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1 Combinatorics

1.1 Introduction

Please note: This section was not part of the book and is written in very simple terms (it is taken from a summary
I wrote 4 years ago during Gymnasium)

Combinatorics was developed from the willingness of humans to gamble and the fact that everybody wanted to
win as much money as possible.

1.2 Simple counting operations

The easiest way to find the best chance of winning is to write down all possible outcomes. This can be very tedious
though when the list gets longer.

We can note this all down as a list or as a tree diagram. So-called Venn Diagrams might also help represent the
relationship between two sets or events. Essentially a Venn Diagram is a graphical representation of set operations
such as AU B.

1.3 Basic rules of counting
1.3.1 Multiplication rule

If one has n possibilities for a first choice and m possibilities for a second choice, then there are a total of n - m
possible combinations.

When we think about a task, and we have an and in between e.g. properties, we need to multiply all the options.

1.3.2 Addition rule

If two events are mutually exclusive, the first has n possibilities and the second one has m possibilities, then both
events together have n + m possibilities.

When we think about a task, and we have an or in between e.g. properties, then we need to add all the options.
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1.4 Factorial
Definition 1.1

The factorial stands for the product of the first n natural numbers where n > 1. Notation: !
nl=n-n—-1)-n—2)-...-3-2-1

Additionally, 0! = 1. We read n! as “n factorial”

1.4.1 Operations

We can rewrite n! asn-(n— 1) orn-(n—1) - (n—2)! and so on.

It is also possible to write 7 - 6 - 5 with factorial notation:
sequence:

or in other words, for any excerpt of a factorial

Ia
n!

n-(n—l)-...~m:m

1.5 Permutations

Permutations Definition 1.2

A permutation of a group is any possible arrangement of the group’s elements in a particular order

Permutation rule without repetition: The number of n distinguishable elements is defined as: n!

1.5.1 Permutation with repetition
For n elements ny,na, ..., ng of which some are identical, the number of permutations can be calculated as follows:

n!

P= .
Ny -Ngt - oo Nt

where ny, is the number of times a certain element occurs. As a matter of fact, this rule also applies to permutations
n!

(1)

Beispiel 1.1: CANADA has 6 letters, of which 3 letters are the same. So the word consists of 3 A’s, which can
be arranged in 3! different ways, a C, N and D, which can be arranged in 1! ways each. Therefore, we have:

without repetition, as each element occurs only once, which means the denominator is 1, hence —=nl

6! 6!
o g 0 oA=10

Since 1! equals 1, we can always ignore all elements that occur only once, as they won’t influence the final result.
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1.6 Variations

m Definition 1.3

A wvariation is a selection of k elements from a universal set that consists of n distinguishable elements.

Variation rule without repetition: The ,, P, function is used to place n elements on k places. In a more
mathematical definition: The number of different variations consisting of k£ different elements selected from
n distinguishable elements can be calculated as follows:

\_ J

1.6.1 Variations with repetition

If an element can be selected more than once and the order matters, the number of different variations consisting
of k elements selected from n distinguishable elements can be calculated using n*

1.7 Combinations

A combination is a selection of k£ elements from n elements in total without any regard to order or arran-
gement.
Combination rule without repetition:

Cp — n - nPk - n!
EE\E) T R n—k) R
. y,

1.7.1 Combination with repetition

In general the question to ask for combinations is, in how many ways can I distribute k£ objects among n elements?

o _ (ntE-1) _ (k1)
kR k " kl(n—1)

1.8 Binomial Expansion

Binomial expansion is usually quite hard, but it can be much easier than it first seems. The first term of the
expression of (a + b)" is always 1a™b°. Using the formula for combination without repetition, we can find the
coefficients of each element:

6Co 6C1 6Co 6C3 6C1 6Cs 6Cs

. 6 6-5 6-5-4 6-5-4-3 6-5-4-3-2 6!
6th row 1 - 2
1 1-2 1-2-3 1-2-3-4 1-2-3-4-5 6!

1 6 15 20 15 6 1

This theory is based on the Pascal’s Triangle and the numbers of row n correspond to the coeflicients of each
element of the expanded term.

n
We can calculate the coefficient of each part of the expanded term k with combinatorics as follows: ( k')

Binomial Expansion

In general:
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1.9 Overview

n elements

Combination
{abc}={ach}

Variation
l[abc] # [ach]

no repetition with repetition no repetition with repetition no repetition with repetition
alle elements ny,ny, .1y, elements every element elements may appear every element elements may appear
distinguishable are the same only once repeatedly only once repeatedly
n! n n! n+k—-1 (n+k—-1)! n!
nl — W =mo=m | )= e nk
ngl -yl k/ k!-(n—k)! k k' -(n-1)! (n—k)!

31. Dezember 2025
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2 Alphabete, Worter, Sprachen und Darstellung von Problemen

2.2 Alphabete, Worter, Sprachen

Alphabet Definition 2.1

Eine endliche, nicht leere Menge 3. Elemente sind Buchstaben (Zeichen & Symbole).
Beispiele: Ypo01, Ziat latin characters, Erastatur, 2m m-adische Zahlen (m-ary numbers, zero index)

\.
i Wort | Definition 2.2

Uber ¥ eine (moglicherweise leere) Folge von Buchstaben aus Y. Leeres Wort A (ab und zu ¢) hat keine
Buchstaben.

|w| ist die Liange des Wortes (Anzahl Buchstaben im Wort), wiithrend ¥* die Menge aller Worter iiber 3 ist
und X =¥* — {\}

In diesem Kurs werden Worter ohne Komma geschrieben, also zizs ...z, statt zi,xo,...,2,. Fir das
Leersymbol gilt ||, also ist es nicht dasselbe wie A

l \_

\_

\_

Fiir viele der Berechnungen in Verbindung mit der Linge der Worter kann Kombinatorik niitzlich werden. In
Kapitel 1 findet sich eine Zusammenfassung iiber jenes Thema (in English)

Ein mogliches Alphabet beispielsweise um einen Graphen darzustellen ist folgendes:

Angenommen, wir speichern den Graphen als Adjezenzmatrix ab, dann kénnen wir beispielsweise mit dem Alphabet
¥ ={0,1,#} diese Matrix darstellen, in dem wir jede neue Linie mit einem # abgrenzen. Das Problem hierbei ist
jedoch, dass dies nicht so effizient ist, besonders nicht, wenn der Graph sparse ist, da wir dann viele # im Vergleich
zu niitzlicher Information haben.

Konkatenation Definition 2.3

¥* x ¥* — ¥*, so dass Kon(z,y) =z -y =xzy Vo,y € X*.

Intuitiv ist dies genau das was man denkt: Wérter zusammenhiingen (wie in Programmiersprachen). Die
Operation ist assoziativ und hat das Neutralelement A, was heisst, dass (X*, Kon) ein Monoid ist.
Offensichtlich ist die Konkatenation nur fiir ein-elementige Alphabete kommutativ.

Die Notation (abc)™ wird fiir die n-fache Konkatenation von abc verwendet

Definition 2.4

l \_

Sei a = ajas .. .a,, wobei a; € ¥ fiir ¢ € {1,2,...,n}, dann ist die Umkehrung von a, a® = apan_1...a1

m Definition 2.5

1

I \_

Die i-te Iteration ' von x € X* fiir alle i € N ist definiert als 2% = ), ! = z und 2 = zz’~
\

Teilwort, Prafix, Suffix Definition 2.6

Seien v, w € ¥*

v heisst Prdfix von w < Jy € ¥* : w = vy

v heisst Suffiz von w < dx € ¥* : w = xv

v heisst Tetlwort von w <= Jz,y € ¥* : w = zvy

v # X heisst echtes Teilwort (gilt auch fiir Priifix, Suffix) von w genau dann, wenn v # w und v ein
Teilwort (oder eben Prifix oder Suffix) von w ist

l\

r
\_
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Kardinalitdt, Vorkommen und Potenzmenge Definition 2.7

Fiir Wort z € ¥* und Buchstabe a € ¥ ist |z|, definiert als die Anzahl Male, die a in = vorkommt.
Fiir jede Menge A ist |A| die Kardinalitdt und P(A) = {S|S C A} die Potenzmenge von A

\_
Kanonische Ordnung Definition 2.8

Wir definieren eine Ordnung s; < ... < s, auf X. Die kanonische Ordnung auf ¥* fiir u,v € ¥* ist
definiert als:

u<v<=|ul<|v|V(ul = Au=x-s-u Av==z-s; ) fiir beliebige z,u’,v' € * und i < j

Oder in Worten, geordnet nach Lange und dann danach fiir den ersten nicht gemeinsamen Buchstaben, nach
dessen Ordnung.

Definition 2.9

I \_

L C ¥* ist eine Sprache, deren Komplement L¢ = ¥* — L ist. Dabei ist Ly die leere Sprache und L die
einelementige Sprache die nur aus dem leeren Wort besteht.

Die Konkatenation von Ly und Ly ist Ly - Ly = L1Ly = {vw|v € Ly Aw € Lo} und L° := Ly und
L* =L'L Vi€ Nund L* = U,y L' ist der Kleene’sche Stern von L, wobei Lt = {J;cy_oy L' = L-L*

€N

J

Fiir jede Sprache L gilt L? C L = L = ()V L = {\} V L ist undendlich. Diese Aussage muss jedoch an der Priifung
bewiesen werden (nicht im Buch vorhanden)

Da Sprachen Mengen sind, gelten auch die Ublichen Operationen, wie Vereinigung (U) und Schnitt (N). Die Gleich-
heit von zwei Sprachen bestimmen wir weiter mit A C BAB C A= A = B. Un A C B zu zeigen reicht es
hier zu zeigen dass fiir jedes x € A, x € B hilt. Wir betrachten nun, wie die iiblichen Operationen mit der neu
hinzugefiigten Konkatenation interagieren.

Distributivitit von Kon und U

Fiir Sprachen L, Lo und Ls iiber ¥ gilt: Ly Lo U L1 Ly = Ly(Ly U L)

Der Beweis hierfiir 1auft iiber die oben erwéhnte “Regel” zur Gleichheit. Um das Ganze einfacher zu machen, teilen
wir auf: Wir zeigen also erst Ly Lo C Li(Lg U L3) und dann equivalent fiir Ly Ls.

Distributivitit von Kon und N

Fiir Sprachen L, Lo und Ls iiber ¥ gilt: Li(La N L) C LiLoN Ly L

L 2.3: Es existieren Ul, UQ, U3 S (Ebool)*, so dass Ul(UQ n Ug) g U,Us N U1U3

Homomorphismus

Definition 2.10

31, X5 beliebige Alphabete. Ein Homomorphismus von X7 nach X3 ist jede Funktion A : ¥} — X5 mit:
(1) h(A) = A
(i1) h(uv) = h(u) - h(v) Yu,v € 3}

Erneut gilt hier, dass im Vergleich zu allgemeinen Homomorphismen, es zur Definition von einem Homomorphismus
ausreichtt, h(a) fiir alle Buchstaben a € 3, festzulegen.
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2.3 Algorithmische Probleme

Ein Algorithmus A : X7 — 33 ist eine Teilmenge aller Programme, wobei ein Program ein Algorithmus ist, sofern
es fiir jede zuléissige Eingabe eine Ausgabe liefert, es darf also nicht eine endlosschleife enthalten.

Entscheidungsproblem Definition 2.11

Das FEntscheidungsproblem (X,L) ist fir jedes x € ¥* zu entscheiden, ob € L oder x ¢ L. Ein
1, fallsxeL
0, fallsx¢ L

Algorithmus A 16st (X, L) (erkennt L) falls fiir alle x € ¥*: A(x) = {
.

m Definition 2.12

Algorithmus A berechnet (realisiert) eine Funktion (Transformation) f : ¥* — T'* falls A(z) =
f(z) Vo € ¥* fiir Alphabete ¥ und T’

Definition 2.13

Sei R C ¥* x I'* eine Relation in den Alphabeten ¥ und T'. Ein Algorithmus A berechnet R (lést das
Relationsproblem R) falls fiir jedes x € ¥*, fiir das ein y € I'* mit (z,y) € R existiert gilt: (z, A(z)) € R

I \_

I \_

\_
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2.4 Kolmogorov-Komplexitat

Falls ein Wort x eine kiirzere Darstellung hat, wird es komprimierbar genannt und wir nennen die Erzeugung
dieser Darstellung eine Komprimierung von x.

Eine mogliche Idee, um den Informationsgehalt eines Wortes zu bestimmen, wére einem komprimierbaren Wort
einen kleinen Informationsgehalt zuzuordnen und einem unkomprimierbaren Wort einen grossen Informationsgehalt
zuzuordnen.

Wenn wir also das Wort 011011011011011011011011 haben, so kann man es auch als (011)® darstellen und hat so
also einen kleineren Informationsgehalt als bspw. 0101101000101101001110110010.

Die Idee mit der Komprimierung den Informationsgehalt zu bestimmen ist jedoch nicht ideal, da fiir jede Kompri-
mierung bei unendlich langen Wortern immer eine weitere Komprimierung existiert, die fiir unendlich viele Worter
besser geeignet ist.

Hier kommt die Kolmogorov-Komplexit zum Zuge: Sie bietet eine breit Giiltige Definition des Komplexitédtsmasses.

Kolmogorov-Komplexitét

Definition 2.17

Fiir jedes Wort € (Xpo01)* ist die Kolmogorov-Komplexitit K(z) des Wortes x das Minimum der
bindren Léngen der Pascal-Programme, die x generieren.

Hierbei ist mit der biniren Linge die Anzahl Bits gemeint, die beim Ubersetzen des Programms in einen vordefi-
nierten Maschinencode entsteht.

Ein Pascal-Programm in diesem Kurs ist zudem nicht zwingend ein Programm in der effektiven Programmiersprache
Pascal, sondern eine Abwandlung davon, worin es auch erlaubt ist, gewisse Prozesse zu beschreiben und nicht als
Code auszuformulieren, da das nicht das Ziel dieses Kurses ist.

Kolmogorov-Komplexitit

Fiir jedes Wort z € (Zpo01)* existiert eine Konstante d so dass K(x) < |z| +d

Beweis: Fiir jedes = € (Xpo01)* kann folgendes Programm A, verwendet werden:

$A_XEZ begin
write(x);
end

Alle Teile, ausser x sind dabei von konstanter Linge, also ist die Lidnge der Bit-reprisentation des Programms
ausschliesslich von der bindren Lénge des Wortes x abhéngig.

O

Fiir regelméssige Worter gibt es natiirlich Programme, bei denen das Wort nicht als komplette Variable vorkommt.
Deshalb haben diese Worter auch (meist) eine kleinere Kolmogorov-Komplexitét.

Definition 2.18: (K(n) fir n € N) Die Kolmogorov-Komplezitit einer natiirlichen Zahl n ist K(n) =
K(Bin(n)), wobei |Bin(z)| = [log,(z + 1)]

Lemma 2.5: Fiir jede Zahl n € N — {0} existiert ein Wort w,, € (Zpoo1)™ so dass K(w,) > |w,| = n, oder in
Worten, es existiert fiir jedes n ein nicht komprimierbares Wort.

Eine wichtige Eigenschaft der Kolmogorov-Komplexitét ist, dass sie nicht wirklich von der gewihlten Program-
miersprache abhéngt. Man kann also beliebig auch C++, Swift, Python, Java oder welche auch immer, ohne dass
die Kolmogorov-Komplexitidt um mehr als eine Konstante wichst (auch wenn diese bei Java sehr gross ist):
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Unterschiedliche Programmiersprachen

Fiir jede Programmiersprachen A und B existiert eine Konstante c4 g, die nur von A und B abhéngig ist,
so dass fiir alle & € (Zpo01)* gilt:

|Ka(z) — Kp(z)| < ca

Zufall Der Zufall ist ein intuitiver, aber nicht sehr formeller Begriff, der mit der Kolmogorov-Komplexitét for-
malisiert werden kann:

Definition 2.19

Ein Wort z € (Zp001)* (eine Zahl n) heisst zufdllig, falls K (z) > |z| (K (n) = K(Bin(n)) > [logy(n + 1)]—-1)

Existenz eines Programms vs Kolmogorov-Komplexitét

Programm vs Komplexitit m

Sei L eine Sprache iiber Xy, und fiir jedes n € N—{0} sei z, das n-te Wort in L beziiglich der kanonischen
Ordnung. Falls ein Programm Aj, existiert, das das Entscheidungsproblem (X001, L) 16st, so gilt fiir alle
n € N— {0} dass

K(z) < [logg(n+1)] +¢ (c ist eine von n unabhingige Konstante )
\_ J

Primality testing

Primzahlensatz

Die Annédherung von Prim(n) and ﬁ wird durch folgende Ungleichung gezeigt:

3 n 1
I G —Z VYn>
In(n) 5 < Prim(n) < In(n) 3 n > 67 €N

Anzahl Primzahlen mit Eigenschaften

Sei ny,no,... eine stetig steigende unendliche Folge natiirlicher Zahlen mit K(n;) > “Og2—2("m. Fiir jedes
i € N— {0} sei ¢; die grosste Primzahl, die n; teilt. Dann ist die Menge @ = {¢; | « € N — {0}} unendlich.

Lemma 2.6 zeigt nicht nur, dass es unendlich viele Primzahlen geben muss, sondern sogar, dass die Menge der
grossten Primzahlfaktoren einer beliebigen unendlichen Folge natiirlicher Zahlen mit nichttrivialer Kolmogorov-
Komplexitét unendlich ist.

Untere Schranke fiir Anzahl Primzahlen

Fiir unendlich viele k € N gilt

k

Pt 2 517 1og, () - (logallog, (R

Der Beweis hierfiir ist sehr ausfiihrlich ab Seite 42 (= 57 im PDF) im Buch erklért
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3 Endliche Automaten

3.2 Darstellung

Folgende Fragen miissen zur Definition eines Berechnungsmodells beantwortet werden:
1. Welche elementaren Operationen stehen zur Verfiigung (um das Programm zusammenzustellen)?
2. Wie funktioniert der Speicher?
3. Wie funktioniert die Eingabe (und welches Alphabet verwendet sie)?
4. Wie funktioniert die Ausgabe (und welches Alphabet verwendet sie)?

Endliche Automaten haben keinen Speicher, mit Ausnahme des Zeigers (can be understood similarly to a program
counter)

Ein endlicher Automat mit dem Eingabealphabet ¥ = {ay,...,ax} darf nur den Operationstyp select verwenden.

select input = a; goto i

mput = ap goto ik

Alternativ, falls |X| = 2 (typischerweise fiir ¥p001), kann man statt select auch if...then...else nutzen. Typi-
scherweise werden solche Programme fiir Entscheidungsprobleme genutzt und die Checks sind dann:

if input =1 then goto 7 else goto j

Wir wihlen eine Teilmenge F' C {0,...,m — 1}, wobei m die Anzahl Zeilen des Programms ist. Ist die Zeile auf
der das Programm endet ein Element von F', so akzeptiert das Programm die Eingabe. Die Menge F' wird auch
die vom Programm akzeptierte Sprache genannt Ein Programm A arbeitet dann Buchstabe fiir Buchstabe
das Eingabewort ab und springt so also kontinuierlich durch das Programm bis die Eingabe endet. Mit formaleren
Begriffen ist das Eingabewort als Band dargestellt, welches von einem Lesekopf, der sich nur nach links oder
rechts bewegen kann gelesen wird und die gelesene Eingabe dann dem Programm weitergibt.

Diese Notation wird jedoch heute kaum mehr verwendet (because goto bad, Prof. Roscoe would approve). Heute
verwendet man meist einen gerichteten Graphen G(A):

e Hat so viele Knoten (= Zustdinde) wie das Programm A Zeilen hat

e Wenn das Programm beim Lesen von Symbol b von Zeile ¢ auf j sprint, so gibt es in G(A) eine gerichtete
Kante (7, j) von Knoten 7 nach Knoten j mit Markierung b. Sie wird als Ubergangsfunktion bezeichnet

e Jeder Knoten hat den Ausgangsgrad |X| (wir miissen alle Félle abdecken)

Endlicher Automat Definition 3.1

Ist eine Quitupel M = (Q, X%, 6, qo, F):
(i) @ ist eine endliche Menge von Zustdnden
(i) X ist das Eingabealphabet
(iii) 6 : Q x ¥ — Q ist die Ubergangsfunktion. §(q,a) = p bedeutet Ubergang von Zustand ¢ nach p
falls in ¢ a gelesen wurde
(iv) qo € Q ist der Anfangszustand
(v) F CQ ist die Menge der akzeptierenden Zustinde
e Konfiguration: Element aus @) x X* e Endkonfiguration: Jede aus Q x {\}
e Startkonfiguration auf x: (qo, )
e Schritt: Relation auf Konfigurationen lvg (Q x ¥*) x (Q x X* definiert durch (g, w) W (p,x) &
w = ax,a € ¥ und §(q,a) = p. Einfacher: Anwendung von ¢ auf die aktuelle Konfiguration
e Berechnung C': Endliche Folge von Konfigurationen, C; lﬁ Ciy1. Auf Eingabe x € ¥*, Cy Start-
konfiguration und C,, Endkonfiguration. Falls C,, € F x {\}, C akzeptierende Berechnung, M
akzeptiert Wort x. Anderenfalls ist C' eine verwerfende Berechnung und M verwirft (akzep-
tiert nicht) das Wort x
o Akzeptierte Sprache L(M) = {w € ¥* | M akzeptiert das Wort w und M endet in Endkonfig.}
o Lpa = {L(M)|M ist ein EA} ist die Klasse aller Sprachen die von endlichen Automaten akzeptiert
werden, auch genannt Klasse der reguldren Sprachen und fiir jede Sprache L € Lg4 gilt: L regular

1\ J
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Die Ubergangsfunktion kann auch gut graphisch oder tabellarisch (wie eine Truth-Table) dargestellt werden.

M ist in der Konfiguration (g, w) € Q x X*, wenn M in Zustand ¢ ist und noch das Suffix w zu lesen hat (also auf
dem Eingabeband hinter dem Zeiger noch w steht)

Reflexive und transitive Hiille Definition 3.2

Sei M = (Q, X%, 6, qo, F) ein endlicher Automat. Die reflexive und transitive Hiille lﬁ der Schrittrelation lﬁ
von M als (qmu)lﬁ(p,u) < (@g=pAw=u)V Ik eN-—{0} so dass

(i) w=ay...agu,a; €L fiiri=1,...,k

(ii) Frq,. .. sTh—1 € Q, so dass (q,w) lﬁ (r1,a9...agu) lﬁ (ro,as...agu) lﬁ o (rp—1, agu) lﬁ (p,u)
Wir definieren § : Q x ¥* — @ durch

o~ o~ o~

(1) 0(¢;N) =q Vg €@ (ii) 8(g,wa) = 6(6(q,w),a)Va € B, w € X*,q € Q

s ued o) incition B

(g, w) l% (p, u) bedeutet, dass es eine Berechnung von M gibt, die von der Konfiguration (g, w) zu (p,u)
fithrt. Eine wichtiger Aspekt ist die Transitivitidt, was ja dann bedeutet, dass es (beliebig viele) Zwischen-
schritte gibt, so dass die Relation erfiillt ist. Oder noch viel einfacher: Es gibt irgendwieviele Zwischenschritte
zwischen dem linken und rechten Zustand
0(q, w) = p reprisentiert den letzen Zustand der Berechnung ausgehend von (¢, w). Etwas formaler bedeutet
dies (g, w) lﬁ (p, A), also falls M im Zustand ¢ das Wort w zu lesen beginnt, M im Zustand p endet.

\_ J

Also gilt L(M) = {w € 3* | (g0, w) 57 (p, ) Vp € F} = {w € £* | §(qo, w) € F}.

Das folgende Lemma bezieht sich auf den Automaten M, den wir in der Tabelle weiter unten definieren. Der
Automat entscheidet, ob die beiden Zahlen gerade oder ungerade sind. Dies kann man aber auch folgendermassen
in formaler Ausdrucksweise ausdriicken:

Lemma 3.1: L(M) = {w € {0,1}* | |w|o + |w|1 = 0 mod 2}

Jeder EA teilt die Menge £* in |Q| Klassen Kl[p] = {w € ©* | 0(qo, w) = p} = {w € ©* | (g0, w) lﬁ (p, A)} auf und
entsprechend gilt:

| Klp] = = und Kl[p] UKl[g] = 0 Vp# q € Q
PEQ

In dieser Terminologie gilt dann L(M) = (U, Kl[p]. Die Notation wl|; bedeutet die Lénge der Buchstaben i in w.

Wir kénnen L(M) mit Klassen bestimmen und haben eine Aquivalenzrelation zRsy < g(qo,x) = S(qo,y) auf
3*. Man beweist die Korrektheit der gewédhlten Klassen oft mithilfe von Induktion iiber die Liange der Worter.
Wir beginnen mit der Lénge an Wortern der Lénge kleiner gleich zwei und erhchen dies dann wéihrend unseres
Induktionsschrittes.

Intuition: Die Klassen sind Mengen, die hier Worter mit gewissen Eigenschaften, die der EA bestimmt hat, wenn
er in Zustand ¢; endet, enthalten. Diese Eigenschaften sind beispielsweise, dass alle Worter, fiir die der EA in
Zustand ¢; endet mit einer gewissen Sequenz enden, sie einen gewissen Zahlenwert haben, etc.

Die Klassen bestimmen wir vor dem Beginn der Induktion auf und jede Klasse représentiert einen der Zusténde.
Haben wir einen EA M mit nebenstehender Tabelle, so sind die Klassen
Kl[go], - - -, Kl[gs], definiert durch:

Klgo] = {w € (Zbool)™ | |w]o und |w]; sind gerade}

Zustand 0 1

g(l) Zz Z(l) Kl[g1] = {w € (Zvoo1)™ | |w]|o ist gerade, |w]|; ist ungerade}
g2 @ q3 Kl[g2] = {w € (Zpoo)™ | |w|o ist ungerade, |w]|; ist gerade}
q3 @ q Kllgs] = {w € (Zboo1)™ | |w]o und |w]; sind ungerade}

Falls ein EA A geniigend anschaulich und strukturiert dargestellt ist, kann man die Sprache L(A) auch ohne Beweis
bestimmen.
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Idealerweise konstruieren wir einen EA so, dass wir die Menge aller Worter aus 3* so in Klassen aufteilen, sodass
Worter mit denselben Eigenschaften in derselben Klasse liegen und wir dann Ubergangsfunktionen zu anderen
Klassen finden, die nur einen Buchstaben aus ¥ zum Wort hinzufiigen

Beispiel 3.1: Das Buch enthilt einige zwei gute Beispiele (Beispiel 3.1 und 3.2) mit ausfiihrlichen Erkldrungen
ab Seite 58 (= Seite 73 im PDF).

3.3 Simulationen

Der Begriff der Simulation ist nicht ein formalisiert, da er je nach Fachgebiet, eine etwas andere Definition hat.
Die engste Definition fordert, dass jeder elementare Schritt der zu Berechnung, welche simuliert wird, durch eine
Berechnung in der Simulation nachgemacht wird. Eine etwas schwéchere Forderung legt fest, dass in der Simulation
auch mehrere Schritte verwendet werden diirfen.

Es gibt auch eine allgemeinere Definition, die besagt, dass nur das gleiche Eingabe-Ausgabe-Verhalten gilt und der
Weg, oder die Berechnungen, welche die Simulation geht, respektive durchfiihrt, wird ignoriert, respektive wird
nicht durch die Definition beschrénkt.

Hier werden wir aber die enge Definition verwenden

Lemma 3.2: (Produktautomaten) Wir haben zwei EA M; = (Q1,%,01,qo1, F1) und My = (Q2, %, 2, qo2, F»),
die auf dem Alphabet ¥ operieren. Fiir jede Mengenoperation ® € {U,N, —} existiert ein EA M, so dass L(M) =
L(My) ©® L(Ms)

Was dieses Lemma nun aussagt ist folgendes: Man kann einen endlichen Automaten bauen, so dass das Verhalten
von zwei anderen EA im Bezug auf die Mengenoperation simuliert wird. Ein guter, ausfiihrlicher Beweis dieses
Lemmas findet sich im Buch auf Seite 64 (= Seite 79 im PDF)

Dieses Lemma hat weitreichende Nutzen. Besonders ist es also moglich einen modularen EA zu bauen, in dem Teile
davon in kleinere und einfachere EA auszulagern, die dann wiederverwendet werden koénnen.

Produktautomaten m

Produktautomaten erstellt man, in dem man die (meist zwei) Automaten als einen Gridgraph aufschreibt
und eine Art Graph-Layering betreibt, so dass der eine Graph horizontal und der andere Graph vertikal
orientiert ist. Dann werden die Ubergiinge folgendermassen definiert: Fiir jeden Eingang liefert der Graph,
der horizontal ausgerichtet ist, ob wir nach links oder rechts gehen (oder bleiben), wéhrend der vertikal
ausgerichtete Graph entscheidet, ob wir nach oben oder unten gehen (oder bleiben).

\_ J

Beispiel 3.3: Dieses Beispiel im Buch ist sehr gut erklirt und findet sich auf Seiten 65, 66 & 67 (= Seite 80, 81
& 82 im PDF)
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3.4 Beweise der Nichtexistenz

Im Gegensatz zum Beweis, dass eine bestimmte Klasse von Programmen (Algorithmen) ein Problem 16sen kann
(was ein einfacher Existenzbeweis ist, bei welchem man eine korrekte Implementation liefern kann), ist der Beweis,
dass diese Klasse von Programmen (Algorithmen) dies nicht tun kann viel schwieriger, da man (logischerweise)
nicht fiir alle (unendlich vielen) Programme zeigen kann, dass sie das Problem nicht lésen.

In diesem Kurs werden wir aber vorerst nur die Klasse der endlichen Automaten behandlen, welche sehr stark
eingeschrénkt sind, was diese Beweise verhéltnisméssig einfach macht. Falls also ein EA A fiir zwei unterschiedliche

Worter z und y im gleichen Zustand endet (also §(qgo, z) = d(qo,¥y))), so heisst das fiir uns von jetzt an, dass A
nicht zwischen z und y unterscheiden kann:

Unterscheidung von Woértern m

Sei A ein EA iiber ¥ und x # y € ¥* so dass

(90, %) Fr (9, A) und (g0, %) P (9, V)

fiir ein p € @ (also SA(qo, x) = S(qo, y) = p(z,y € Kl[p])). Dann existiert fiir jedes z € X* ein r € @, so dass
xz,yz € Kl[r], also gilt insbesondere

2z € L(A) < yz € L(A)
\_ J

Das obenstehende Lemma 3.3 ist ein Spezialfall einer Eigenschaft, die fiir jedes (deterministische) Rechnermodell
gilt. Es besagt eigentlich nichts anderes, als dass wenn das Wort xz akzeptiert wird, so wird auch das Wort yz

Mithilfe von Lemma 3.3 kann man fiir einen grossteil Sprachen deren Nichtregularitét beweisen.

Beispiel: Sei L = {0"1" | n € N}. Intuitiv ist diese Sprache Nichtregulir, da n unendlich gross sein kann, aber
ein EA logischerweise endlich ist. Wir miissen hier nur formal ausdriicken, dass das Zahlen benotigt wird, dass L
akzeptiert wird:

Dazu benutzen wir einen Widerspruchsbeweis. Sei A ein EA iiber ¥y,0 und L(A) = L. Wir nehmen an, dass L
reguldr ist und betrachten die Worter 0,02, ..., 0191+, Weil wir |Q| + 1 Worter haben, existiert per Pigeonhole-
Principle 0.B.d. A i < j € {1,2,...,]|Q|+ 1} (die Ungleichheit kann in komplexeren Beweisen sehr niitzlich werden,
da wir dann besser mit Lingen argumentieren kénnen), so dass gA(qo,Oi) = gA(qO,Oj ), also gilt nach Lemma
0z € L & 00z € L Vz € (Xp001)*. Dies gilt jedoch nicht, weil fiir jedes z = 1° zwar jedes 0°1° € L gilt, aber
017 ¢ Lh

Um die Nichtregularitit konkreter Sprachen zu beweisen, sucht man nach einfach verifizierbaren Figenschaften,
denn wenn eine Sprache eine dieser Eigenschaften nicht erfiillt, so ist sie nicht regulér.

Eine weitere Methode zum Beweis von Aussagen L ¢ Lga nennt sich Pumping und basiert auf folgender Idee:
Wenn fiir ein Wort « und einen Zustand p gilt, dass (p, x) l% (p, \), so gilt auch fiir alle i € N, dass (p, z*) l% (p, A).
Also kann A nicht zwischen x und z* unterscheiden, oder in anderen Worten, wie viele x er gelesen hat, also
akzeptiert A entweder alle Worter der Form yx'z (fiir i € N) oder keines davon

Pumping-Lemma fiir regulire Sprachen

Sei L reguldr. Dann existiert eine Konstante ng € N, so dass sich jedes Wort w € ¥* mit |w| > ng in
w = yxz zerlegen ldsst, wobei

(1) |yz| < ng (iii) Fir X = {yz*z | k € N} entweder X C L oder
(ii) |z| > 1 XNL=0gilt

Bei der Wahl von den Teilen von w sollte man idealerweise einen Teil (der dann = y in w = yxz ist) bereits gross
genug zu wihlen, so dass (i) zutrifft, was es nachher einfacher macht.
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Beispiel: Wir verwenden wieder die Sprache L = {0™1" | n € N} und wieder einen Widerspruchsbeweis:

Wir nehmen an, dass L regulér ist, also gilt Lemma 3.4 und es existiert eine Konstante ng so dass |w| > ng. Um
zu zeigen, dass eine Sprache nicht regulér ist, reicht es aus, zu zeigen, dass es ein (hinreichend langes) Wort gibt,
fiir das eine der Eigenschaften in Lemma 3.4 nicht zutrifft.

Wir wihlen w = 0™ 1™ also ist |w| = 2ng > ng. Zudem miissen wir eine sinnvolle Zerlegung wiihlen — denn eine
solche existiert fiir jedes Wort w mit |w| > ng laut Lemma 3.4 — wir withlen yo = 0", also ist y = 0' und x = 0™
fiir irgendwelche I, m € N, so dass | + m < ng.

Nach Lemma 3.4 (ii) ist m # 0 (Jx| > 1). Nun, da w = 0"01™ € L, ist {yz*z | k € N} = {0no—m+kmno | k € N} C
L, was aber ein Widerspruch ist, da yz%z = yz = 0"o~™1m% ¢ [, (0™° 1™ ist sogar das einzige Wort aus der Menge,
das in L liegt)

Intuition: Woher kommt 0™ ~™%+m? Das Ganze wird mit Klammern bedeutend offensichtlicher: 0(ro—m)+(km)
Also ist der Ursprung der Koeffizienten auch klar, und sie kommen von |y| = ng —m und |z*| = km. Die Addition
im Exponent kommt dann deshalb zustande, da dies ja nicht ein Exponent ist, sondern die Anzahl der Repetitionen.

Kolmogorov-Komplexitit reguliarer Sprachen

Sei L C (Xpoo1)* eine regulire Sprache. Sei L, = {y € (Zpoo1)* | zy € L} fiir jedes 2 € (Xpoo1)*. Dann
existiert eine Konstante ¢, so dass fiir alle 2,y € (Zpo01)* gilt, dass

K(y) < [logy(n+1)] +¢
falls y das n-te Wort in der Sprache L, ist

Beispiel: Wir verwenden wieder die Sprache L = {0™1" | n € N} und wieder einen Widerspruchsbeweis:

Dazu nehmen wir wieder an, dass L regulér ist. Fiir jedes m € N ist 1™ das erste Wort in der Sprache Lym =
{y | 0™y € L} = {071™+J | j € N}. Die zweite Menge beinhaltet also alle moglichen Worter y, die noch immer in
L sind, wenn man sie mit 0™ als 0™071™%J konkateniert und ist deshalb eine konkrete Beschreibung von Lgm.

Also gibt es laut Satz 3.1 eine Konstante ¢, die unabhéngig von = 0™ und y = 1" und somit von m ist, so dass
K(1™) < [logs(14+1)]+¢=14c (n =1 hier, da 1™ das erste Wort in Lom ist und wir dieses Wort betrachten
wollen), also gilt fiir eine Konstante d = 1 + ¢, dass K(1™) < d. Dies ist aber unméglich, da:

(i) die Anzahl aller Programme, deren Linge < d ist, ist hochstens 2¢ und entsprechend endlich
(ii) die Menge {1™ | m € N} unendlich ist

Fiir komplexere Sprachen ist es oft einfach, L, so zu wihlen, dass = a®™! ist, wobei a der Exponent (nach
Variabelnwechsel) aus der Sprache ist. Also beispielsweise fiir L = {0727 | n€NV st o = m? - 2m, also ist z =
om*2mEl (das erste Wort der Sprache L) ist dann y; = Q(m+1)?-2(m41)—m?-2m+1

Wir kénnen dann mit der Linge des Wortes |y1| und dem Theorem 3.1 argumentieren, dass wir einen Widerspruch
erreichen und so also die Sprache nichtregulér ist.

Dazu sagen wir, dass fiir jedes m € N eine Konstante ¢ existiert, so dass K(y;) < [logy(1+1)] +¢ =1+ c. Da

unser Wort y; unendlich lang werden kann, gibt es unendlich viele solcher Worter. Dies widerspricht jedoch dem
Fakt, dass es nur endlich viele Programme mit Kolmogorov-Komplexitit < 1 + ¢ gibt.
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3.5 Nichtdeterminismus

Einfach gesagt werden hier Automaten behandelt, die zufillige (genannt nichtdeterministische) Entscheidungen
treffen. Beispielsweise fiir ein Entscheidungsproblem (3, L) bedeutet dies, dass ein nichtdeterministischer EA A eine
Sprache L akzeptiert, falls fiir jedes x € L mindestens eine akzeptierende Berechnung von A auf = existiert und fiir
y € ¥* — L keine solve existiert.

Wir notieren das Ganze in graphischer Darstellung so, dass wir aus einem Zustand mehrere Ubergiinge mit dem
gleichen Eingabesymbol erlauben.

nichtdeterministischer Endlicher Automat (NEA) Definition 3.3

Ein NEA ist eine Quitupel M = (Q, %, 4, qo, F):

(i) Zustandsmenge: @ ist eine endliche Menge

(i) Eingabealphabet: ¥ ist ein Alphabet

(iii) Ubergangsfunktion: 6 : Q x ¥ — P(Q). P(Q) ist das Powerset hierbei

(iv) Anfangszustand: gy € Q

(v) Akzeptierende Zustinde: F C Q
Ein Schritt in der 6-Notation ist im Vergleich zum deterministischen EA nicht §(¢,a) = p, sondern p €
8(q,a) ist, da die Ubergangsfunktion ja jetzt ins Powerset von @, anstelle von nach @ direkt mapped. Die
komplette Definition des Schritts ist also:

(q,w)lﬁ(p,x) <= w = az fiir ein ¢ € ¥ und p € §(q, a)

Eine Berechnung von M ist eine endliche Folge D1, Ds, ..., Dy von Konfigurationen, wobei D; lﬁ D1
fir i =1,...,k—1

Eine Berechnung von M auf x hingegen ist eine Berechnung Cy, C1,...,Cy, von M, wobei Cy = (qo, =)
und entweder C,,, € Q X {\} oder C; = (q,ay) fiir ein a € ¥,y € X* und ¢ € Q, so dass §(q,a) = 0.

Co, ..., Cy, ist akzeptierend falls C,,, = (p, A) fir einp € F

Die Sprache L(M) = {w € * | (qo, w) lﬁ (p, ) fur ein p € F}

Fiir die S—Funktion, gilt nun g(q, A) = {q} fiir jedes ¢ € Q und wir definieren:

o~ ~

0(q, wa) = {p € Q| es existiert ein r € §(q,w), so dass p € §(r,a)}

= U d(r,a) Vg € Q,a € Z,w e X"
red(q,w)

. J
Ein Wort ist in L(M), falls M mindestens eine akzeptierende Berechnung auf z hat.

Bei einer akzeptierenden Berechnung auf x wird wie beim EA gefordert, dass das ganze Wort = gelesen worden ist
und M nach dem Lesen in einem akzeptierenden Zustand ist.

Bei NEA kann eine nicht akzeptierende Berechnung auch vor Beendung des Lesevorgangs enden, da wir hier nicht
vorschreiben, dass es fiir jedes Symbol des Eingabealphabets eine definierte Ubergangsfunktion gibt, es ist also
erlaubt, dass bspw. §(g,a) = 0.

Zudem haben wir aus der Definition von & eine alternative Definition der von M akzeptierten Sprache: L(M) =

~

{w € ¥* | §(qo, w) N F # 0}

Fiir NEA kann man einen Berechnungsbaum By;(xz) von M auf x erstellen, der dann anschaulich alle moglichen
Enden der Berechnung darstellt. Wir beginnen den Baum mit Konfiguration (go, «) und fithren dann mit den Kanten
alle moglichen Berechnungen aus, die mit dem ersten Symbol des Wortes moglich sind.

Wir erreichen so also zum Beispiel die Konfiguration (g, 1), wobei 21 = ohne das erste Zeichen ist.

Lemma 3.5: (NEA aus Abbildung 3.15 im Buch) Sei M der NEA aus Abbildung 3.15 im Buch (auf Seite 77 (=
92 im PDF) zu finden). Dann ist L(M) = {211y | ,y € (Zboo1)*}

Der Beweis fiir eine solche Aussage lduft oft iiber Teilmengen (also mit X CYAY C X & X =Y).

Eine zentrale Frage dieses Kapitels ist es, ob Lxga = Lga, wobel Lyga = {L(M) | M ist ein NEA}. In anderen
Worten: Kénnen EA die Arbeit von NEA simulieren?
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Ja, es ist moglich und gilt allgemein, dass die Simulation von Nichtdeterminismus durch Determinismus nur dann
realisierbar ist, wenn es moéglich ist, alle nichtdeterministischen Berechnungen durch deterministische Berechnungen
nachzuahmen.

Bei EA (nennen einen A im Folgenden) basiert diese Idee auf BFS der Berechnungsbéume von M. Die Idee ist dann,
dass alle Knoten mit Entfernung ¢ von der Wurzel die ersten i Symbole von z gelesen haben. Da NEA endlich viele
Konfigurationen bei Entfernung ¢ haben ist es moglich, die Transformation durchzufithren. Wenn es zwei Knoten
u # v identisch sind, so miissen wir nur in einem der Teilbdume nach einer akzeptierenden Berechnung suchen.

Potenzmengenkonstruktion: Ein Zustand (P) von A fiir P C @ erhilt die Bedeutung, dass nach der gegebenen
Anzahl an Berechnungsschritten genau die Zustéinde aus P in den Berechnungen von M auf der gegebenen Ebene
erreichbar sind, also P = 6(qo, z). Ein Berechnungsschritt in A aus einem Zustand (P) fiir ein gelesenes Symbol a
bedeutet die Bestimmung der Menge UpE p0(p,a), also aller Zusténde, die aus irgendeinem Zustand p € P beim
Lesen von a erreichbar sind.

Dabei benutzen wir (P) statt P, um zu verdeutlichen, dass wir eine Zustand von A und nicht die Menge der
Zustidnde von M bezeichnen.

Ein EA, der die Sprache, bei welcher das k-letzte Symbol 1 ist, benétigt 2F Zustinde. Er wird dabei aus dem NEA
dieser Sprache mit der Potenzmengenkonstruktion gebildet.

Satz 3.2: Zu jedem NEA M existiert ein EA A, so dass L(M) = L(A)
Um L(M) = L(A) zu zeigen, miissen wir folgende Aquivalenz beweisen:
Vo € % 1 00(go,2) = P < 8(qoa, z) = (P)
Wir kénnen dies iiber einen Induktionsbeweis tun und ein vollstéindiger Beweis findet sich unten auf Seite 82 (=
Seite 97 im PDF) im Buch.
Wir sagen, dass zwei Automaten dquivalent sind, falls L(A) = L(B).

Eine Folge von Satz 3.2 ist eben, dass Lga = Lnga, also sind die EA genau so stark wie die NEA im Bezug auf
die Sprachakzeptierung. Was hingegen ein Problem sein kann, ist dass die durch die Potenzmengenkonstruktion
erzeugten Automaten (exponentiell) grosser sind als die NEA.

Es gibt gewisse NEA, bei welchen man bei der Simulation des Nichtdeterminismus durch Determinismus unaus-
weichlich in exponentiell grosseren EA resultiert. Man kann beweisen (siehe Seiten 83 und 84 mit Abbildung 3.19
im Buch (= Seiten 98 & 99 im PDF)), dass man die Potenzmengenkonstruktion nicht allgemein verbessern kann.

Lemma 3.6: Fiir alle ¥ € N — {0} muss jeder EA, der Ly = {zly |2 € (Zbool)*,¥ € (Zboo)* !} akzeptiert,
mindestens 2F Zustinde haben.

_ Zeige, das jeder endliche Automat, der die Sprache

L ={w € {a,b}* | w enthilt Teilwort ab gleich oft wie das Teilwort ba enthilt}

mindestens n := 5 Zustdnde haben muss.

ab (ab)® (ab)® (ab)* (ab)®

ab - (ba)?  (ba)® (ba)? (ba)®

(ab)? - (ba)* (ba)t (ba)®

(ab)® - (ba)t (ba)®

(ab)* - (ba)®
(ab)® -

Sei S = {ab, (ab)?, (ab)?, (ab)?, (ab)®}. Laut Lemma 3.3
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4 Turing-Maschinen
4.3 Das Modell der Turingmaschine

Eine Turingmaschine (oft auch Turing-Maschine geschrieben) besteht informell aus
(i) einer endlichen Kontrolle, die das Programm enthélt
(ii) einem Arbeitsband unendlicher Lénge (das es Erlaubt, im Vergleich zum EA, Daten zu speichern)
(iii) einem Lese-/Schreibkopf, der sich in beide Richtungen auf dem Band bewegen kann

Formaler:

Turingmaschine (TM) Definition 4.1

Eine Turingmaschine ist eine 7-Tupel M = (Q, %, T, 9, qo, gaccept, Greject ), WObEi:
(i) Q ist die Zustandsmenge
(
i

ii) ¥ ist das Fingabealphabet mit ¢, ¢ %
(iii) T ist das Arbeitsalphabet mit X C T, ¢, €T und T'NQ = 0 (¢ = Startmarker, . = Blanksymbol)
(iv) d : (@ — {qaccepts Greject }) X I' — Q@ X I' x {L, R, N'} ist die Ubergangsfunktion von M, wobei
{L,R, N} die moglichen Bewegunsrichtungen des Lese-/Schreibkopfs sind und hat die Eigenschaft
0(q,¢) € @ x {¢} x {R, N} fiir alle ¢ € Q
(v) qo ist der Anfangszustand
(Vi) Qaccept ist der akzeptierende Zustand (genau einer in jedem M)
(Vil) Greject ist der verwerfende Zustand (genau einer in jedem M)
Eine Konfiguration C von M ist ein Element aus Konf(M) = {¢}-T*-Q - TTUQ - {¢} - T'F (wobei - die
Konkatenation ist)
Eine Startkonfiguration fir ein Eingabewort z ist gpcz
Ein Schritt von M ist eine Relation |7 auf der Menge der Konfigurationen, also Wg Konf(M) xKonf(M).
Lrr ={L(M) | M ist eine Turingmaschine}
Der Rest der Definition findet sich auf Seiten 96 - 98 (= Seiten 110 - 112 im PDF)
. J

Turingmaschinen, die immer halten, reprisentieren Algorithmen, die immer terminieren und die richtige Ausgabe
liefern. Rekursive Sprachen und entscheidbare Entscheidungsprobleme sind algorithmisch erkennbar, respektive
losbar.

Es gibt auch definitionen der TM, die ohne Startmarker ¢ auskommen, bei denen ist das Arbeitsband in beide
Richtungen unendlich.

Graphisch stellt man Turingmaschinen folgendermassen dar: Wir haben wieder einen Graphen mit gerichteten
Kanten. Fiir §(¢,a) = (p,b, X) mit ¢,p € Q, a,b € ¥ und X € {L, R, N} werden die Kanten mit folgendem Format
beschriftet: ¢ — a, X.

Mit einem TM die Sprache {0™1™ | n € N} erkennen kann man nun, indem man jeweils das linkeste und rechteste
Symbol durch ein anderes Symbol ersetzt, beispielsweise, wenn das Eingabealphabet 3 = {0, 1}, dann kénnte man
I' das Symbol 2 hinzufiigen, mit dem man jedes bearbeitete Symbol ersetzt.

Im Buch wird als Beispiel auf Seite 99ff (= Seite 114ff im PDF) ein komplexeres Wort gewiihlt, bei welchem ein
Zeichen a € Y00 durch (a,B) € Ypoo X {A, B} ersetzt wird, da wir zwei Phasen haben und zwischen denen
unterscheiden wollen kénnen.
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4.4 Mehrband-Turingmaschinen und Church’sche These

Die Turingmaschinen sind das Standardmodell der Berechenbarkeitstheorie, aber benotigen einige Modifikationen,
um wirklich geeignet zu sein (da das Von-Neumann Modell physisch unterschiedliche CPU, Eingabemedium und
Speicher fiir Programme und Daten fordert, aber die TM ein gemeinsames Eingabemedium und Speicher hat).

Eine k-Band-Turingmaschine (fiir £ € Np) hat folgende Komponenten:
e cine endliche Kontrolle (= Programm)
e cin endliches Band mit einem Lesekopf
e k Arbeitsbinder, jedes mit eigenem Lese-/Schreibkopf
Zu Beginn ist die MTM in folgender Situation:
e Das Eingabeband enthélt ¢w$, wobei ¢ und $ die linke / rechte Seite der Eingabe markieren
e Der Lesekopf des Eingabebands zeigt auf ¢
e Alle Arbeitsbinder beinhalten ¢..... und deren Lese-/Schreibképfe zeigen auf ¢

Die endliche Kontrolle ist im Anfangszustand qq

Alle k+1 Kopfe diirfen sich wihrend der Berechnung in beide Richtungen bewegen (solange das nicht out-of-bounds
geht). Zudem darf der Lesekopf nicht schreiben, also beleibt der Inhalt des Eingabebands gleich.

Gleich wie bei einer TM ist das Arbeitsalphabet der Arbeitsbénder I' und alle Felder der Arbeitsbénder sind von
links nach rechts nummeriert, wobei 0 bei ¢ liegt.

Eine Konfiguration einer k-Band-TM M ist (q,w, i, u1, i1, Uz, i2, - - - , Uk, i) € Q@ x * x N x (I'* x N)* wobei q der
Zustand ist, der Inhalt des Eingabebands ist ¢w$, der Lesekopf zeigt auf das i-te Feld, fiir j € {1,2,...,k} ist der
Inhalt des j-ten Bandes ¢ug.... und ¢; < |u;| ist die Position des Feldes.

Ein Berechnungsschritt von M kann mit
§:Qx (ZU{e,$)) xTF - Qx {L,R,N} x (T x {L,R,N})*

dargestellt werden, wobei die Argumente (q,a,b,...,b;) der aktuelle Zustand ¢, das gelesene Eingabesymbol a
und die & Symbole b; € T, auf welchen die Képfe der Arbeitsbéander stehen.

Die Eingabe w wird von M akzeptiert, falls M den Zustand gaccept €rreicht und falls M den Zustand greject erreicht
oder nicht terminiert, wird die Eingabe verworfen.

Wir sagen, dass eine Maschine A dquivalent zu einer Maschine B ist, falls fiir jede Eingabe z € (Zpo01)* gilt:
A <property> x <= B <property> x mit <property> € {akzeptiert, verwrift, arbeitet unendlich lange auf},
also ist L(A) = L(B)

Lemma 4.1: Zu jeder TM A existiert eine zu A dquivalente 1-Band-TM B
Lemma 4.2: Zu jeder Mehrband-Turingmaschine A existiert eine zu A dquivalente TM B
Die Beweise dazu finden sich auf Seite 107, beziehungsweise Seite 109 (= 121 & 123 im PDF).

In diesem Kurs miissen wir gliicklicherweise meist nicht Beweise der Aquivalenz durchfithren, wie auch nicht dass
die TM die gewiinschte Téatigkeit realisiert.

Definition 4.1:) Zwei Maschinenmodelle (Maschinenklassen) A und B sind &quivalent wenn beides zutrifft:
(i) fiir jede Maschine A € A eine zu A dquivalente Maschine B € B existiert

(i) fiir jede Maschine C' € B eine zu C #quivalente Maschine D € A existiert

Satz 4.1: Die Maschinenmodelle von Turingmaschinen und Mehrband-Turingmaschinen sind dquivalent

Beweis: Impliziert von Lemmas 4.1 und 4.2

Um zu beweisen, dass Turing-Maschinen dquivalent zu hoheren Programmiersprachen sind argumentiert man iiber
die Existenz eines Interpreters fiir TM.
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4.4.1 Church’sche These

Die Turingmaschinen sind die Formalisierung des Begriffes “Algorithmus”, das heisst, die Klasse der
rekursiven Sprachen (der entscheidbaren Entscheidungsproblem) stimmt mit der Klasse der algorithmisch
(automatisch) erkennbaren Sprache iiberein

Die These ist nicht beweisbar, da dazu der Begriff des Algorithmus formalisiert werden miisste, was er bekanntlich
nicht ist.

Dies fiihrt zu einer interessanten Situation, in welcher es theoretisch moglich wére, dass jemand ein stiarkeres Modell
findet, als die TM sind, eines ndmlich, welches Entscheidungsprobleme l6sen kann, die die TM nicht kann.

Wir nehmen also (wie in vielen Bereichen der Physik (die Relativitétstheorie ist ein gutes Beispiel) und Mathematik)
und postulieren sie als Axiom.

Fun fact Die Church’sche These ist das Einzige informatikspezifische Axiom.
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4.5 Nichtdeterministische Turingmaschinen

Die Ideen sind hier sehr &hnlich wie der Ubergang zwischen deterministischen und nichtdeterministischen Endlichen
Automaten.

Nichtdeterministische Turingmaschine (NTM) Definition 4.2

Hier werden nur die wichtigsten Unterschiede aufgezeigt. Formale Definition auf Seiten 113ff. (= Seiten 127ff im PDF) im Buch.
Die Ubergangsfunktion geht wieder in die Potenzmenge, also gilt:

0 (Q - {QacceptaQreject}) xI' — P(Q x I' x {L,R,N})
und 6(p, ¢) € ({(¢,¢, X) [ ¢ € Q, X € {R,N}})

Die von der NTM M akzeptierte Sprache ist:

L(M) ={w € X | go¢w lﬁ YQaccept z fiir irgendwelche y, z € T}
\_ J

Ein gutes Beispiel fiir eine NTM findet sich auf Seiten 114ff. im Buch (= Seite 128ff. im PDF)

Berechnungsbaum Definition 4.3

Ein Berechnungsbaum Ty, von M (eine NTM) auf x (Wort aus Eingabealphabet von M) ist ein (potentiell
un)gerichteter Baum mit einer Wurzel:
(1) Jeder Knoten von Ty, ist mit einer Konfiguration beschriftet
(#i) Die Wurzel ist der einzige Knoten mit deg;,(v) = 0, ist die Startkonfiguration gocx
(#ii) Jeder mit C beschriftete Knoten hat genauso viele Kinder wie C' Nachfolgekonfigurationen hat und
die Kinder sind mit diesen Nachfolgekonfigurationen markiert.

\_ J

Diese Baume konnen natiirlich auch fiir nichtdeterministischen MTM verwendet werden.

Im Vergleich zu den Berechnungsbdumen von NEA sind die Bdume von NTM nicht immer endlich.

Satz 4.2: Sei M eine NTM. Dann existiert eine TM A, so dass L(M) = L(A) und falls M keine unendlichen
Berechnungen auf Wortern aus (L(M))¢ hat, dann hilt A immer.

Beweis: Auf Seite 117 im Buch (= 131 im PDF). Die Idee zur Umwandlung von M in die TM A ist, dass A
Breitensuche im Berechnungsbaum von M durchfiihrt.
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5 Berechenbarkeit

5.2 Diagonalisierung

Wir definieren KodTM als die Menge der bindren Kodierungen aller Turingmaschinen. Wir haben KodTM C
(Zboo1)* und die obere Schranke der Kardinalitit ist |(Xpoo1)*|, da es unendlich viele Turingmaschinen gibt.

Im Folgenden wird wieder Cantor’s Diagonalisierungsmethode verwendet

TODO: Finish

Definition 5.1: A und B sind Mengen. Dann ist |A| < |B| falls eine injektive Funktion f von A nach B existiert;
|A| = |B] falls |A] < |B| und |B| < |A] (es existiert eine Bijektion); |A| < |B]| falls |A| < |B]| und keine injektive
Abbildung von B nach A existiert.

Um zu zeigen, dass es nicht rekursiv aufzéhlbare (also von Turingmaschinen nicht erkennbare) Sprachen gibt. Also
miissen wir laut Definition 5.1 nur zeigen, dass keine Injektion von (Xp001)* nach Lrg existiert.

Definition 5.2:] (Abzdihlbarkeit) A heisst abzidhlbar, falls A endlich ist oder |A| = |N]|
Lemma 5.1: Sei ¥ ein beliebiges Alphabet. Dann ist ¥* abzé&hlbar
Satz 5.1: Die Menge KodTM der Turingmaschinenkodierungen ist abzéahlbar

Lemma 5.2: (N—{0}) x (N—{0}) ist abzéhlbar. Die Idee ist dieselbe wie fiir |Q"| = |N|, nfimlich, dass wir jedem
Element einen Index zuordnen kénnen.

Satz 5.2: Q1 ist abzihlbar. Die Idee fiir den Beweis ist eine Bijektion nach obiger Menge zu finden.
Satz 5.3: [0, 1] C R ist nicht abzéhlbar. Dies kann mit Cantor’s Diagonalization Argument bewiesen werden.
Satz 5.4: P((Xboo1)*) ist nicht abzéhlbar

Korollar 5.1: | KodTM| < |P((Zboo1)*)| und es existieren also unendlich viele nicht rekursiv aufzihlbare Sprachen.

Um fiir eine spezifische Sprache zu beweisen, dass sie rekursiv aufzéhlbar ist, konnen wir einfach eine Turingmaschine
konstruieren. Fiir eine Beweis dafiir, dass eine Sprache nicht rekursiv aufzdhlbar ist konnen wir folgende Methode
verwenden. Sei dazu mit d;; = 1 <= M, akzeptiert w;

Laiag = {w € (Epoo1)” | w = w; fiir ein ¢ € N — {0} und M; akzeptiert w; nicht}
={w € (Zpoo)™ | w = w; fiir ein i € N — {0} und d;; = 0}

Satz 5.5: Lain; ¢ Lre Beweis: Zum Widerspruch nehmen wir an, dass Lgiag € Lrp. Dann gilt, dass Lgjag =
L(M) fiir eine Turingmaschine M. M ist eine Turingmaschine in der kanonischen Ordnung der Turingmaschinen,
also existiert ein ¢ € N — {0}, so dass M = M;.

Dies fiihrt zu einem Widerspruch, denn Lgiag kann nicht gleich L(M;) sein, da
w; € Ldiag <—d; =0 <= w; ¢ L(MZ)

also ist w; genau dann in Lgjag wenn w; nicht in L(M;) ist. (= in genau einer der Sprachen Lgiag oder L(M;))
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5.3 Die Methode der Reduktion

Definition 5.3:] (Rekursiv reduzierbare Sprache) Eine Sprache L; C %7 ist auf Lo C X5 rekursiv reduzierbar,
geschrieben Ly <p Lo, falls Lo € L = L1 € Lg.

Intuition: L, ist beziiglich der algorithmischen Losbarkeit mindestens so schwer wie L. L ist die Menge aller
rekursiv reduzierbaren Sprachen. Ist also Ly 16sbar, so muss auch Lq l6sbar sein.

Definition 5.4: (EE-reduzierbare Sprache) Ly ist auf Ly EE-reduzierbar, geschrieben Ly <gg Lo, wenn eine
TM M existiert, die eine Abbildung fys : X7 — 33 mit der Eigenschaft z € L; & fu(x) € Lo fiir alle x € X
berechnet. Anders ausgedriickt: die TM M reduziert die Sprache L; auf die Sprache Lo

Lemma 5.3: Falls L1 <gg Lo, dann auch L; <p L. Beweis: Im Buch auf Seite 135 (= 148 im PDF)
Wir miissen also nur zeigen, dass L1 <gpg Lo um zu zeigen, dass L1 <gr Lo
Lemma 5.4: Fiir jede Sprache L C ¥* gilt: L <p LC und L€ <y L

Korollar 5.2: (Ldiag)C ¢ Lr Beweis: Folgt davon, dass Lgiag ¢ Lrr (was heisst, dass Lqiag ¢ L£r) und nach
Lemma 5.4 Lgiag <r (Ldiag)c und das umgekehrte gelten muss.

Lemma 5.5: (Lging)C € Lrr Beweis: Auf Seite 137 (= 150 im PDF) wird eine Turingmaschine aufgezeigt, die
(Ldiag)c akzeptiert.

Korollar 5.3: (Ldiag)c € Lrp — Lr und daher Lr € Lrp

Folgende Sprachen sind nicht rekursiv, liegen aber in Lrg

Definition 5.5:] (Universelle Sprache) Ly = {Kod(M)#w | w € (Zpoo1)* und TM M akzeptiert w}
Satz 5.6: (Universelle TM) Eine TM U, so dass L(U) = Ly, also gilt Ly € Lgrg

Beweis: Auf Seite 138 (= 151 im PDF)

Was dies bedeutet, es existiert eine TM ohne Haltegarantie, die eine beliebige Turingmaschine auf einer gegebenen
Eingabe simulieren kann. Untenstehendes Resultat bedeutet, dass man das Resultat der Berechnung einer TM M
auf einer Eingabe x anders berechnen kann, als die Berechnung von M auf x zu simulieren.

Satz 5.7: Ly ¢ Lg

Wenn jetzt aber M unendlich lange auf = arbeitet, so wissen wir nicht, ob wir die Simulation beenden kénnen.
Dies fiihrt zum Halteproblem

Halteproblem Definition 5.6

Das Halteproblem ist das Entscheidungsproblem ({0, 1, #}, Ly) mit

Ly = {Kod(M)#z | z € {0,1}" und M hélt auf =}

Dies scheint vorerst nicht ein allzu grosses Problem zu sein, jedoch besagt das néchste Resultat, dass es keinen
Algorithmus gibt, der testen kann, ob ein gegebenes Programm immer terminiert.

Satz 5.8: Ly ¢ L Beweis: Auf Seiten 140 - 142 (153 - 155 im PDF)

Betrachten wir die Sprache Lempty = {Kod(M) | L(M) = 0}, die die Kodierungen aller Turingmaschinen enthélt,
die die leere Menge (kein Wort) akzeptieren. Es gilt

(Lempty) = {2 € (Zboo)™ | 2 ¢ Kod(M)Y TM M oder z = Kod(M) und L(M) # 0}
Lemma 5.6: (Lempty)© € Lrr Beweis: Auf Seiten 142 - 143 (155 - 156 im PDF)
Lemma 5.7: (Lempiy)© ¢ Lr

Wir haben als wiederum die Nichtexistenz eines Algorithmus zur Uberpriifung, ob ein gegebenes Programm die
leere Menge akzeptiert. Ein Beweis dazu findet sich auf Seiten 143 und 144 im Buch (156 - 157 im PDF)

Korollar 5.4: Ley,piy ¢ Lr

Korollar 5.5: Lpg = {Kod(M)#Kod(M) | L(M) = L(M)} ist nicht entscheidbar (also Lgg & Lg)
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5.4 Der Satz von Rice

Definition 5.7: L heisst semantisch nichttriviales Entscheidungsproblem iiber Turingmaschinen, falls
folgende Bedingungen gelten:

(i) Es gibt eine TM M, so dass Kod(M;) € L (also L # ()
(ii) Es gibt eine TM M, so dass Kod(Ms) ¢ L (also sind nicht alle Kodierungen in L)
(iii) fiir zwei TM A und B: L(A) = L(B) = Kod(A) € L & Kod(B) € L
Sei Ly » = {Kod(M) | M hélt auf A} ein spezifisches Halteproblem.

Lemma 5.8: Ly ) ¢ Lr Beweis: Auf Seite 146 im Buch (= 159 im PDF)

Satz von Rice

Jedes semantisch nichttriviale Entscheidungsproblem iiber Turingmaschinen ist unentscheidbar.

Beweis: Ausfiihrlich im Buch auf Seiten 146 - 149 beschrieben (= 159 - 162 im PDF)

5.6 Die Methode der Kolmogorov-Komplexitit

Satz 5.10: Das Probelem, fiir jedes z € (¥poo1)* die Kolmogorov-Komplexitdt K (z) von x zu berechnen ist
algorithmisch unlosbar.

Lemma 5.9: Falls Ly € Lg, dann existiert ein Algorithmus zur Berechnung der Kolmogorov-Komplexitidt K (x)
fiir jedes z € (Zpool)*
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6 Komplexititstheorie

6.2 Komplexitidtsmasse

Zeitkomplexitat Definition 6.1

Sei M eine Mehrband-TM oder TM, die immer hélt, z € ¥* und D = Cy,Cs, ..., Cy die Berechnung von
M auf z, deren Zeitkomplexitit definiert ist durch:

Timey(z) =k —1

also durch die Anzahl der Berechnungsschritte in D Die Zeitkomplexitit der TM M ist dabei definiert
durch:

Timeys(n) = max{Timey () | z € X"}

\_

Wir kénnen weiterhin die big-O-notation verwenden um den Worstcase anzugeben.

Speicherplatzkomplexitéit Definition 6.2

Sei C' = (q,z,1,a1,%1,02,42,...,05,%) mit 0 < ¢ < |z +1und 0 < ¢; < |oy| fir j = 1,...,k eine
Konfiguration von M, welche eine k-Band TM ist. Die Speicherplatzkomplexitit von C ist

Spacey; (C) = max{|a;| |i=1,...,k}
Fiir die Berechnung C,Cs, ..., C; von M auf x haben wir:

I \_

Space,,(z) = max{Space,,(C;) |i=1,...,1}
Und die Speicherplatzkomplexitit von M ist
Space,;(n) = max{Space,,(z) | z € £"}
\_ J
Es ist auch moglich Space,;(n) als eine Summe zu definieren, aber laut Lemma 4.2 wissen wir, dass man eine
k-Band-TM mit einer 1-Band-TM simulieren kann.

Lemma 6.1: Sei k& € N. Fiir jede k-Band-TM A, die immer hélt existiert eine dquivalente 1-Band-TM B, so dass
Spaceg(n) < Space4(n)

Lemma 6.2: Fiir jede k-Band-TM A, existiert eine #dquivalente k-Band-TM B, so dass L(A) = L(B) und
Spaceg(n) < La’s;“(") +2

Definition 6.3:) Wir notieren mit der big-O-notation folgendermassen: Falls r € O (f(n)), so wichst r asympto-
tisch nicht schneller als f. Aquivalent fiir s € Q(g(n)) und I € © (h(n)) sagen wir asymptotisch mindestens so
(gleich) schnell. Falls lim,_, % = 0, dann wéchst ¢g asymptotisch schneller als f und f(n) = o(g(n))

Satz 6.1: Es existiert ein Entscheidungsproblem (X001, L), so dass fiir jede MTM A, die (X001, L) entscheidet,
eine MTM B existiert, die es auch entscheidet und fiir die gilt: Timep(n) < log,(Time4(n)) fir alle n € N

Schranken, Optimal Definition 6.4

O (g(n)) (2(f(n))) ist eine obere (untere) Schranke fiir die Zeitkomplexitit von L, falls eine MTM
A (B) existiert, die L entscheidet und Timea(n) € O (g(n)) (Timeg(n) € Q(f(n)))

Eine MTM C heisst optimal fir L, falls Timec(n) € O (f(n)) gilt und Q (f(n)) eine untere Schranke fiir
die Zeitkomplexitédt von L ist.

31. Dezember 2025 26 / 32



Theoretische Informatik Janis Hutz

6.3 Komplexititsklassen und die Klasse P

Komplexitiatsklasen Definition 6.5

Fiir alle Funktionen f,g: N — RT definieren wir:

TIME(f) = {L(B) | B ist eine MTM mit Timeg(n) € O (f(n))}
SPACE(g) = {L(A) | A ist eine MTM mit Space4(n) € O (g(n))}
DLOG = SPACE(log, (1))

P = | | TIME(n®)

ceN
PSPACE = | | SPACE(n°)
ceN
EXPTIME = | J TIME(2"")
deN
\_ J

Lemma 6.3: Fiir alle ¢t : N — R™ gilt TIME(¢(n)) C SPACE(t(n)) Korollar 6.1: P C PSPACE

Platz- und Zeitkonstruierbarkeit Definition 6.6

Eine Funktion s : N — N heisst platzkonstruierbar, falls eine 1-Band-TM M existiert, so dass
1. Spacey;(n) < s(n) VneN
2. fiir jede Eingabe 0™ fiir n € N, generiert M das Wort 05(™) auf ihrem Arbeitsband und hlt in Jaccept

Eine Funktion ¢ : N — N heisst zeitkonstruierbar, falls eine MTM A existiert, so dass
1. Timea(n) € O (t(n))
2. fiir jede Eingabe 0™ fiir n € N, generiert A das Wort 01" auf dem ersten Arbeitsband und hilt in
Gaccept

. J

Wichtig ist, dass wir hier nicht zwingend eine 1-Band-TM konstruieren miissen, eine MTM geht auch.

Lemma 6.4: Sei s platzkonstruierbar und M eine MTM mit Space,,;(z) < s(|z]) Vo € L(M). Dann existiert
MTM A mit L(A) = L(M) und Space4(n) < s(n), es gilt also Space,(y) < s(ly|]) Vy € Ty

Lemma 6.5: Sei t zeitkonstruierbar und M eine MTM mit Timeps(x) < t(|z]) Yo € L(M). Dann existiert eine
MTM A mit L(A) = L(M) und Time4(n) € O (t(n))

Satz 6.2: Fiir jede Funktion s mit s(n) > log,(n) gilt SPACE(s(n)) € U,y TIME(c*™)

Obiger Satz trifft auch fiir s(n)-platzbeschrinkten TM zu, die nicht halten, aber nur, wenn s(n) platzkonstruierbar
ist.

Korollar 6.2: DLOG C P und PSPACE C EXPTIME
Die Korollare 6.1 und 6.2 geben zusammen DLOG C P C PSPACE C EXPTIME

Satz 6.3: Fiir s1,s2 : N — N mit folgenden Eigenschaften:
1. sa(n) > logy(n) 2. s9 ist platzkonstruierbar 3. 51(n) = o(s2(n))
Dann gilt: SPACE(s;) € SPACE(s2)

Satz 6.4: Fiir t1,t2 : N — N mit folgenden Figenschaften:
1. ty ist platzkonstruierbar 2. t1(n) -logy(ti1(n)) = o(ta(n))
Dann gilt: TIME(s1) € TIME(s2)

In den Sechzigerjahren entstand folgende “Definition” von parktisch 16sbaren Problemen:

Ein Problem ist praktisch losbar genau dann, wenn ein polynomialer Algorithmus zu seiner Lisung exis-
tiert. Die Klasse P ist die Klasse der praktisch entscheidbaren Probleme
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6.4 Nichtdeterministische Komplexititsmasse
Zeit- und Speicherkomplexitét Definition 6.7

Sei M eine NMTM oder MTM und z € L(M) C X*. Timey(x) ist die ldnge einer kiirzesten akzeptierenden
Berechnung von M auf & und Timey; (n) = max({Timeps(z) | x € L(M) und |z| = n} U {0}).

Space,,(C;) ist die Speicherkomplexitét von Konfiguration C; und Space,,(C') = max{Space,,(C;) |i =
1,2,...,m}. Zudem ist Space,;(z) = min{Space,;(C) | C ist akzeptierende Berechnung von M auf x}.
Ausserdem ist Space,,(n) = max({Space,,(z) | z € L(M) und |z| = n} U {0})

\_

Komplexititsklassen Definition 6.8

Fiir alle f,g : N — Rt definieren wir:

I \_

NTIME(f) = {L(M) | M ist eine NMTM mit Timep;(n) € O (f(n))}
NSPACE(g) = {L(M) | M ist eine NMTM mit Space,;(n) € O (g(n))}
NLOG = NSPACE(log,(n))
NP = | | NTIME(n®)
ceN

NPSPACE = |_J NSPACE(n®)

ceN
\_ J
Lemma 6.6: Fiir alle £ und s mit s(n) > logy(n) gilt: NTIME(t) € NSPACE(t), NSPACE(s) C | cn NTIME(¢5("™)

Satz 6.5: Fiir jedes ¢t : N — R™ und jedes platzkonstruierbare s mit s(n) > log,(n) gilt:
(i) TIME(t) C NTIME(t) (ili) NTIME(s(n)) € SPACE(s(n)) € U, oy TIME(c*(™)
(ii) SPACE(t) € NSPACE(t)
Korollar 6.3: NP C PSPACE
Satz 6.6: Fiir jede platzkonstruierbare Funktion s mit s(n) > logy(n) gilt

NSPACE(s(n)) € |_J TIME(c*™)
ceN

Korollar 6.4: NLOG C P und NPSPACE C EXPTIME

Satz 6.7: (Satz von Savitch) Sei s mit s(n) > log,(n) eine platzkonstruierbare Funktion. Dann gilt:
NSPACE(s(n)) € SPACE(s(n)?)
Korollar 6.5: PSPACE = NPSPACE

Aus den obigen Resultaten resultiert die Komplexitétsklassenhierarchie der sequentiellen Berechnungen:

DLOG C NLOG C P C NP C PSPACE C EXPTIME
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6.5 Die Klasse NP und Beweisverifikation

Da praktische Losbarkeit eines Problems mit polynomieller Zeit verbunden wird, ist es wichtig zu wissen, welche
Probleme in polynomieller Zeit 16sbar sind und welche nicht.

Der Vergleich zwischen den Klassen P und NP ist dquivalent zu der Frage, ob es einfacher ist, gegebene Beweise
zu verifizieren, als sie herzustellen.

Betrachten wir folgendes: Sei L = SAT, wobei
SAT = {z € (Zi0gic)" |  kodiert eine erfiillbare Formel in CNF}.
Dann ist die Aussage ® € SAT dquivalent zu der Behauptung “® ist eine erfiillbare Formel in CNE”

Fiir nichtdeterministische Berechnungen nennen wir asq,...,a, Zertifikate fiir eine Aussage =, falls fiir diese
Z(aq, ..., qn) hilt.

Definition 6.9

Sei L C ¥* und p : N — N. Eine MTM A ist ein p-Verifizierer und V(A4) = L, falls A mit folgenden
Eigenschaften auf allen Eingaben aus ¥* x (Zp001)* arbeitet:
(i) Timey(w,z) < p(Jw|) fiir jede Eingabe (w,z) € ¥* X (Zpool)*
(ii) Fiir jedes w € L existiert ein z € (Xp001)*, so dass |z| < p(Jw|) und (w,z) € L(A). x ist Zeugen (oder
Beweis) der Behauptung w € L
(iii) Fiir jedes y ¢ L gilt (y, z) ¢ L(A) fur alle z € (Zpoo1)*
(iv) Falls p(n) € O (n*) fiir ein k € N, so ist p ein Polynomialzeit- Verifizierer. Die Klasse ist
VP ={V(A)| A ist ein Polynomialzeit-Verifizierer }

\ J

Satz 6.8: VP = NP
Der Bewelis fiir obiges Resultat ist auf Seiten 193 - 194 im Buch (= 205 - 206 im PDf) zu finden
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6.6 NP-Vollstandigkeit

Es sind mittlerweile iiber 3000 Probleme bekannt, fiir welche wir keinen Algorithmus kennen, der in polynomieller
Zeit 1duft. Es ist aber bis jetzt niemandem gelungen, eine hohere untere Schranke fiir alle zu beweisen, als  (n).

Wie bereits bei der Berechenbarkeit benutzen wir eine Reduktion. Falls jedes Problem aus NP effizient auf ein
Problem L € NP reduzierbar ist, so ist L schwer.

Polynomielle Reduktion

Definition 6.10

L; C X7 ist polynomiell reduzierbar auf L, C X3, geschrieben L; <, Lo, falls eine polynomielle TM A
existiert, die fiir jedes Wort © € X7 ein Word A(x) € £3 berechnet, so dass

x € Ly < A(x) € Ly
A wird eine polynomielle Reduktion von L; auf Ly genannt.

Wieder bedeutet L; <, Lo, dass L, mindestens so schwer ist wie L;

Definition 6.11

Eine Sprache L ist NP-Schwer, falls fiir alle L’ € NP gilt L' <, L.
Eine Sprache L ist N P-Vollstindig, falls
(i) Le NP (i) L N P-Schwer ist.

Lemma 6.7: Falls L € P und L ist N P-schwer, dann gilt P = NP
Satz 6.9: (Cook) SAT ist N P-Vollstindig

Der Beweis hierfiir liefert eine grobe Struktur fiir weitere Beweise dieser Art und ist auf Seiten 199 - 205 im Buch
(= Seiten 211 - 217 im PDF) zu finden. Jedoch sind diese Beweise sehr gross und deshalb nicht priifungsrelevant.

Lemma 6.8: Falls L1 <, Ly und L, ist N P-Schwer, so ist auch Ly N P-Schwer

Betrachten wir folgende Sprachen:

SAT = {® | ® ist eine erfiillbare Formel in CNF}
CLIQUE = {(G,k) | G ist ein ungerichteter Graph, der eine k-clique enthélt}
VC = {(G,k) | G ist ein ungerichteter Graph mit einer Konteniiberdeckung der Méchtigkeit héchstens k}

Wir erinnern uns daran, dass eine Konteniiberdeckung eines Graphen G = (V| E) jede Menge von Konten U C V
ist, so dass jede Kante aus F mindestens einen Endpunkt in U hat.

Lemma 6.9: SAT <, CLIQUE
Lemma 6.10: CLIQUE <, VC

Lemma 6.11: SAT <, 3SAT, wobei wir beim 35AT-Problem bestimmen wollen, ob eine Formel in 3C NF (CNF,
aber alle Klauseln enthalten héchstens 3 Variabeln) erfiillbar ist.

m Definition 6.12

NPO ist die Klasse der Optimierungsprobleme, mit U = (X7, X0, L, M, cost, goal) € N PO, falls folgende
Bedingungen erfiillt sind:
(1) LeP
(#i) Es existiert ein Polynom py, so dass
(a) Fiir jedes z € L und jedes y € M(x), |y| < pu(|z|)
(b) es existiert ein polynomieller Algorithmus A, der fiir jedes y € £, und jedes x € L mit |y| <
pu(|z|) entscheidet, ob y € M(x) oder nicht
(#i) Die Funktion cost kann man in polynomieller Zeit berechnen.
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Ein Optimierungsproblem U ist also in N PO, falls
1. man effizient tiberpriifen kann, ob ein gegebenes Wort ein Problemfall von U ist
2. die Grosse der Losungen polynomiell in der Grosse des Problemfalls (Eingabe) und in polynomieller Zeit
verifizert werden kann, ob y eine zuléssige Losung fiir einen gegebenen Problemfall ist
3. man die Kosten der zulédssigen Losung effizient berechnen kann

MAX-SAT liegt in NPO

m Definition 6.13

PO ist die Klasse von Optimierungsproblemen U = (X1, X0, L, M, cost, goal), so dass
(i) U e NPO
(ii) 3 polynomieller Algorithmus A, so dass A(z) fiir jedes x € L die optimale Losung fiir x ist.

\_

Schwellenwert-Sprache Definition 6.14

Die Schwellenwert-Sprache fiir U (ein Optimierungsproblem aus N PO) ist

Lang;; = {(z,a) € L X (Zhoo1)* | Opty () < Nummer(a)}
mit Opty(x) die optimale Losung, falls goal = Minimum, und

Lang;; = {(z,a) € L X (Zpoo1)™ | Opty () < Nummer(a)}

falls goal = Maximum
Wir sagen, dass U NP-schwer ist, falls Lang;; NP-schwer ist.

\_ lk

.

Lemma 6.12: Falls ein Optimierungsproblem U € PO, dann Lang;; € P
Satz 6.10: Sei U € NPO. Falls U NP-schwer ist und P # NP, dann U ¢ PO
Lemma 6.13: MAX-SAT ist NP-schwer.

Lemma 6.14: MAX-CL (Das Problem der maximalen Clique) ist NP-schwer

Um zu zeigen, dass solche Probleme U NP-schwer sind, reicht es zu zeigen, dass Lang;; NP-schwer ist, was wir mit
einer P-Reduktion machen kénnen.
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7 Grammatiken

7.2 Das Konzept der Grammatiken

Mit Grammatiken haben wir eine alternative formale Beschreibung von Sprachen. Die Idee der Grammatiken ist
anstelle der Beschreibung der Eigenschaften einzelner Wérter oder von Maschinen / Automaten, die die Sprachen
erkennen, die Erzeugung der Sprachen zu beschreiben.

Definition 7.1
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