open I C R and k > 1, for lin. ODE over I with continuous a; we have:
1. Set S of kx diff. sol. f: I — C(R) of the eq. is a complex (real) subspace of complex (real)-valued func. over I
2. dim(S) = k Vo € I and any (yo,...,yr—1) € C*, exists unique f € S s.t. f(z0) = yo, [ (z0) = y1,..., fF D(x0) = yp_1. If
a; real-valued, same applies, but C replaced by R.
3. Let b continuous on I. Exists solution fy to inhom. lin. ODE and Sy is set of funct. f + fo where f € S

The solution space S is spanned by k functions, which thus form a basis of S. If inhomogeneous, S not vector space.

Finding solutions (in general)

(1) Find basis {f1,..., fr} for Sy for homogeneous equation (set b(x) = 0) (i.e. find homogeneous part, solve it)
(2) If inhomogeneous, find f, that solves the equation. The set of solutions is then S, = {f, + fp | frn € So}-
(3) 1If there are initial conditions, find equations € S, which fulfill conditions using SLE (as always)

2.3 Linear differential equations of first order
P 2.3.1: Solution of ¥/ + ay = 0 is of form f(z) = ze~4(®) with A anti-derivative of a
Imhomogeneous equation

1. Plug all values into y, = [ b(z)e*® (A(x) in the exponent instead of —A(x) as in the homogeneous solution)
2. Solve and the final y(z) = y;, + y,. For initial value problem, determine coefficient z

2.4 Linear differential equations with constant coefficients

The coefficients a; are constant functions of form a;(z) = k with k constant, where b(z) can be any function.
Homogeneous Equation

1. Find characteristic polynomial (of form Mot ap_ N1+ 4+ a1\ + ag for order k lin. ODE with coefficients a; € R).
2. Find the roots of polynomial. The solution space is given by {z; - z¥7~1e?® | v; € N,v; € R} where v; is the multiplicity of
the root 7;. For v; = a+ i € C, we have 21 - e*® cos(Sx), 22 - €** sin(Sx), representing the two complex conjugated solutions.
Inhomogeneous Equation
1. (Case 1) b(x) = cx?e®®, with special cases x¢ and e®®: f, = Q(x)e®® with Q a polynomial with deg(Q) < j + d, where j is
multiplicity of root a (if P(«) # 0, then j = 0) of characteristic polynomial
2. (Case 2) b(z) = cx? cos(azx), or b(z) = cx?sin(azx): f, = Q1(z) - cos(az) + Q2(29 - sin(ax)), where Q;(z) a polynomial with
deg(Q;) < d+ j, where j is the multiplicity of root «i (if P(ai) # 0, then j = 0) of characteristic polynomial
Other methods
e Change of variable Apply substitution method here, substituting for example for ¢y = f(ax + by + ¢) © = ax + by to make
the integral simpler. Mostly intuition-based (as is the case with integration by substitution)

e Separation of variables For equations of form ¢y’ = a(y) - b(z) (NOTE: Not linear), we transform into ﬁ;) = b(x) and then

integrate by substituting y'(z)dz = dy, changing the variable of integration. Solution: A(y) = B(z) + ¢, with A = f% and
B(z) = [ b(x). To get final solution, solve for the above equation for y.



3 Differential Calculus in Vector Space

3.2 Continuity

D 3.2.1: (Convergence in R™) Let (x))reny where x5, € R™ with x, = (g 1,...,2kn) and let y = (y1,...,yn) € R™. (x)) converges
toyask — +o0if Ve >0 IN > 1s.t. Vn > N we have ||z —y|| <e

L 3.2.2: (z1) converges to y as k — +oo iff one of following equiv. statements holds: (1) V1 < ¢ < n, the sequence (z ;) with
xr,i € R converges to y; (2) (||zx — yl|) converges to 0 as k — +o0

D 3.2.3: (Continuity) Let X CR™ and f: X = R™. (1) Let 29 € X. f continuous in R™ if Ve > 0 3§ > 0 s.t. if x € X satisfies
||z — zo]| < 0, then ||f(x) — f(x0)|| < & (2) f continuous on X if continuous at zyp Vzg € X P 3.2.4: Let X and f as prev. Let
xo € X. f continuous at z¢ iff V(z)k>1 in X s.t. xp — x9 as k — 400, (f(xk))k>1 in R™ converges to f(z)

D 3.2.5: (Limit) Let X, f and xo as prev. and y € R™. f has limit y as © — xo9 with = # xo if Ve > 0 36 > 0 s.t.
Vo # xo € X, ||z — xol| < & we have ||f(z) —y|| < e. We write limi;»:(? f(z) =y R 3.2.6: Also possible without ass. that g € X

P 3.2.7: Let X, f, 2o and y as prev. We have limz;ro flz) =y iff V(zg) in X s.t. 2 — x as k — 400 and x, # 2o (f(zg)) in
zF#TQ
R™ converges toy P 3.2.9:Let X CR", yCR™, peNandlet f: X - Y and g: Y — R? be cont. Then g o f is continuous

Remark: To find the limits, we have two tricks (for ~ lim ):
(@y)—(ab)

1. (Substitution) Substitute y = x + (b — a), then limit is h(m .
r—(a—
2. (Polar coordinates) Substitute z = rcos(p) and y = rsin(p) and the limit is 1in(1)
r—
Ex 3.2.10: (1) f; : R™ — R™ and fy : R™ — R™2 continuous = f = (f1, f2) : R — R™+™2 ig continuous (Cartesian product)
(2) Any linear map f : R™ — R™ is continuous. In particular, the identity map is continuous (3) If fi,..., f, continuous, then
flz1, ... xn) = fr(z1) - ...« fu(zy) is continuous (4) Polynomials in x4, ..., z, are continuous (5) f1f2 is continuous if f; and fs

are continuous and if fo(z) #0 Vo € X, then f; + f5 is continuous. (see Theorem 2.1.8 in Analysis I)

(6) If both f and g have limits, then Ihﬁnzgo(f(as) +g(x)) = Il;n;ﬂf(x) + zlingog(x) and analogous for x (7) If f : R? — R continuous,
then g(z) = f(x,y0) for yp € R is continuous. The converse is not true

D 3.2.11: (1) X C R" is bounded if the set of ||z|| for z € X is bounded in R (2) X C R" is closed if ¥(x)) in X that converge
in R™ to some vector y € R™, we have y € X (3) X C R" is compact if it is bounded and closed

Ex 3.2.12: (1) () and R™ are closed. (2) The open disc D = {x € R™ : ||z — x¢|| < r} for r > 0 and x¢ € R™ is bounded and not
closed. (8) The closed disc A = {z € R" : ||z — z¢|| < r} is bounded and closed. In particular, a closed interval is a closed set. An
interval is compact if it is bounded (4) If X; C R™ and X C R™ are bounded (also closed or compact), then so is X7 x Xy C R*+™
P 3.2.13: Let f: R® — R™ be a continuous map. For any closed Y C R™, the set f~1(Y) = {x € R": f(x) € Y} C R" is closed
Ex 3.2.14: The zero set Z = {x € R" : f(z) = 0} is closed in R™ because {0} C R is closed. More generally: for any r > 0,
{x e R": |f(z)] <r}is f1([-r,7]) and is closed, since [—7,7] is closed. Furthermore: {x € R®: ||z — x| = r} is closed

T 3.2.15: Let (X # 0) C R™ compact and f : X — R continuous. Then f bounded, has max and min, i.e. Jzy,z_ € X s.t.
flay) = sup f(z) and f(z-) = inf f(z)

3.3 Partial derivatives

D 3.3.1: X C R” open if for any z = (z1,...,2,) € X 30 > 0s.t. {y = (Y1,---,Yn) € R" ¢ |z; — yi] < § Vi} is contained in
X. (= changing a coordinate of z by < 6 — 2’ € X) P 3.3.2: X C R” open < complement Y = {x € R" : x ¢ X} is closed
C 38.3.3: If f : R" — R™ cont. and Y C R™ open, then f~(Y) is open in R” Ex 3.3.4: (1) () and R™ are both open and closed.
(2) Open ball D = {z € R" : ||z — || < r} is open in R™ (z( the center and r radius) (8) I x --- X I, is open in R™ for I; open
(4) X CR"™ open & Vo € X306 > 0 s.t. open ball of center x and radius J is contained in X

D 3.3.5: (Partial derivative) Let X C R™ open, f : X — R™ and 1 < ¢ < n. Then f has partial derivative on X
with respect to the i-th variable (or coordinate), if Vzo = (20.1,...,%0n) € X, g(t) = f(zo1,.-.,%0,i—1,¢ T0,i+1,Z0,n) ON set
I ={t € R: (xo1,---+20,i-1,tT0,i+1,---,Ton) € X} is differentiable at ¢ = x¢;. The derivative ¢'(xo;) at xo; is denoted:
azl L (w0), 8, f (o) or 0y f(w0)

P 3.3.7: Let X C R" open, f,g: X — R™ and 1 < i < n. Then: (1) If f & ¢ have 9; on X, then so does f + g and
O, (f +9) =02, (f) +02,(9) (2) f m=1 (i.e. R!) and f & g have 9; on X, then so does fg and 0,,(fg) = Ox,(f)g + fOz,(g) and
if g(x) #0 Va € X, then if f + g has 9; on X, then so does f + g and 9, (f 9) = (0s,(f)g — O, (9)) ~ ¢°

D 3.3.8: (Jacobi Matriz J) Element J;j = 0., f;(x) for function f : X — R™ with X C R" open. z; is the j-th variable, f; is
the i-th component of the equation (i.e. in the vector of the function). J has m rows and n columns. O, f(0)
1

D 3.3.10: (Gradient, Divergence) for f : X — R with X € R™ open, the gradient is given by V f(zg) = and the
trace of the Jacobi Matrix, div(f)(zo) = Tr(J¢(20)) = >ty O, fi(z0) is called the divergence of f at . \Oz, f(70)



3.4 The differential
D 3.4.2: (Differentiable function) We have function f : X — R™, linear map u : R® — R™ and zg € X. f is differentiable at

zo with differential u if lim (f(x) = f(xo) — u(x — xp) = 0 where the limit is in R™. We denote df(zg) = u. If f is
zFx(

differentiable at every xy € X, then f is differentiable on X. P 3.4.4: Let f : X — R™ be differentiable on X

e f is continuous on X

e f admits partial derivatives on X with respect to each variable

e Assume m =1, let 29 € X and let u(xy,...,2,) = a121 + ... + apx, be diff. of f at xg. Then 9, f(zg) = a; for 1 <i<n
P 3.4.6: Let f,g: X — R™ with X C R" open

e The function f + g is differentiable with differential d(f + g) = df + dg. If m = 1, then fg is differentiable

e If m =1 and if g(z) # 0Vz € X, then f + g is differentiable

P 3.4.7: If f as above has all partial derivatives on X and if they are all continuous on X, then f is differentiable on X. The
differential is the Jacobi Matrix of f at x¢. This implies that most elementary functions are differentiable.

P 3.4.8: (Chain Rule) For X C R™ and Y C R™ both open and f: X — Y and g : Y — RP are both differentiable. Then go f
is differentiable on X and for any x € X, its differential is given by d(go f)(xo) = dg(f(xo)) o df(xzo). The Jacobi matrix is
Jgof(x0) = Jg(f(20))Jf(x0) (RHS is a matrix product)

D 8.4.11: (Tangent space) The graph of the affine linear approximation g(z) = f(xg) + u(x — x¢), or the set

{(z,y) e R" x R™ 1 y = f(z0) + u(z — z0)}
D 3.4.13: (Directional derivative) f has a directional derivative w € R™ in the direction of v € R™, if the function g defined on

theset I ={t € R:zp+tv e X} by g(t) = f(zo + tv) has a derivative at ¢ = 0 and is equal to w R 3.4.14: Because X is open,
the set I contains an open interval | — §,d[ for some § > 0. P 3.4.15: Let f as previously be differentiable. Then for any z € X

||z — o]

and non-zero v € R™, f has a directional derivative at g in the direction of v, given by df(xg)(v) R 3.4.16: The values of the
above directional derivative are linear with respect to the vector v. Suppose we know the dir. der. w; and ws in directions v, and
vg, then the directional derivative in direction v + vg is wy + wo

3.5 Higher derivatives

D 3.5.1: f is in class C! if f is differentiable and all its partial derivatives are continuous. f is of class C* if it is differentiable
and each of its partial derivatives are in C*¥=1. If f € C¥(X;R™) for all k > 1, then f € C*®(X;R™)
P 3.5.4: (Mized derivatives commute) Oy yf = Oy 5, as well as Oy y , = Oy 5.4 = ..., etc (all mixed derivatives commute) Since we

have symmetry, we can use the notation ax;"l’”_’zzlnf = 8‘3; f=D"f=90™f, where m = (mq,...,m,) and mj + ... +m, = k.
There are ("ﬂlz*l) possible values for m and e.g. (1,1,2) corresponds to the derivative %&;22
R 3.5.6: Due to linearity of the partial derivative 97" (afi + bfe) = a0 f1 + b f2

n n 2
Ex 3.5.8: (Laplace operator) f € C*(X), Vf € C1(X;R"), so div(Vf) = Z ai (gf> = % (called Laplacian, Af)
i=1 i i i=1 %

D 3.5.9: (Hessian) f : X — R in C?. For x € X, the Hessian matriz of f at x is the symmetric square matrix
Hessy () = (Ou;,2, f)1<ij<n = Hy(z)  (i-th row, j-th column)
3.6 Change of variable

The idea is to substitute variables for others that make the equation easier to solve. A common example is to switch to polar
coordinates from cartesian coordinates, as already demonstrated with continuity checks

3.7 Taylor polynomials
D 3.7.1: (Taylor polynomials) Let f: X — R with f € C*(X,R) and y € X. The Taylor-Polynomial of order k of f at y is:

Tef(yiz—y)= Y —aif(y)gﬂ —v)

li|<k
where 7 is a multi-index, so: _
.i:(ila-“vin)(eaChijZO) 081»:811...82" ‘ . .Z':ZI'ZTL'
o |i|=di1+...+1n o (x—y) = (x1—y1)...-(Tp—Yn)"

The concept this formula uses is that we iterate through all possible partial derivatives of f and assigns each a multi-index i. To
denote that we want to take the partial derivative 0112, we use i = (2, 1,0), since we take the derivative of the first variable twice,
of the second variable once and never of the third variable. So the expression is thus now:
A f(y) (w1 — y1)? (@2 — y2)' (w3y3)° _ O f(y) (1 — y1)?(x2 — y2)
2!110! 2




3.8 Ceritical points

D 3.8.2: (Critical Point) For f: X — R™ differentiable, xy € X is called a eritical point of f if Vf(zo) =0 R 3.8.3: Asin 1
dimensional case, check edges of the interval for the critical point.
To determine the kind of critical point, we need to determine if Hy(x) is definite:

e positive definite = zg local max e negative definite = xg local min e indefinite = x¢ point of inflection

D 3.8.6:] (Non-degenerate critical point) If det(H(zo)) # 0 (if Hy(xo) is semi-definite, then det(H (zo)) = 0, thus degenerate)
To figure out if a matrix is definite, we can compute the eigenvalues. A is positive (negative) definite, if and only if all eigenvalues
are greater (lower) than 0. A is indefinite if and only if it has both positive and negative eigenvalues. A is positive (negative)
semi-definite if and only if all eigenvalues are greater (lower) or equal to 0. (Compute Eigenvalues using det(A — AI) = 0)

For 2 x 2 matrices, we can use the following scheme:

pos. semi-def. __ positive 0 positive //pgb;i’ti‘f,,, pos. def.
Tr(A) det(A) Tr(A)
neg. semi-def. “ negative v0 ynegative negative = 1€g. def.

A is zero indefinite



4 Integral Calculus in Vector Space
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