Relevant definitions used throughout Analysis II. \definition \textbf{Euclidian Norm} $||x|| := \displaystyle\sqrt{\sum_{i=1}^{n} x_i^2}$\\ \subtext{Used to generalize $|x|$ in many Analysis I definitions} \lemma \textbf{Properties of} $||x||$ \begin{center} $ \begin{array}{ll} (i) & ||x|| \geq 0 \\ (ii) & ||x|| \iff x = 0 \\ (iii) & ||\alpha x|| = \alpha \cdot ||x|| \\ (iv) & ||x + y|| \leq ||x|| + ||y||\quad \text{(Triangle Inequality)} \end{array} $ \end{center} \subtext{$\forall x,y \in \R^n,\quad \alpha \in \R\\$}