Relevant definitions used throughout Analysis II. \subtext{$\textbf{A} \in \R^{m \times n},\quad x,y \in \R^n,\quad \alpha \in \R$} \definition \textbf{Scalar Product} $x \cdot y :=\sum_{i=0}^{n} (x_i \cdot y_i)$ \definition \textbf{Euclidian Norm} $||x|| := \displaystyle\sqrt{\sum_{i=1}^{n} x_i^2}$\\ \subtext{Used to generalize $|x|$ in many Analysis I definitions} \lemma \textbf{Properties of} $||x||$ \begin{center} $ \begin{array}{ll} (i) & ||x|| \geq 0 \\ (ii) & ||x|| \iff x = 0 \\ (iii) & ||\alpha x|| = \alpha \cdot ||x|| \\ (iv) & ||x + y|| \leq ||x|| + ||y||\quad \text{(Triangle Inequality)} \end{array} $ \end{center} \definition \textbf{Definiteness} \begin{center} $ \begin{array}{lcl} \text{Positive Definite} &\iffdef& x^\top \textbf{A} x > 0\ \forall x \in \R^n_{\neq 0} \\ \text{Negative Definite} &\iffdef& x^\top \textbf{A} x < 0\ \forall x \in \R^n_{\neq 0} \end{array} $ \end{center} \smalltext{If $0$ is allowed, $\textbf{A}$ is called positive/negative semi-definite.} \definition \textbf{Trace} $\text{Tr}(\textbf{A}) := \displaystyle\sum_{i=0}^{\text{min}(m,n)} \textbf{A}_{i, i}$