\newsectionNoPB \subsection{Linear differential equations of first order} \rmvspace \shortproposition Solution of $y' + ay = 0$ is of form $f(x) = z e^{-A(x)}$ with $A$ anti-derivative of $a$ \rmvspace \shade{gray}{Imhomogeneous equation} \rmvspace \begin{enumerate}[noitemsep] \item Plug all values into $y_p = \int b(x) e^{A(x)}$ ($A(x)$ in the exponent instead of $-A(x)$ as in the homogeneous solution) \item Solve and the final $y(x) = y_h + y_p$. For initial value problem, determine coefficient $z$ \end{enumerate}